Proceedings of International Conference on Distributed
Systems, Software Engineering and Database Systems

Cost—Reliability Optimal Software Release Policy under Penalty
Cost Based on the HGDM

Rong-Huei Hou

Sy-Yen Kuo

Yi-Ping Chang?

Department of Electrical Engineering
National Taiwan University
Taipei, Taiwan, R.O.C.
Email: sykuo@cc.ee.ntu.edu.tw

Abstract

One of the important applications of software
reliability growth models is to determine when to
stop testing and release the software to the users.
The Hyper—-Geometric Distribution software reliability
growth Model (HGDM) has been developed to estimate
the number of faults initially resident in a program
at the beginning of the test/debug phase. In this paper
based on the HGDM, we investigate the cost-reliability
optimal software release policy which not only mini-
mizes.the total software cost but also satisfies the soft-
ware reliability requirement. The total software cost
here includes the penalty cost which should be paid by
the manufacturer if the software is delivered after the
scheduled delivery time. The main result is that the
optimal release ttme can be determined and shown to
be finite. A numerical ezample is presented to illus-
trate the cost-reliability optimal software release poli-

cy.

1. Introduction

In recent years, computer systems have been widely
applied to the monitor and control critical systems, for
example, in air traffic control, nuclear reactors, real-
time military applications, and hospital patient mon-
itoring systems. Therefore, the breakdown of a com-
puter system, caused by software faults, may result in
tremendous damage for social life. Software reliability
is one of the key issues in the software product devel-
opment. A model for software reliability assessment
during testing phase is called a Software Reliability

1Yi-Ping Chang is with Department of Business Mathemat-
ics, Soochow University, Taipei, Taiwan, R.0.C.

264

Growth Model (SRGM). In the literature, many soft-
ware reliability growth models have been developed
[1-5].

In addition to fulfilling the requirement on software
reliability, one of the important applications of SRGM-
s is to determine when to stop testing and release the
software ‘to the users. In general, the longer the soft-
ware is tested, the higher the software reliability is.
However, delays in software release will increase test-
ing and other costs. Hence, it is desirable to deter-
mine the optimal release time. Such decision problem
is called an optimal software release problem, and has
been studied by [6-12]. In [6], Okumoto and Goel ad-
dressed the cost optimal software release policy mini-
mizing the total expected software cost. Yamada and
Osaki [10] introduced the cost-reliability optimal soft-
ware release policy which minimizes the total expected
cost and satisfies the software reliability requiremen-
t. However, the cost model they proposed excludes
the penalty cost due to the delay from the scheduled
delivery time. In fact, the delay by the test will in-
cur additional cost and the late release for operational
use will also lead to users’ dissatisfaction. Hence, it
is usually assumed that additional penalty cost should
be paid if a software is released after the scheduled de-
livery time. Therefore, Kapur et al. [11] discussed the
cost—reliability optimal release policies with scheduled
software delivery time. The underlying software reli-
ability growth models in their approach are based on
the Non-Homogeneous Poisson process (NHPP).

The Hyper-Geometric Distribution software relia-
bility growth Model (HGDM) was first proposed by
Tohma et al. [13]. A series of studies on the HGDM
have been made recently [14-20]. In this paper, we
investigate the cost—reliability optimal release policy
with scheduled delivery time which not only minimizes

the total software cost but also satisfies the software

reliability requirement. Note that the software cost -

includes the additional penalty cost if a software is
released after the scheduled delivery time. The un-
derlying software reliability growth model in our ap-
proach is the HGDM with with exponential or logistic
learning factor [19]. The overall organization of this
paper is as follows. A brief review of the HGDM with
exponential or logistic learning factor is given in Sec-
tion 2. The software cost model including the penalty
cost is proposed in Section 3. The cost—reliability op-
timal software release policy with scheduled delivery
" time based on the HGDM are discussed in Section 4.
A Numerical example is presented for illustration in
Section 5 followed by the conclusions in Section 6.

Notations

m ‘number of initial software faults in a program

t; the 4 test instance, i = 1,2,...,n where ¢
represents the order of application.

w; number of faults newly discovered or redis-
covered by ¢;

u; testing resource (the number of test items,

the number of testers, or CPU time, etc.)
performed in t;

Prr,a,b constant parameters of the HGDM with ex-
ponential or logistic learning factor

Ci cumulative number of software faults discov-
ered by t1,%s,...,%

I optimal software release time

I inf{i > 1:A() <0}

I inf{i>1:1-[[;s,(1~p;) > a)

c1 expected cost of fixing a fault during testing

ca expected cost of fixing & fault during opera-
tion (cz > ¢; > 0)

c3 expected cost of testing per unit time (c3 >
0)

C4,C5 nonnegative real numbers

D scheduled software delivery time (D > 0)

Cp(i) penalty cost function due to the delay from
the scheduled software release time

CT(i) total expected cost with the penalty cost
when the software is released at #;

C*(@) (es+Cp(i) — Cp(i - 1))/(m(c2 — 1))

Iy inf{i > 7: 6(i+1) <C*(i+1)} '

5(2) piH;'_:ll(l—pj)a 1=2,3,--

A(D) pigr—pi — pigaps, 1=1,2,--

s {(D-1<i<I—1: 6%) > C*(i) and 6(i +
1)< C*(i+1)} -

265

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

a prespecified software reliability (0 < o < 1)
Assumptions

1 Faults which have been discovered upon the ap-
plication of ¢;- don’t have to be fixed before the
following test instance ¢;;; is applied.

2 During the removal of discovered faults, no new
faults will be inserted.

3 The w; faults discovered by ¢; are those taken
randomly out of the m initial faults.

4 The number of test items (the number of tester-
s, CPU time) performed in a test instance is as-
sumed to be the same for all test instances, i.e.,
u; is assumed to be a constant for i=1,2...,n.

2. Review of HGDM

In this section, we briefly review the Hyper—
Geometric Distribution software reliability growth
Model (HGDM) [13-16]. The HGDM has been de-
veloped to estimate the number of remaining software
faults after the test/debug phase. In general, a pro-
gram is assumed to have m faults initially when the
test/debug phase starts. The collection of test oper-
ations performed in a day or a week is called a “est
instance”. The test/debug phase consists of consecu-
tive applications of test instances. Test instances are
denoted by t;,7 = 1,2,...,n in accordance with the
order of applying them. The “sensitivity factor”, w;,
represents how many faults are discovered during the
application of test instance ¢;. Each fault is classified
into one of the two categories, newly discovered faults
or rediscovered faults. Some of the faults detected by
t; may have been detected previously by the applica-
tion of #; through #;_; test instances. Therefore, the
number of newly detected faults during the applica-
tion of the i** test instance is not necessarily equal to
w;.

Considering the application of #;, let C;—; be
the number of faults already detected so far by
t1,%2,..., ti—1 and N; be the number of faults new-
ly detected by #;. Then, some of the w; faults may
be those that are already counted in C;_;, and the
remaining w; faults account for the newly detected
faults. With the assumption that new faults will not
be inserted into the program while correction is being
performed, the conditional probability Prob(N; = z; |

'roceedings of International Conference on Distributed

iystems, Software Engineering and Database. Systems

m,w;, C;—~1) can be formulated as

("))
Pr(N¢=wi|m,wi,C¢-1>= o - AN
=)

where max(0,w; — C;—1) < «; < min(w;,m — Cj_1)
forall i > 0, Ci1 = 4oy 2k, Co =0, zo=0and
zp is an observed instance of Ni. The expected value
of C; denoted by EC; is [13-16]

{ 5e mp—1r)
B =ml1 ~ [Tl -p)], i=12..,
where ’ .

pi = wi/m. 3)

There are various functions for p; presented in [13-
16]. For example, p; =u;(ai+b) is applied [13-14]. In
this paper, since a test instance is a time unit of the
release times, we have one additional assumption that
u; is a constant. Hou et. al. [19] has proposed two p;
functions when u; is assumed to be a constant based
on the exponential and the S—shaped learning curves,
respectively. The first function is

pi=p(1—e),a>0,0<p,, <1, (4

which is called the “ezponential learning factor”. The
.second function is

']_ .
Pi=erm’a>0’b>0’0<pwsl’ (5)

which is called the “logistic learning factor”.

~ In the following sections, we will discuss the cost-
reliability optimal software release policy with sched-
uled software delivery time. The underlying software
reliability growth model is the HGDM with exponen-
tial or logistic learning factor.

3. Software Cost Model

Okumoto and Goel [6] discussed the software op-
timal release policy from the cost—-benefit viewpoint.
However, the cost model they proposed excludes the
penalty cost due to the delay from the scheduled de-
livery time. In general, additional penalty cost should
be paid if a software is released after the scheduled
delivery time [7-8]. In this paper, the penalty cost
function for the HGDM is
i < D;

. 0,
Co(i) = { cs+ cs59(i — D), _i>D. (6)

266

In addition, the longer the software is delayed de- .
livering, the more the manufacturer should pay the
penalty cost. Therefore, g(7) is assumed to satisfy the
following four conditions A1-A4.

Al: g(0) =0.
A2: ¢(7) is increasing in <.

A3: g(i) is a convex function of ¢. That is, g(¢ +1) +
g(i—1) > 2¢(3) for all i > 1.

A4: Cp(7) is a convex function of . That is, c5¢(1) >
c4.

"Including the penalty cost, the total software cost
for the HGDM is given by

CT(i)=c,ECitea(mECiresi+Cp (),i=0,1,2, - --. (7)

4. Cost—Reliability Optimal Release Policy
with Scheduled Delivery Time

There is a common measure [12] for describing soft-
ware reliability: the ratio of the cumulative number of
newly discovered faults to the number of initial fault.
Based on the above measure, the ratio of the expected
number of the cumulative number of newly. discovered
faults at the i** test instance to the number of initial
total faults, denoted by

BG =012, (®)
m .

R(i) =

is the measure of software reliability for the HGDM.
Apparently, the larger the value of R(%) is, the higher
the software reliability is. In practice, it is reasonable
to stop testing and release the software when the cu-
mulative number of newly discovered faults is larger
than a prescribed portion of initial faults [12]. The
cost-reliability optimal release policy is to determine
the optimal release time by minimizing the total ex-
pected cost subject to reaching the prescribed level
a of R(%). Therefore, the cost-reliability optimal re-
lease problem with scheduled delivery time based on
the HGDM can be stated as:

{ minimize CT(3)

subject to R({) > a, 0<a< 1.
From Eq.(2), we have
{ R -t ©)

and then R(%) is increasing in i. Define
I, =inf{i: R(?) > a}. (10) -
From Eq.(2), we have

CT0) = cam,

{Cﬂz)=c1mﬂcz—c1)nﬂ}=l(1 —pi)+es+Cpli=1 - (D

For convenience, let

cs + Cp (i) — Cp(i— 1)

C*(i) = s —onym i=1,2,--- (12)
and
6(1) = p1;)
{ 6() = p[ii(1~p;), =23, (13)
Since

c3 — (Cz — cl)mpl + CD(I)
(cz — e1)m{C*(1) — 6(1)}

CT(1) — CT(0)

and
CTE+1)—-CTH = (ca —cymfC*G+1) - i+ 1)}, i=1,2,- - -

we have the following lemma.

Lemma 1.. For i = 0,1,2,.-., we have:
(i) if C*(+1) > 6(i + 1), then CT(i + 1) > CT(3);
(ii) if C*(+ 1) < §(i + 1), then CT(i + 1) < CT(3);
(iii) if C*G+1) = &+1), then CT(i + 1) = CT(3). U

Let
A(3) = pig1 — Pi — pigapi , 1=1,2,---, (14)
and then
{5(?)—5(1)='A(1); . o (15)
8(i + 1)=6()={IT;=1(1 — pi)}A(3),i=23, -
Define |

I=inf{i>1:A(z) <0} (16)

For the exponential and the logistic learning fa.ctdrs,
we have the following lemmas, respectively [17].

Lemma 2. If p; = p,.(1 — e~%), then:
(i) 6() <8(i+1)for1<i<I—1;
(ii) 6(5) > 6(i + 1) for i > I. a

267

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

Lemma 3. If p; = p,. /(1 + be™%), then:

- (1) A(%) is decreasing for i > I;

(i) 6(3) <6(i+1)for1<i<I—1and 6(i) > 6(i+1)
fori> I. O

For convenience, define
=inf(i>1: 86G+1)<C*G+1)}, (17)
and
S={D-1<i<I-1:8)>C(and&i-+)<C*G+1}. (18)
We have the following Lemma [17].

Lemma 4. Suppose that g(¢) satisfies conditions A1-

Ad I p = pLT(l = e—ai) Or p; = Py /(1 + be_ai)a
then I is finite and unique. a

To derive the “cost-reliability” optimal -release
time, the following theorem on the “cost” optimal re-
lease time I* need to be obtained in advanced [17].

Theorem 1. Suppose that g(i) satisfies conditions
Al-A4. Ifpi=p,,(1- e—ai) orpi =p,./(1+ be—ai):
we have:

(i) if D > I, then I* satisfies CT(I*)
min CT();
Z‘E{O,Ij})
(iiyif D < I, then I* satisfies CT(I*) =

min CT(¢), where Iy and S are defined in
i€5U{0,I;) .

Eq.(17) and Eq.(18). O

Note that Theorem 1 can be consolidated into
I*e Su{0,I;}. From the definitions of If and S, we
have Iy = max{SU{0,1;}}. From the proof of Theo-
rem 1, the following lemma can be easily obtained.

Lemma 5. If p; = p,.(1 — C_Gi) or p; = p/(1+
be=%), then C'T'(i) is increasing in i (i > Iy). a

Applying Theorem 1 (the theorem on cost optimal
release time) and Lemma 5, we can obtain the fol-
lowing theorem on the cost-reliability optimal release
time I*. '

Theorem 2. Suppose that p; = p,.(1 — e™%) or

pi = pyp/(1+be~%). I Iy > I, then I* = Io;

otherwise, I* satisfies CT(I*) = {giv%,lCT(i), where
12

Proceedings of International Conference on Distributed
Systems, Software Engineering and Database Systems

W = [Su{0, I;}In{la, Io+1,---, I} and S is defined
in Eq.(18).

Proof: If I, > Iy, using Lemma 5 we have I* = I,.
If I, < Iy, using Lemma 5 we have I* € {l4, I +
1,---,I}. Furthermore, from Theorem 1, we have
I* € SU{0,I;} and Iy = max{S U {0,I;}} based
on the cost criterion. Therefore, if I, < If, we have
IFe[Su{0,Nn{ls Ia+1,--, It} O

In Theorem 2, we have proposed the procedure of
determining I* based on the HGDM with exponential
or logistic learning factor. Furthermore, from Lemma
4 I* can be shown to be finite.

5. Numerical Examples

In this section, a numerical example is used to il-
lustrate the cost-reliability optimal release policy with
scheduled delivery time based on the HGDM with ex-
ponential learning factor. Note that the following ar-
gument is the same for the HGDM with logistic learn-
ing factor.
The data set used in this analysis is the test/debug
data of a software system [21]. Since the test data
is reported per week, a test instance is “a week of
observation”. The cumulative number of discovered
faults for the 24 test instances are gathered. Since
the testing resource u; is a constant, assumption (4)
on Page 3 holds. The least squares estimates of the
parameters of the HGDM with exponential learning
factor are m = 2300, @ = 0.1206, and p,, = 0.1602
[19.
The parameters of CT'(i) are taken from [6]: ¢; =
1$ per fault, c; = 5% per fault, ¢ = 108 per week,
and ¢4 = 1$. The various values of ¢5 in the penal-
ty cost function Cp(i) are assumed to be 1, 5, 10,
20, and 40, respectively, for comparison. Suppose the
software reliability requirement is 0.95 (i.e., @ = 0.95),
from Eq.(10) we have I, = 25. Furthermore, since the
" estimated number of initial faults is 2300 (M = 2300),
from Eq.(8) reliability requirement is that at least 2185
- faults should be discovered (i.e., no more than 115
faults remaining in the program). Considering the
case that g(i) = i2, the cost and the cost-reliability
optimal release times are given in Table 1. Table 1 also
indicates when cs increases, the cost-reliability opti-
mal release time will become smaller. For example,
with ¢5 = 1 and D = 10, we have the cost-reliability
optimal release time I* = 28 where the total expected
cost CT'(7) is minimized and the reliability require
ment is also achieved. Since 24 test instances have

268

been collected, the 25, 26%*, 27 and 28'"test in-
stances should be collected and tested by the test en-
gineers before the software is released. With ¢5 = 5
and D = 10, we have the cost-reliability optimal re-
lease time I* = 25 where CT(7) is not minimized but
the reliability requirement is achieved. Therefore, the
25" test instance should be collected and tested by
the test engineers before the software is released. Note
that CT(3) is minimized at ¢ = 22 and R(22) = 0.919
but the reliability requirement 0.95 is not achieved.
The graphical interpretation is shown in Figure 1

6. Conclusions

In this paper, we have discussed the cost—reliability
optimal release policy with scheduled delivery time
based on the HGDM with exponential or logistic learn-
ing factor. The effect of the penalty cost on the cost—
reliability optimal release policy was analyzed. It is
concluded that earlier release of the software system
is a cost—effective policy if the penalty cost is consid-
ered. In addition, the cost-reliability optimal release
time I* has been shown to be finite.

Table 1. Cost and cost-reliability optimal release
times based on the HGDM with exponential learning
factor (g(3) = 12, @ = 0.95, I, = 25).

Scheduled delivery time: D = 10

cs | Cost optimal re- | Cost-reliability opti-
lease time I* and | mal release time I* and

R(I*) R(I*)
1 28, 0.970 28, 0.970
5 22, 0.919 25, 0.951
10 19, 0.970 25, 0.051
20 16, 0.794 25, 0.951
40 14, 0.7%5 25, 0.051

Scheduled delivery time: D = 20

cs Cost optimal re- | Cost-reliability opti-
lease time I* and | mal release time I* and

R(I*) R(I*) |

1 30, 0.979 | 30, 0.979
5 %6, 0.958 26, 0.958
10 31, 0.942 95, 0.951
20 23, 0.932 25, 0.951
40 21, 0.905 25, 0.951

1,00

095 E T.=25
0.50]

aso—f
Mo-f
um-f
050

R()

0.40

T
0 10 20 30 40 0 60
Releass Time 7

g
S
1

N

S
1
N

e Cs=1

Total expected software cost CT(3)

3
{
1

0 10 20 30 40 £
Release Time i

Figure 1. An illustration of the cost-reliability
optimal release problem based on the HGDM with
exponential learning factor (D = 10, g(i) = 2,
a = 0.95, I, = 25).

Acknowledgment. We would like to express
our gratitude for the support of the National Science
Council, Taiwan, R.0.C., under Grants NSC85-2221—
E002-015. Reviewers’ comments are also highly ap-
preciated.

References

[1] J. D. Musa, A. Iannino, and K. Okumoto, Soft-
ware Reliability — Measurement, Prediction, Ap-
plication, McGraw-Hill, New York, 1987.

[2] M. Xie, Software Reliability Modeling, World Sci-
entific Publishing, Singapore, 1991.

[3] C. V. Ramamoorthy and F. B. Bastani, “Soft-
ware reliability — status and perspectives,” IEEE

269

4]

(5]

[6]

Joint Conference of 1996 International Computer Symposmm
December-19~21, Kaohsiung, Taiwan, R.0.C.

Trans. on Software Engineering, vol. 8, No. 4, pp.
354-371, 1982.

G. J. Schick and R. W. Wolverton, “An analysis
of competing software reliability models,” IEEE

Trans. on Software Engineering, vol. 4, pp. 104-
120, March 1978.

M. Ohba, “software reliability analysis models,”
IBM J. Res. Develop., Vol. 28, No. 4, pp. 428-
443, July 1984.

K. Okumoto and A. L. Goel, “Optimum Release
Time for Software Systems Based on Reliability
and Cost Criteria”, J. System Software, Vol. 1,

" pp. 315-318, 1980.

(7]

(8]

(9]

[10]

1]

(12]

(13]

H. S. Koch and P. Kubat, ¢ Optimal Release
Time of Computer Software”, IEEE Trans. Soft-
ware Engineering, Vol. SE-9, No.3, pp. 323-327,
1983. '

S. Yamada, H. Narihisa, and S. Osaki, “Opti-
mum Release Policies for a Software System with
a scheduled Delivery Time”, Int. J. Systems Sci-
ence, Vol. 15, pp. 905-914, 1984.

S. M. Ross, “Software Reliability: The Stop-
ping Problem”, IEEE Trans. Software Engineer-
ing, Vol. SE-11, No.12, pp. 1472-1476, 1985.

S. Yamada and S. Osaki, “Cost-Reliability Opti-
mal Release Policies for Software Systems”, IEEE
Trans. Reliability, Vol.34, No.5, pp 422-424,
1985.

P. K. Kapur and R. B. Garg, “Cost-reliability
Optimum Release Policies for a Software System
under Penalty Cost”, Int. J. Systems Science,
Vol. 20, pp. 2547-2562, 1989.

M. Xie, “On the determination of optimum soft-
ware release time,” Proceedings of the 2nd Inter-
national Symposium on Software Reliability En-
gineering, pp. 218-224, May 1991, Austin, Texas.

Y. Tohma, K. Tokunaga, S. Nagase, and Y. Mu-
rata, “Structural approach to the estimation of
the number of residual software faults based on
the hyper—geometric distribution”, IJEEE Trans.
on Software Engineering, vol. 15, No. 3, pp. 345—
355, March 1989.

Proceedings of International Conference on Distributed
Systems, Software Engineering and Database Systems

[14] Y. Tohma, H. Yamano, M. Ohba, and R. Jaco-
by, “The estimation of parameters of the hyper-
geometric distribution and its application to the
software reliability growth model”, IEEE Trans.
on Software Engineering, vol. SE-17, No. 5, pp.
483-489, May 1991.

[16) R. Jacoby and Y. Tohma, “Parameter value
computation by least square method and e-
valuation of software availability and reliabili-
ty at service—operation by the hyper—geometric
distribution software reliability growth model
(HGDM)”, Proc. 13th Int. Conf. Software Engi-
neering, pp. 226-237, 1991.

[16] T. Minohara and Y. Tohma, “Parameter esti-
mation of hyper—geometric distribution software
reliability growth model by genetic algorithm-
s”, Proc. 6th Int. Symposium on Software Reli-
ability Engineering, pp. 324-329 , October 1995,
Toulouse, France.

[17] R. H. Hou, S. Y. Kuo, and Y. P. Chang, “ Op-
timal Release Times for Software Systems with
Scheduled Delivery Time Based on the HGDM,”
IEEE Trans. on Computers (accepted for publi-
cation).

[18] R.H. Hou, S. Y. Kuo, and Y. P. Chang, “Optimal
Release Policy for Hyper—-Geometric Distribution
Software Reliability Growth Model,” IEEE Tran-
s. on Reliability (accepted for publication).

[19] R. H. Hou, S. Y. Kuo, and Y. P. Chang, “Apply-
ing Various Learning Curves to Hyper-Geometric
Distribution Software Reliability Growth Mod-
el,” Proceedings of the 5th International Sympo-
sium on Software Reliability Engineering, pp. 7—
16,'November 1994, Monterey, California.

[20] R. H. Hou, S. Y. Kuo, and Y. P. Chang, “ Effi-
cient Allocation of Testing Resources for Software
Module Testing Based on the Hyper-Geometric
Distribution Software Reliability Growth Model,”
Proceedings of the 7th International Symposium
on Software. Reliability Engineering, pp. 289-298,
October 1996, White Plains, New York.

[21] A. L. Goel, Software reliability modeling and
estimation technique, Final Technical Report
RADC-TR-82-263, 1983.

270

