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Abstract

An efficient design for low-complexity and fast
computation for the bit-parallel systolic architectureis of
practical concern in many digital circuit designs. This
paper presents a class of novel bit-parallel systolic
multiplier over the finite field GF(2™), which is
generated from the irreducible all one polynomial (AOP)
and equally spaced polynomia (ESP). The proposed
architectures have properties of highly regularity,
simplicity, and shorter latency, which are important in
designing the bit-parallel systolic multipliers. Moreover,
the AOP-based systolic multipliers of small fields can be
used to construct all the corresponding ESP-based
systolic multipliers of large fields. The latency of the
AOP-based and ESP-based systolic multipliers require
m+2 and m+r+1 clock cycles, respectively, which ae
better than others. The size complexity of the proposed
multipliers is smaller than previously developed
multipliers of the same class. And as for the parallel
systolic multipliers, the bit-parallel structuresused in this
paper has shorter the computation latency

|I. Introduction

Efficient algorithm of real-time system,
high-speed and |ow-complexity of fast computation over
finite field GF(2™) is an extremely important research
topic owing to their applications in the areas of
computers and communications, eg.,
error-control-correcting [10],[14] and cryptography
[9],[12],[13]. Significant arithmetic operations for these
applications are addition, multiplication,
inversion/division.  However, multiplication and
inversion/division which is proposed by successive
multiplication are still complex circuits. Therefore, it is
important to introduce an efficient multiplication
algorithm for constructing a bit-parallel multiplier of
low-complexity for arithmetic circuits. Thus, the
bit-parallel systolic architecture isof course the hot topic
for us to pursuit.

It is important that the Massey-Omura multiplier
(MOM) in[17] isthe first modular parallel architectures,
which requires the circuit complexity of O(nt) AND
gates and O(nT) XOR gates. To reduce the time and size
complexities, Itoh and Tsujii in 1989 [6], based on
special classes of finite fields such as al one polynomial
(AOP) and equally spaced polynomia (ESP), proposed
the bit-parallel multipliers. If the irreducible polynomial
is an AOP, then only 2nf-2m XOR and nf AND gates
are required for the parallel multiplier. Their structure is
a modular architecture and has a lower size complexity
compared to MOM. Besides, they also extend their
multiplication algorithm to the irreducible ESP s. Later,

Hasan (1992) [5],[4] used the AOP-based multipliers of
small size to construct the ESP-based multipliers of large
size. Recently, Koc and Sunor (1998) [3] designed
multipliers of the low-complexity bit-parallel with
canonical basis and normal basis. And meanwhile, Wu
and Hasan (1998) [7],[8] presented another
low-complexity paralel multipliers employing the
weekly dual basis (WDB). Moreover, from the
complexity point of view, Drelot (1998) [16] confirmed
that irreducible AOP and ESP have smaller complexity
arithmetic circuits. The two polynomials based on an
isomorphism can be transformed from GF(2") into the
residue polynomia ring modulo X'+1. If the polynomial
isirreducible AOP of degree m, then n=m+1. The design
mentioned above were at the design of modular
architectures, however, and their circuits can not be
redized to usethe systolic architecture.

To qotimize finite-field arithmetic circuit design
three criteria have to be considered: 1) short computation
delay (latency); 2) less circuit complexity; 3) short clock
period (cyclic time). The latency of systolic circuit is
defined as the time it takes for an element from the input
of a stage to its output. As low-complexity and
high-speed computation becomes increasingly attractive,
the systolic architecturesinthe VLS| are a common good
choice. Due to the architectures possess concurrent,
simple and regular designs that are balanced with 1/0.
Recently, numerous several of hardwares and algorithms,
based on serial and parallel manners, have been proposed
for computing arithmetic operations in GF(2™), which
can be implemented in the systolic architectures
[1-2],[15],[18]. The systolic multipliers by bit-serial
manners have been introduced [L8]; furthermore, the
parallelin-parallel-out systolic multipliers have been
proposed in[1-2]. In 1984, Yeh [2] produced the parallel
systolic multiplier. Its basic cell containstwo AND gates,
one 3-input XOR gates, and seven latches. Wei(1994) [ 1]
also produced a power-sum systolic multiplier for
computing AB*+C, where A, B, and C are any element in
GF(2™). However, the latency of the exited parallel
systolic multipliers still required 3m clock cycles.

For the need of low-complexity circuit with
minimized latency, this work presents a new bit-parallel
systolic  architectures to compute the element
multiplication over GF(2™). The new circuit is an
alternative design in canonical basisover the field GF(2™)
generated by irreducible AOP and ESP. The novel
AOP-based systolic multiplier applies the proposed
multiplication schemes to construct a low-complexity
and fast computation with the bit-parallel architectures.
The designed multipliers are more efficient for the
element multiplication in GF(2™), as they simplify the
architecture and increase computation speed. In addition,
applying the AOP-based systolic multiplier of small



fields can construct the ESP-based modular systolic
multiplier of large fields. The latency complexity of the
developed AOP-based systolic multiplier is more
efficient in reducing the clock cycles from 3m to n+2.

1. Proposed AOP-based modular systolic
multiplier

It is assumed that the reader is familiar with the basic
concepts of finite field. The properties of finite fields
GH(2™ are covered in detail in [11].

Definition 1[6]: A polynomial p(x)=é plxi over GF(2)
i=0

of degree m is called al one polynomial (AOP) iff

p;=10£i£m.

An AOP has an important property of p(x)| X™*+1.

This variety of polynomial is an irreducible iff m+1 isa
prime and 2 is a primitive modulo m+1. For example, the
possible AOP of degree m to become irreducible are
specified by irreducible polynomials, such asm=2, 4, 10,
12, 18, 28, 36, 52, 58, 60, 66, 82, 100, for m £ 100. If a
isaroot of the irreducible AOP p(x), then we obtain

mele g

a (OfiEm2 ) @

In order to reduce the modulo operations, the field
elements are transformed from GF(2™) into the
polynomial ring modulo X™*+1 because of a™* =1, that

m-1
is, any element A:é_ aa' T GF(2" can aso be
i=0
g _
represented as A=g aa , where 3§=a+a,
i=0
(O£i£m-1) [6]. For example, A=1+a +a’l GF(2%),
the element can be represented as A=1+a +a® by
using the canonical representation or A=a’+a* by
using the extended representation.
Now, let use mnsider of the case two extended

elements A=3 aa' and B=§ ha' over GF(2", it
i=0 i=0

is observably that he multiplication of two elements A

and B equals to AB(moda ™ +1). In the following

subsection, this type of element representation will be
used to develop the multiplication algorithm for
designing bit-parallel systolic multipliers.

A. Algorithm

Since m+1isaprimeand 2 is aprimitive modulo
m+1, we obtain 2™= (m+2)/2 mod (m+1). So j2™* mod
(m+1) isapermutationpon{0, 1,2, ...,m},i.e,
p(j)=ix™" mod(m+1) @

= j(m+2)/2 mod(m+1)
According to (2), we immediately obtain the following
properties.
Property 1: 2p(j) = j

Property 2: p(i+j)=p()+p(j)

Property 3: p(m+1) =0

Applying the Property 1-3, the element A may be
re-expressed by shuffling its terms asfollows

m
A:é_ ap(i)a”‘”, ®
i=0
Therefore, common multiplication results: in both types

of multiplication is the multiply-by-ap(l) operation,
which can be done by thefollowing rule, i.e., let

m
n_ 8 i
AY =q ag(i)-p-a”" @
i=0
Then,
AaPD = 5 aPOFPW 4 o P +R()
8p(0) m)+p11

+ .. H+8y a™
= ama’” + goa®? + . Haympa™”
= a<a30)-p(1)>+a<p(1)-p(1)>ap( Y+ ragpmpwsa™™ ()
=A

where <x> is denoted by x modulo m+1l A
straightforward multiply-by-aP® operation is equivalent
to shift-right-by-1-bit operation. From (), we can define
cyclic shift-right-by-j-bit operations, i.e.,

m

A = é a . ya’? ©)
i=0

Similarly, A™ is equivalent to cyclically shifting j bit to
the left, such as

h_8 i
AL = a %(Hj)ap()' (7)
i=0

Consider the coefficients of A asthey relateto A? and

A" wetherefore obtains
A= ACDgrd) = Alhg PC D) ®)
N : J :
Definition  2:  Given  A=Q g,,2""  and
i=0
g () i
B=a b,,a"" , theinner product of A and B, as denotes

i=0

AQB, can be defined as follows
6] i

AQB=Q 3,0, 2 ©
i=0

Definition 3: Let two elements A and B periodically be
shifted by j positions to right and left, AY) and BV,
respectively. Then, based on Definition 1, the fh inner
product, A(j)QB(' D is defined as

) ) d )
AR — i
ATQB™ = A Ag)-p (P iyen(in2 (10)

i=0

d" .
Theorem  1:  Given A= a,2" and
i=0



m
B:é b ,a"" . the product of A and B can be
i=0
represented by the following recursive formula
m
AB = é A(j)QB(' )

i=0
Proof: Let

A=ay+aja + @ a’+..+ana™
B=bo+bja + b, a’+...+b,a™

Then their circular convolution can be re-expressed by

m m

[ [} i
AB :a a ajb<i_j>a

i=0 j=0
From Property 1, we know that i=2p(i), fori = 0,
1,..., m, then

Om Om i
AB=a a aban -2 zp () (12)

Next, choosingj suchthat j=p(i- j),forj=0,1, ...,
m. Therefore, AB can be re-expressed by

_ g g b 2p (i)
AB=ad aA g
=0 j=0
_ 6“ 6n i
=a a deben? (12
=0 j=0
= g A(i)QB(-J)
j=0
|

Example 1: If m=4, then we obtains m+1=5 is a prime.
By applying the Property 1-3, we obtains p() for
OfLi£4 , such as p@O=0 , p@®=2%°3 |,
p(2)=2x%°1,p(3)=3%%°4, and p(4) =4x>° 1. Assume

that {La,a2a>a” isan extended basis of the field

GF(2"), thus, the basis can be transformed

into{a®®a’®,aP@aP®aP®} g Aza oal®
p () P2 p(3) p(4)

taypat Tt tapatt TR tayua and

B=boa’®  +Bpat? +h,;aP@ +h,5al® +h, a”@
be two elements of the field GF(2"); and let
C=c,+ca+ca’+ca’+ca* be the product of the
multiplication A and B. The product C can then be
computed by using Theorem 1, as

a0 1) %@ %@ @
X bo(g b b2 b @
AQB= 0P HePw BePo HBebe Bae

b b b

AmQB('j = Hubo Hobo HoPhe Behw BE%o

232::3: :ms)';p(a pr)sp(s) ZMO)EP(A) Zp(l)';p(m Zp@)sn(n

p@2%0 He%e HoPho 2Ho%o oo

+ AYB™ = anbiy Aebho BHePo Bawbe obe
C= Co c, c, Cq C,

As stated above, the multiplication scheme is

focused in the extended element to obtain AB= é cal,

=0

g
where ¢, = g a b

wpi-Pairpne (Mod 2). In order to

i=0
obtain completely multiplication scheme, the proposed
multiplication in (12) must be to perform the reduced
modulo p(a) operation to obtain the desred
multiplication of two elements. Therefore, let
m-1
AB= é Ejaj be the results of AB, the coefficients Ej
j=0
can be obtained using the following relationships

T, =¢ +c, (mod 2) (13)

B. Structure and comparison

We call the circuitswhich realize (12) and (13) as
two operation units: the inner product multiplication
(IPM) unit and the final reduced modulo p(@a) (FRM)
unit, respectively. According to Theorem 1, it is obvious
that the IPM unit of Fig. 3 requires m+1 inner-product
step procedures (IPSPs). The structure of each IPSP is
shown in Fig. 1(a@) includes m+1 basic cells. The basic
cell is the realization of G+ ap(i)-p()Dpiy+pg)> Mod 2
which includes one 2-input AND gate, one 2-input XOR
gate and three 1-bit latches, as shown in Fig. 1(b). Fig. 2
depicts that the structure of FRM unit isoperation unit of
(13), which includes m 2input XOR gate and m khit
latches. Fig. 3 illustrates that based on Fig. 1-2, the
proposed AOP-based systolic multiplier over GF(2) is
comprised of two parts: the IPM unit and the FRM unit.

In the IPM unit of Fig. 3, the " column cells
denote the order of a'. The j'" row cellsis identical to the
" IPSPfor A®QB“ operations. Hereafter, the i cell of
the jth IPSP of IPM unit is denoted by the (i,j) cell. With
coefficients ¢, a,;.5, B enter the cell (i)j), the
cell  operates ¢ =C +a,; b4 (mod 2)
computations. The basic cells consist of one 2input
AND gate, one 2-input XOR gate and three 1-bit |atches.
When the input data of three elements A, B, C enter the
array, all coefficients are distributed over the first row
cell. Fig. 3 presents that all coefficients in the jth IPSP
(0£j £4) are also distributed over the | row cells. As
the operations of the " IPSP, the coefficients g, »
and g, in the cel (i,j), for O£i£m, respectively
propagate to the cells (i+1, j+1) and (i+1, j-1). As
previously stated, neighborhood communications among
cells is performed by transportation of al neighbor
coefficients in the array. This instructs us to take
advantage of the bit-parallel systolic architectures for the
circuit design with which each PSP only requires one
clock cycle.

In the successive computations, the input data can
continuously enters the array, and each IPSP only
demands one clock cycle to complete the inner-product
operations. From Fig. 3, the proposed AOP-based
systolic multiplier comprises two parts: the IPM unit and



the FRM unit. The IPM unit consists of m+1 IPSPs, that
is, the latency of the IPM unit requires m+1 clock cycles.
According to Fig. 2, the FRM unit only demands one
clock cycle. Therefore, the latency complexity of the
proposed multiplier requires only m+2 clock cycles to
compute AB for the first input data that enters the
planned systolic multiplier. A possible clock period of
latency requires a minimum of one 2input AND gate
and one 2-input XOR gate delays, as shown in Fig. 2(b).
The total gate complexity in this circuit comprises
(m+1)? 2-input AND, (m+1)?+m 2-input XOR gates
and 3(m+1)°+m 1-bit latches. Since the operation
works every clock cycle and no cycle is wasted, the
proposed architecture yields the maximum possible
throughput. Therefore, this architecture is highly regular
and simple in structure, and has a shorter latency to
perform the element multiplication.

There are several points to be addressed. The
latency of the systolic architecture for multiplications
over GF(2™) is only m+1 clock cycles while most other
bit-parallel systolic multipliers, such as thesein [1] and
[2], require 3m. Table 1 reveals that our AOP-based
multipliers require more logic circuit than the two
low-complexity design but they are much simple than
Wei's and Yeh' s multipliers. The propagation delay of
each cell is short being the total delay of one Zinput
AND gate, one 2input XOR gate and one 1-bit latch,
and the multiplier generates a product in each clock
cycle. The throughput is therefore very high. Finaly, this
architecture is highly regular, simple and with very few
global connections.

[11.Proposed ESP-based bit-parallel modular
systolic multiplier

Definition 4[6]: A polynomial g(x) = x™ +x"™? +...+
x'+1=p(x") over GF(2), where p(x) is an AOP of
degree m, is termed r-equally spaced polynomial (r-ESP)
of degree mr.

It iswell known that if p(x) is an irreducible AOP
of degree m over GF(2), then g(X)=p(x") is

irreducible over GF(2) iff r =(m+1)’ 1 1 mod(m+1)?
for j3 1. An r-ESP also has an important property of

a' ™D =1 where a is a root of g(x). Now, let us

consider the property of a'(™*Y =1, for any element

gt -
A=Q @a' 1 GR2™) can be represented by
i=0
(m*ol)f-l
A= qaa' (14
i=0
where 3, =a,,,+a,,,,0£j£r-1,0£i£m-1 [6].
Therefore, any element Al GF(2™) can might be
defined as

Azél Aa' (15

i=0

where

m
A =8 @@, OEKEr-1
i=0
Sincem+lisaprimeand 2 isaprimitive modulo
m+1, we obtain 2™'=(m+2)/2 mod(m+1). So jr2 ™!

mod (m+1)r isapermutations on{0, r, 2r, ..., mr}, i.e,

s(j)=jr2™ mod(m+21)r

: (16)
= jr(m+2)/2 mod(m+1)

Therefore, the element A ( O£k£r-1) can be
re-expressed by shuffling its terms asfollows

A=Q a,.2"" (17)
i=0

With Property 1-3, hence, we concludes that
2s(j)=jr, s(itj)=s(i)x s(j), and s(m+1)=0. For two

— g s (i)
Ak —a ag (i)+ka and
i=0

sub-elements

m
Bn =8 b (yora® P (O£ K, h £ - 1), straightforwardly,
i=0
the product of AyB;, is based on Theorem 1 to obtain the
following results

B =8 Ao 18

ABL=a A QB (18
j=0

Theorem 2: Given two sub-element Ay and

Bo(O£k,hEr-1) , then AB, multiplied by a" is

equivalent to {A B, }.
Proof: Since Theorem 2, the results of A (B, obtain

3
AB,=Qq ca"

i=0
where

m
[}
Ci =@ 8 )-p(iyksPeptiyep (jyen>
j=0
Therefore, A (B, multiplied by a™ obtains
a"AB,=coa" +cia¥ + ...+ ca™"
=Cpm+Coa' +cia¥ + ...+ cpia™
={ABn}® (a9n

Finally, assume that two elements A = Ag + A;a + Ara’
+ ...+ Aja™t axd B =By + Ba + Ba? + ... +
Br.1a™1 GF(2™), then the multiplication of A and B
based on Theorem 2 and 3, can be re-expressed as

6' &' :
AB = . . (V‘ﬁ)a'
% % {ﬁla» j)%|B|<i+J)%|} (20)
=C,+aC +-+a"'C ,
where



Bl
C = ()
' %({ﬁ|0-1)'—;’181|(i+1>'—;1|}
:Ci+Q+rar+"'+Ci+mra
Note that ||><i| denotes x modulo r; w=1 if

r-1
a2
m-1

31, else w=0. Let AB:é Ca',
i=0
where C, = é C.qa ", then the coefficients between G
j=0
and C, have the following relations

(OSj£m+1, OEi£r-1) 22

()

mr

- =

Ci+jr

=c

i+jr

+C

1+mr

As previously stated, the proposed ESP-based
systolic multiplier comprises ¥ IPM and r FRM units, in
which the IPM array isfor computing (19); the FRM unit
is for (22). As a simple illustration, the bit-parallel
systolic multiplier based on 3ESP x°+x®+1
corresponding to the irreducible AOP x*+x+1 is
shown in Fig. 4. Fig. 3 demonstrates the details of 1PM
and FRM circuits. In Fig. 4, theIPM,, denotes the

proposed that two elements A and B, enter the IPM

unit. According to (17) the input elements are shuffled
before enter the IPM unit The computed result C,., .4

of IPM,, isto propagate to the IPM unit. The

r+1 r+l
i

coefficients of C,,, .., Which is the output of IPM,,
unit must peforms a periodic shift-rght-by-1-bit
operation if h+k3 r, subjected to the relations of Theorem
2.

Generally, the proposed ESP-based multiplier
over GF(2™) which has modular systolic architecture
requires (m+r)> AND gates, (m+r)>+m XOR gates,
m+r+1 clock cycles. The proposed ESP-based systolic
multiplier of larger fields can be constructed by the
corresponding is based on AOP-based systolic multiplier
of smaller fields. We therefore ascertain both irreducible
AOP and ESP, for example of mand r, 6(3), 18(9), 20(5),
54(27), and 100(25). Table 2 presents a comparison
among ESP-based bit-parallel multipliers. It is evident
that our proposed ESP-based multiplier is able to design
the bit-parallel systolic multiplier with modular
architectures.

IV. Conclusions

This paper examined a novel systolic multiplier
over finite field GF(2"), which are generated by an
irreducible AOP and ESP. An element representation is
based on a field isomorphism from GF(2") into the
residue polynomial ring modulo X™+1 and x™"+1,
respectively. All of which are highly regular and able to
reaize with bit-parallel systolic architectures. The
proposed AOP-based bit-parallel systolic multipliers
efficiently improve the latency complexity from 3m to
m+2 clock cycles. Moreover, the AOP-based systolic
multipliers of smaller fields can be applied to construct
all the corresponding ESP-based systolic multipliers of

larger fields. From the hardware implementation pointing
of view, the primary contribution of our architecturesis
only able to construct the bit-parallel systolic
architectures.
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Fig. 4. The configuration of ESP-based

systolic multiplier over GF(2°)
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Fig, 3. The bit-parallel systolic multiplier over GF(2%)

based on anirreducible AOP



