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Abstract

This paper proposes the learning by
experimentation methodology (LEM) to facilitate
the active training of neural networks. In an active
learning paradigm, a learning mechanism can
actively interact with its environment to acquire
new knowledge and revise it. The learning by
experimentation is an active learning strategy.
Experiments are conducted to form the hypotheses,
and the performance of those hypotheses feeds back
to the learning mechanism to revise knowledge. We
use a backpropagation neural network as the
learning mechanism. We also adopt a weight space
analysis method and a heuristic to select salient
attributes to perform new experiments in order to
revise the network.

1. Imtroduction

The Learning by Experimentation
Methodology (LEM) is an active learning strategy.
The LEM consists of two main tasks: hypothesis
Jformation and hypothesis revision. The learning by
experimentation methodology is proposed and
applied in various areas, such as AM [3], BACON
[2], LEX [4], IDS [5], KEKADA [1], and PDS
[71[6]. These works are done in the symbolic
learning approach, but works on using neural
networks to accomplish the LEM are still rare [9].
However, we found some advantages of using
neural networks for learning by experimentation,
and erected our motivations of pursuing this
research from them. First, leaming by
experimentation is an incremental learning process,
and learning based on neural networks is essentially
an incremental learning. Therefore, using neural
networks is a straightforward option for inductive
learning mechanism. Second, learning in neural
networks is more robust in dealing with noisy data
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than some symbolic learning algorithims. So, the
concepts learned using neural networks is more
accurate. Third, because the learned concepts are
embedded in the connection of neural networks,
once the concepts are learned it is very efficient to
generate the output given the input variables,
Therefore, this efficiency makes neural networks
suitable for the real time dynamic control systems.
Finally, the property of the - incremental learning of
neural networks is very suitable for the knowledge
revision in the LEM.

This research takes the advantages of the
characteristics of neural networks in the inductive
learning mechanism and applies the learning by
experimentation methodology to perform active
learning. Therefore, the linkage of neural networks
with the LEM is one of the main contributions. The
other contributions of this work include methods
for the salient attribute detection: and the
informative example selection for the active
learning.

2. Learning by Experimentation
Methodology
The Learning by  experimenitation

methodology (LEM) is an active learning paradigm
which the learner should actively select examples
from the environment as the input patterns for
induction. The framework of the LEM consists of
two main tasks: hypothesis jformatiorn and
hypothesis revision.  During the hypothesis
formation, first, a learner should define the problem
domain, determine the variables, and build the
model.  Second, a learner can decide the
experimentation goal, experimental design, and
then perform experiments. Finally, from the
experiments' results which are distinct instances, an
inductive learning mechanism can be applied to
form hypotheses. The generated hypotheses have
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to be tested before they are viewed as theories. We
can either test them on seen events or use them to
predict future events. The results of testing, either
supporting or denying hypotheses, feed back for the
hypothesis revision.  During the hypothesis
revision, first, a learner should detect the defective
hypotheses, locate the important variables, and then
concentrate on the informative values. Second,
experiments are performed by inputiing these
informative values as the independent variables,
and training examples are collected for the further
learning. Finally, the hypotheses are refined and
then tested. These stages iteratively continue until
the learner is satisfied with the learned hypotheses.

Figure 1 shows the spiral model of life cycle
for learning by experimentation. The curve extends
outward while the quality of hypotheses (theory)
improved by theory revision. The curve stops
growing when the performance of the learned
knowledge exceeds the threshold of acceptance.
This spiral model demonstrates LEM's dynamic,
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contiruous, and self-adaptable properties. It is
dynamic because the monitoring of the system
performance will trigger the theory revision process
when the prediction accuracy of theory is below the
revision threshold. It is continuous because the
reach of outside circle is not a direct leap from
inside core, but a continuous movement consisting
of the iteration of hypothesis formation and revision
stages. It is self-adaptable because the learning
agent itself controls the learning process, including
to investigate the outside world using its own
experimental design, to obtain various quality of
theory, and to generate heuristics for refining the
existing theory by monitoring the results of
problem solving. The iteration of hypotheses
formation and revision in the LEM can be further
developed into  four  iterative  phases:
experimentation, hypotheses formation, problem
solving and  performance evaluation, and
hypotheses revision, (Figure 2) and is discussed in
the followings.
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Figure 1. The spiral model of the LEM
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Figure 2. The iterative phases of the LEM

Phase 1: Experimentation

Experimentation plays a fundamental role in
scientific discovery. Scientists use experiments to
investigate phenomena, gather data, and verify
theories. In an experiment, there are factors which
are observable and controllable and responses
which are effects caused by the manipulation of
factors. Therefore, instead of passively receiving
instances from outside world, experimentation
serves as an active information collector. The goal
of experimentation is to investigate the relationship
between actions and responses of the examining
system in various system settings. Experimental
design completely specifies the experimental test
runs. In the LEM, the experimentation is a
mechanism that generates the training examples for
hypothesis formation. The experimental design
also takes into account the heuristics generated
from the hypothesis revision.

Experimentation is an active approach for
decision makers or problem solvers to explore the
environment by changing some situations in the
given model and then observing the results of those
changes. These changes can be systematic such as
the experimental design mentioned above, or
dynamically controlled by some heuristic criteria
such as the inferestingness used in AM system [4].
In the LEM, the experimentation works as an
example generator. It is designed to demonstrate
the performance of problem solving and then the
situations, actions and results are stored as training
examples for inductive learning. The design of
experimentation is guided both by the systematic
factor combination and heuristics.

Phase 2: Hypothesis Formation
Hypothesis formation, in essence, is a process
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of inductive learning, especially learning fiom
examples. The tasks of inductive learning is to
generalize the relationship among examples and
represent them in a concise and consistent form
(depending on the knowledge representation) to
predict the unseen events. The performance of
learning from examples is heavily influenced by the
training examples. Therefore, the distribution of
training examples, the noise, and the bias of
sampling data are major considerations in inductive
learning. Since learning by experimentation is an
active learning that a learning agent actively selects
training examples for its own goal, the
experimentation and hypothesis formation work in
a supplier-consumer relationship. The examples
generated from experimentation are the source for
the learning from examples. On the other hand, the
obtained hypotheses will be used to solve problems.
This chain effect shows that the performance of
learning process is decided by the quality of
training examples, and the success of problem
solving is decided by the quality of learned
hypotheses.

Phase 3: Problem Solving and Performance
Evaluation

The learned hypotheses can be tested by
generated testing examples or can be used to solve
problems in order to evaluate their effectiveness or
efficiency. Due to the incompleteness or
incorrectness of the existing hypotheses, the
knowledge base is demanding for revision. The
results of problem solving or testing are the source
of feedback to the whole system of learning by
experimentation.  This feedback provides the
information for the theory revision mechanism to
refine the existing theory in the knowledge base.
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Phase 4: Hypothesis Revision

The feedback of performance measures from
the hypothesis evaluation is the motivation of
revision. The hypothesis revision mechanism
consists of the following functions: (1) detecting
the defective hypotheses, (2) extracting the salient
attributes, and (3) generating the heuristics of
experimental design for the next run of
experimentation.

The performance of hypothesis is measured
by comparing the predicted value with the actual
output value. The detection of defective hypotheses
is to search for hypotheses that have substantial
differences between expectation and reality. Those
hypotheses performing poorly (under given
threshold) in solving problems will be the focus of
revision.  From the collection of defective
hypotheses, we can extract the attributes that makes
the effective hypotheses different from the
defective hypotheses. These attributes will be the
focus of experimental design for following
experiments. This hypothesis revision will generate
the heuristics of experimental design for the next
run of experimentation.

3. Active Training of Backpropagation
Neural Networks

The active training of backpropagation neural
networks using the LEM iteratively invokes the
following procedures:

1. Experimentation:

¢  performing experiments,
2.  Hypothesis formation:

¢ preparing examples, and

4¢  training the neural network,

3. Problem solving and performance

evaluation:
¢ using the trained network to test
on holdout examples, and
4  ifthe performance is satisfied then
stop,
4. Hypothesis revision:
¢ analyzing the weight space of
learned networks, and
4 selecting salient attributes and
effective value ranges, go to step
1.
The following subsections will describe the
analysis of network and the selection of informative
atiributes in order to revise the networks.
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3.1 The Analysis of Neural Networks

Since the architecture of neural neiwork is a
sub-symbolic structure, we cannot
straightforwardly convert it into explicit rules. The
knowledge refinement for this- kind of sub-
symbolic representation mainly lies in the
exploration of the relationship between input
pattern and output values through the connection.
The analysis of relative strength for input variables
with their output variables provides valuable
information for experimental design to select
informative’ examples for the ‘continuous
improvement.

In a neural network, the weight space provides
the connection strength between two units. For
each aitribute 7/ (unit / of input layer) and
classification j (unit j of output layer), we can
compute the relative salience between this attribute
and classification. Assume that a neural network
has one input layer with m units, one hidden layer
with » units, and one output layer with p units. The
relative salience is compuied as

n
zk—l (W/a' ° Wﬂ“)

RSy =— 1 .
j Zi=1 Z1<=1 (W/a' oW ji )

where RSjjis the relative salience between the ith
input unit and the j# output unit, wy; is the weight
between i” input unit and A% hidden unit, wi is the
weight between k2 hidden unit and ;% output unit.
RSijj is the ratio of the strength between i#h input
unit and jfh output unit over the total strength of all
of the input units and /% output unit.

We adapt the idea of weighted average to
compute the relative effect of each input attribute.
For the i/ input value /;, and the jfh output value
0O, RSjj, the effect of /; upon O}, is obtained by

I, RS,
Z’;l& ® RS

REj; provides us the relative importance of attribute
toward the output classification. An atiribute with
higher RE value contributes more information
toward the classification. We can set up a threshold
value B as the lower bound for us to select relative
effective atiributes. Yoon, et al (1994) propose this
approach to exiract explanation rules from
networks [8]. In statistics jargon, this relative
effects RE is equivalent to main effects.’

3.2 Selection of Training Examples



In the learning by experimentation
environment, the classification of examples is
assigned after experiments, and we also have no
pre-determined boundary about the target
knowledge. The performance of neural network by
testing examples is the only information fed back to
the learning agent. To analyze those examples
which are classified incorrectly (i.e., false
examples) is the focus of our heuristic.

The heuristic used here we call the nearest
neighbor strategy. For those false examples, we
focus on the neighbor of each attribute value. The
range of the nearest neighbor is defined by the
discretization process which clusters contiguous
values of an attribute which have the same
classification into a cluster. For example, a false
example consists of salient and un-salient attribute
{ag} and {a_g}. The value of ay is vg, and it belongs
to a cluster between /by and rby; that is, b} < vy
< rbj. vg's nearest neighbor is defined between /by
and rbg. The value in the next experiment will be
selected randomly from range [/bg .. #b] of ag. The
values for those un-salient attributes will be
selected randomly from range of the possible
smallest and largest values of that attribute.
Definitions:

@  BPN: the backpropagation neural network.

@ S the example space, S = Sggin Y Stest. and
Strain M Stest, = O.

Stest: the testing examples, Syogr < S.

Sfalse: the testing examples which are
classified incorrectly, Sfalse < Stesr-

@  Syqin: the training examples, Sgqin  S.

@ [aj. a2, ..., an): asequence of attributes of the

example.

® A the attribute space. ie., 4 = { ay, a2, ...,
anp }.

@ [v], vy .., vy ci]: a sequence of values for

the [aj, a3, ..., ap] of the example.

®  ¢; is the classification.

®  REj: the effect of the ith atiribute upon jth
class.

@ P the threshold value for REj;.
® Aoy set of attributes whose RE value > f.
®  Souspur the atiribute : value pair for those

salient atiributes. i.e., Souspur = {aef: def} -
Heuristic:
Imput: S, BPN.
Process:
REPEAT
1. Chooses=[v], v2, ... ,vp, ¢j} from Sgylse.
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Compute REg' for s, where i=1to n.
Assign atiributes which RE > 3 to Aef
A_,ef =A4-4 ef:
Discretize aitributes in dgf. Vagf € Aegf;
a; clusters into intervals [lbg .. #b ], [1b7 ..
¥b2l, ..., (b, ..., bl
6. agf € Aef Ibj < vef < rbj, randomly
generate a value dgf; where Ibj < dgyf<rb;.
1. Soutput = Soutput Y {deft.
8. Sfalse = Sfalse - S-
UNTIL Sfglse = .

A

Output: Soyzpur.

3.3 Knowledge

Refinement on MNeural

Networks

Based on the feedforward neural network

architecture, we propose a knowledge refinement
algorithm which can analyze the weight space of
learned network, locate the salient variables, and

suggest the

range of possible values for

experimental design. We describe this knowledge
refinement algorithm as follows.
Definitions:

&
@

® @ @

[ ]

BPN: the backpropagation neural network.
S: the example space, S = Sgeqin Y Stest, and
Strain M Stest, = D.

Stesy: the testing examples, Sgggr C S.

Strain: the training examples, Syygin < S.

e: the prediction error rate of BPN.

h: the error rate threshold given by the user.

Algorithm:
Input: Sjpis, BPNinit, h.
Process:

§= Sinit.
BPN = BPNjpir.
S= Strain Y Stest, and Sygin \J Stest, = .
Test the accuracy of current BPN using Syegr.
WHILE e > h
1. Apply Heuristic (Subsection 3.2) to
select attributes and values for
experiments.
2. Generate new examples Spey from
experimentation.
3. S=SU Spew
4. L; = Strain Y Stest, ad Sprain O Stesp, =
5. Modify BPN using Sg-ain.
6. Test the accuracy of current BPIV using

Stest-
END of WHILE

Output: BPN.
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4. Conclusions

In this paper, we propose a learning by
experimentation methodology (LEM) to perform
active learning. A backpropagation neural network
is used as the learning mechanism. In order to
embed the network with active learning capability,
we adopt a self-refinement method to revise
knowledge. This self-refinement method consists
of analyzing knowledge embedded in the
connection weights, selecting salient attributes and
effective value range for performing the
experiments. In order to speedup the consequent
training on neural network, we saved the learned
weights, and then loaded into the network for the
next round of training. The stored weight space
works as a memory which avoids training from
scratch in each round of learning, and increases the
learning process too.
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