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Abstract
Software  testability is becoming an
important factor to be considered during
software development and assessment, especially
Jor those critical softwares. This paper gives
software testability, previously defined by Voas,
a new model and measurement which is done
before random black-box testing with repect to a
particular input distribution. We also compared
our measurement results with the one simulated
according with Voas's model. It showed that our
rough testability estimate provides enough
information and will be used as guidelines for
software development.
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1. Preliminary

It is believed that software industry is at a
risk for a disaster or some kind, a disaster in
which the blame will clearly lay to software, and
all will be tarred with the brush used on the
unlucky developer. Nowadays, many computer
systems are used in critical applications such as
spacecraft and defense systems. When lives and
fortunes depend on software, software quality
and its verification demand increased attention.
But how can we access the acceptable safety and
reliability of such critical software? When can
we say that the software is reliable enough;
testing can be stopped and the software can be
released ?

In the past, much research on software
testing has concentrated on methods for
selecting effective sets of test data [Dem87],

variously based on program specification, on
program structure, or on hypotheses about likely
faults. Testing tries to reveal software faults by
executing the program and comparing the
expected output with the one produced so that it
can guarantee correctness. Much effort has been
put in to answer the question: "what is the
probability that the program will fail?" However,
software testing can not show the absolute

absence of failure unless

it is exhaustive

[DDH72]. Therefore, if testing is to be effective
at all, then non-exhaustive testing must be
performed in a manner that offers some degree
of confidence that the code is reliable. Here, we
- ask another question: "what is the probability
that the program will fail, if it is faulty?" We
present another technique, software testability
analysis, that will help developers make the

assessment.

We focus on some program

characteristics that make faults hard to find with
random black-box testing.

Assessing a program's testability, T, is a

hard task, and much research has explored this

problem

[Voas92b, MMNP92, Hami87].

However, the analyses of testability in the past
were done after testing, especially with random
black-box testing. This paper suggests another
analysis technique to gain the testability of a
software by checking the source code instead of
testing it. Doing so, it can not only reduce the
effort and cost at testing step, but also give a
direction for debugging because low testability
implies that faults are more easily hidden during
testing.

2. Related works

2.1. Fault-Failure model
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Any assessment of testability must be
based on a model of the fault/failure relationship.
The following simple model of this relationship.
has been proposed in [More84, VM96]:

Each textual location in a program
is considered as a possible
location of a fault. At a given
location, a possible fault could
result in a failure if and only if:
1. A fault must be executed.
9. The fault must affect the
state of the program in a
manner different than what
the state of the program
would have been had the
fault not existed. This is

termed as having an
infection in the state.
3. The erroneous program

state must propagate to an
, " output state.

This model is very simplistic, because it
imagines that faults at a single location; however,
it can be used to define as practical
approximation of testability.

If we confine the possibility of a program's
failure to this model, the probability that a fault
will turn into a failure will be the product of
~ execution probability, infection probability and
propagation probability. Furthermore, a lower
bound on testability of a program is obtained as.
the least product above over all locations in the
program.

2.2. PIE
PIE--propagation ~ analysis, " infection
analysis, execution analysis--is a dynamic

technique for statistically estimating the effects
that a location of a program has on the program's
computational behavior. PIE analysis collects
information concerning the semantics of faults.
It does not reveal the existence of faults, nor
does the technique directly evaluate the ability
of inputs to reveal the existence of faults. Instead,
it identifies locations in a program where faults,
if they do exist, are more likely to remain
undetected during testing. The technique is
based on fault/failure model and it estimates the

probability of the three characteristics of a

location:

1. the probability that the location is
executed on inputs selected from the
assumed input distribution of the
software.

2. the probability that if a mutant exists at
this location, it will adversely change the
data states;

3. the probability that if the data state is
adversely changed that that will
propagate to the output.

The following is the detailed definition for
PIE analysis [Voas92b, VM95] : Let S denote a
specification, P denote an implementation of S,
x denote a program input, A denote the set of
all‘possible inputs to P, D denote the probability
distribution of A, [/ denote a program location
in P. Then

A

&pp is the proportion of inputs (selected
according to D) that causes location / to
be executed. '

Let 1<y <z, M, represents a set of z,
mutants of location [ :{m”,mlz,...mlz,} (where
1<y <z,) [Howd82].

A’mlylpD

that the succeeding data state of location
[ is different than the - succeeding data

of mutant mly is the probability

state that mutant my, creates.
A

Y, pp fora simulated infection affecting
variable a in the data state succeeding
location [ ( where this data state is created
by a randomly selected input x according
to D ) is the probability that P's output
differs ( from that would normally be
produced ) after execution is resumed
using the simulated infection.

Let @, denote the testability of some location [ ,
then

A A
(-)l =£IPD* mm[lmlylP_D],mm[WalPD]
mly a

where

o{a,b) ={

a-(1-b) ifa—(1—b)>o}

0 otherwise
2.3. PISCES
PISCES is the commercial software

testability tool which is written in C++ and
operates on programs written in C. It
implements the PIE technique defined in
[VMM91, Voas92b]. PISCES produces
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testability - estimates by  creating an
"instrumented" copy of the program and then
compiling and executing the instrumented copy,
which is about 10 times as large as the original
source code, with inputs that are either supplied
in a file or PISCES uses random distributions
from which it generates inputs.

If PISCES is performed in its entirety, we
will have:

A

&, + the estimate of the probability that
program location / is executed.

A - .
2, . ﬁ, T the estimates of the
1,pl 1,p2

probabilities, one estimate for each mutant in

{ P pz-,,,,} at program location / , that given

the program is executed, the mutant will
adversely affect the program state

A A i
I/f , V/ yous the estimates of the
lal la2

probabilities, one estimate for each live variable

in {al ,a, ,} at program location [, that
given that the live variable in the program state
following the program location is perturbed.

Then, a PISCES testability postprocessor
inputs all probability estimates and allows the
user several choices of how the testability will
be displayed: either for a location, a module or
for the entire program.

The value of this tool to software quality is
two-fold: improved testing, and improved
debugging [VMP92].

2.4. DRR

The domain/range. ratio (DRR) of a
specification denoted by o : B [VM93] is the
ratio between the cardinality of the domain to
the cardinality of the range. It is one of the
important factors in determining whether the
software is likely to hide faults. For example,

f(x)=2x corresponds to a DRR of o0, * 00; :

( the symbol O, denoted the cardinality of
integers ) . The specification f(x) has only one
possible input for x for any output f(x). It is a
one-to-one function, which implies high
testability. The function f(x)=sqr(x), however,
mandates a loss of information because both x=5
and x=-5 produce the same internal state after

‘[VMM91, Voas92b]
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execution f(x). It may be that the negative
integer could signal a problem with the software,
but f(x) will erase that information in the output.
Previous research [VMO91] has also suggested
that many-to-one computable function tends to
have lower testability since the phenomenon--
called internal state collapse--that its internal
state is not communicated in its output always
occurs. By paying attention to the DRRs, we can
potentially give a closer insight for the estimate
of testabilities, especially for infection estimate.

3. Software testability analysis

Software testability analysis measures the
benefit produced by a software testing scheme to

_a particular program. There are several ways to

define software testability [BS95]. For instance,

" it is regarded to as the ease with which some

input selection criteria can be satisfied during
testing. Thus, a program is said to have "low
testability" if it is difficult to find inputs that can
satisfy a particular structural coverage criterion
(Ex: branch testing) for the given program.
Another view of software testability defines it as
a prediction of the probability that existing faults
will be revealed during testing given an arbitrary
input selection criterion C [Voas92b]. The .
former definition focuses on syntactic features,
whereas the latter, semantic analysis. In either
definition, software testability analysis result is a

function of a (program, input selection criteria)

pair [Voas94]. Therefore, a program may have
varying T when presented with varying input
selection criteria. Moreover, because T refers to
a probability, testability is bounded in a closed
interval [0,1].

3.1. Terminology

A failure is the event where a program's
output is not compliment with the specification
[BS95]. Using the definition in [Lap92], a
failure occurs because the program enters an
erroneous state. Hence, an error is a part of the
state that can lead to a failure. A fault in a
location is the cause of an error. Here, we define
a location as a single instruction--an assignment,
input/output statement, a <condition> part of if
or while statement and procedure calls. As for
the definition of "software testability," we use
the one provided in the early 90's Voas
a prediction of the
probability of software failure occurring if the
software were to contain a fault, given that
software execution is with respect to a particular
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input -distribution during random black-box
testing. It consists of three estimates, similar to
PIE [Voas92] at each location:

Execution estimate: The likelihood

that the location is executed on inputs

selected from the assumed input
distribution of the software.

Infection estimate: The likelihood that

if a mutant exits at certain location,; it

will change the data state.

Propagation estimate: The likelihood

that if the data state has been changed,

the change will propagate to the

output.

For any test case to reveal a fault at a
specified  location,  execution, infection,
propagation must occur; without these three
events occurring, the execution will not result in-
failure. Thus for a specific fault, the product of
the estimates of these three events occurring
yields an estimate of the probability of failure
that would occur when this location contains a
fault. This is the testability of that location. We
then take the location with the lowest non-zero
testability to be the testability overall program.

3.2. The model of testability measurement

We determine testability by the code's
structure and semantics, and by an assumed

input distribution. Thus two programs with the .

same function may have different testabilities
Since a fault can lie anywhere in a program, we
should take all places in the source code into
consideration'when estimating testability.

In the paper, we consider that the fault
might exist at any location in the program. We
have purposely limited the faults to single faults
to avoid the explosion that occurs in the number
of combinatorial changes that could be made at
each location. Furthermore, the faults considered
in our research are limited to faults of arithmetic
expressions and predicates. For arithmetic
expressions, the faults considered are limited to
single changes to a location--this is similar to the
mutations used in mutation testing [Howd82].
For assignment predicates, the faults include: (1)
A wrong_ variable/constant substitution, (2) a
variable substituted for a constant, (3) a constant
substituted for a variable, (4) a wrong operator.
For boolean predicates, the faults considered
included: (1) wrong - variable/constant
substitution, (2) a wrong equality/inequality
operator substitution, (3) exchanging and and or.

Estimate for "E"
Case 1 : For any sequential statement, E =1.

Case 2 : For any if or while statement, E is still
1. .
Case 3 : For the statement in execution body of
if or while -
if there is some clear domain/range ratio
for the <control> part of if or while, we
can estimate the execution rate as
domain/range ratio or (1-domain/range
ratio), depending on whether location /
is in yes or no execution body of if or
while. '
if there isn't, then we give a weight of
certain branch according to the graphic
theorem: the number of branches on data
flow diagram at location /

-Since there might be a lot of paths from
the program beginning to a specified location,
and the program structure might be complicated-
-there might be nested branches, we conclude
that the estimate for "E" as follows :

For any location [ , there are n paths from

the program beginning to [ --with k

branches on every path, the execution

estimate of / would be the summation of
execution rate along i-th path. Thus,

n
E=ZEP‘ where [ s the
i=1

i .

execution rate of a specified location on
the i-th path -

k
Jj=0

e is the domain/range ratio, (1-

domain/range) ratio, or branch
weight at the j-th branch on i-
th path before J

See appendix for detailed calculation.

Estimate for "I"

The estimate for "I" is much related with
the number of tokens--operands and operators--
in a location. If location / is an assignment, we
only consider the right-side of the assignment
because any incorrect variable substation on the
left-side -is hard to predict and control.
Furthermore, we treat the constants as variables

and their ], opd=1. The following: is the

calculation of I for location [ :

e If location /[ is an input/output statement,
we give every input/output variable a
unique infection estimate. For example: if
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the location is a statement like "read(a,b,c)",
then it will have three infection estimates:

l.=1,=1.=1

Others :

1 ap od
1= _(z .[1_()prj + le_opdj)

n\ iz j=1
op : the number of the operators or built-
in functions on the right-side of the
assignment, boolean predicate, or in the
<condition> part of if or while statements.
od : the number of the operands on the
right-side of the assignment, boolean
predicate, or in the <condition> part of if
or while statements.
n : the number of tokens; op+od=n.’

11 o : the infection weight, Iw, of

the i-th operator or built-in function
See Table 1 for | ,, Of some operators and

built-in functions.

operator, built-in function |J

+,—,X,/ 1
>,<,=,5,%,2 DRRor 1

|a mod b (b is a constant)  |(b-1)/b

adivb (bisaconstant)  (([a/b]-1) / [a/b]
others (ex. trunc, round,|1/2

div, mod, even,...)

Table 1. /  for some operators and built-
in fuctions

_ | variable I,
opd; " constant 1

1, : the infection estimate at some
location /', where the j-th operand is
lastly defined.

Also see appendix for detailed calculation

Estimate for "P"
The estimate for P here is much different

from the one defined by Voas. Voas considered -

all of the input variables and the variables which
were assigned during the program. They were all
treated as perturbed variables. According to the
definition provided in [Voas92b], the
propagation probability for location [/ is the
minimum value among the probabilities got by
perturbing all the perturbed variables. In our
research, however, we only considered the
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variable used in the <condition> part of if or
while statement or the definition of variable v at
location [/ as the perturbed variable. We think
that it will have much affect on the propagation
analysis at location [ .
Here we would like ‘to define wse or
definition of variable v first :
A use of variable- v is an
instruction X in which this
variable is referenced. A use can
be in a test instruction (the
<condition> part -of if or while
statement), on the right-side of an
assignment instruction or an
output instruction.
A definition of variable v is an
instruction X which. assigns a
value to that variable. A definition
can be an assignment instruction
or.input instruction.
Now the algorithm for estimating P is as
follows : : '
1. For a specified location / , find the
variable v, which is defined.

2. From location l ', find location Z ',
where v is used after it is executed at

location /. And [ ' is the new
specified location.

3. Get [, oflocation
Repeat step 1, 2, 3 until we reach the output
statement. .
If we can't reach the output statement, then

J =0 :
else P = H I,

See appendix for detailed calculation

Loop, while fepeat

We treat the whole loop as a single
statement. We give the whole loop a testability
score which is the smallest testability score
among the ones for every statement in the body
of the loop. _ '

If the loop is finite, no matter how many
times the loop will iterate, the testability score of
the loop is estimated by running the loop body
once because we can extend the loop like a
series of sequential statements.

4. Performance discussion

We have implemented our new model of
measurement to a .simple program. The
following is the source code of the simple
program, and Table 2 is our measurement for the
program's testability compared with those based
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on Voas's model. Every location has two results.
The first row of the result is gained by
simulating Voas's algorithm, whereas the second
row is our measurement based on our model.

close to the one got by simulating Vaos's PIE

‘model. Since a program's testability is depend on

its input data distribution, our results are still
accurate when comparing with the results based
on Voas's model.

Location No. Please note that it doesn't make sense to
—lr-ea d(ab.c):. say which model is better only according to the
T higher testability it gets because a program
4 ifa<>0 then begin testability is related with its input data
5 d:=b*b-4*a*c; distribution and neither Voas' model nor our
6 if d<0 then model proposed is exhaustive testing in Table 2.
7 'x_=0 As for the application of testability, other
) papers showed that testability can help us make
else decisions about debug testing [VMMO91] and
8 x:=(-b+trunc(sqrt(d))) make predictions about reliability [VM92].
div (2*a) Furthermore, the measures of testability which is
end proposed. in this paper can be used to draw
inferences on program correctness because a
else program has passed a certain number of tests
9 x:=-c div b; without failing--with a high value of testability
10 writeln(x); and implies a high probability that the program

From Table 2, we can find that the
testability derived from our model is almost

is correct.

{ Location Fault E I P T
No: _ :
5 b*b-5*a*c 0.9090 0.8264 0.9009 0.6767
: ' C 0.9090 0.9090 0.7664 0.6333
5 b*b-4*c*c 0.9090 0.7438 0.9009 0.6091
0.9090 0.9173 0.7665 0.6391
5 c*c4*a*c 0.9090 0.9083 0.9009 0.7438
, 0.9090 0.9000 0.7847 0.6420
5 b*b+4*a*c 0.9090 0.8264 0.9009 0.6768
_ 0.9090 0.9090 0.7664 0.6333
3 x:=-a+trunc(sqrt(d)) 0.9014 0.9082 0.8186 0.6701
div (2*a) ‘ .
' 0.9996 0.8106 0.8106 0.6558
Table 2 Testability Estimates
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5. Concluding remarks

Software testability is becoming - an
important factor to consider during the software
development and assessment. We contend that
the preliminary results of our software testability
analysis are sufficient to motivate additional
research into quantify . software testability
analysis. - Not only do we think that this
technique may help assess critical systems but it
is also acknowledged as a technique that should
be further explored for its enormous impact on
assessing ultra-reliable software.

Though our testability analysis is
somewhat time-consuming, we have felt that our
new model of measurement is worth to make a
prediction for software testability without any
testing.  Our future research will focus on
empirically exploring different strategies. We
expect that the model of measurement will be
implemented as a tool for further testability
predictions.
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