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Abstract

The design of adaptive filters becomes more
tmportant in the field of image restoration. In this
paper, we propose a new class of neural network
filters which possess more adaptive capability in
contrast to that of rank conditioned rank selection
(RCRS) filters which are a large class of selection
filters.  As we know, the RCRS filters possess
some powerful filtering capability among the
conventional filters for image restoration. The
selection filters include the RCRS filters whose
output is one of the observation samples. In
addition, the RCRS filters need the exponential
computation complerity to achieve their design
process.  Fortunately, the neural network filters
can avoid this problem. PFinally, the ewperiment
results demonstrate that the adaptive capability for
the neural network filters is better than that of the
RCRS filters.

Keywords: neural network, RC' RS filter, impulsive
noise, multilayer perceptrons, back-propagation.

1 Introduction

The adaptive capability of filters becomes more
important in the field of image restoration. In
practical environment, we may have only a por-
tion of noisy images received from sending sta-
tion which stores the corresponding original im-
ages through the little reliable transmission chan-
nels (for instance, the wireless transmission chan-
' nels) to form some training patterns. That is, we
seldom have a complete corrupted images and their
corresponding original images to train the neural
network filters through the little reliable transmis-

sion channels. However, the constructed neural
network filters based on the few part of learning
messages are still required to perform the filter-
ing restoration with respect to the noisy images
which are not recognized by the neural network
filters in advance. Henceforth, this reason moti-
vates us to investigate the improved perfofrhance
of adaptive capability for filtering noises. Many
previous works have been toward increasing adap-
tive capability of noise-removal for the design of
their filters(l, 2, 3, 4].
tal model of those works did not coincide with the

However, the experimen-

practical environments as we mentioned above. In
other words, the training patterns are not differ-
ent from the checking patterns in their experimen-
tal models. In contrast, herein another new ex-
perimental model we first propose in this paper is
that the training patterns are almost different from
the checking patterns. Evidently, the experimen-
tal model we propose relates closely to the practical
situation. '

In this paper, we directly employ a multilayer
perceptrons (M LPs) as the architecture of neu-
ral network, and also exert the back-propagation
learning algorithm at the same time [5]. The fil-
ters designated by this kind of neural networks are
called by the NN filters throughout this work. As
we know that neural networks are able to approxi-
mate nonlinear functions when those input-output
measurement patterns (or pairs) are available [6].
Therefore, this concept triggers that the noise-
removal problem can be treated as the problem of
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system identification [5]. Indeed, our goal is to es-
timate the behaviors of the system with the given
input-output measurement patterns performed by
a fixed structure neural network and sﬁpervised
learning method. Thus, we can say that a set of the
given input-output measurement patterns is iden-
tified as a set of patterns includes both the training
patterns and checking patterns if we are based on
the viewpoint of neural network. Meanwhilé, it is
demanded to achieve the minimization of a certain
cost function expressed as a function of weight vec-
tor which represents the free parameters of the neu-
ral network. The cost function is defined in terms
of the derivations of the network outputs from the
desired outputs under some criteria, such as the
least mean square (LM S) criterion. As we know,
the RCRS filters proposed by Hardie et al. which
are the optimal design filters among the class of
ranking selection filters, and are exploited to com-
pare the performance of adaptive capability with
the NN filters [7]. In contrast, the ]\f N filters be-
long to the class of non-selection filters. The ex-
perimental results evidently demonstrate that the
adaptive capability for the neural network filters is
better than that of the RCRS filters.

This paper is organized as follows. Section 2
provides a description of some notations and basic
concepts which concern the neural networks and
the RCRS filters. The architecture of the NN fil-
ters and the learning algorithm applied to them
are iltustrated in Section 3. The experimeﬁtal re-
sults of comparison between the NN filters and the
RCRS filters on several distinct images are shown
in Section 4. Finally, we give a simplified conclu-
sion with regard to the adaptive capability of the
neural network filters and some future works are
also mentioned.

2 Basic Concepts

In this section, we first give some definitions and
notations with respect to the image and sliding
window. In addition, an appending strategy used
widely is also introduced. Next, the definitions of
training and checking pattern are stated. Then,
the concepts and definitions about the desired

functions and the estimated functions implemented
by neural networks are illustrated in turn. Finally,
we alternately make a brief descriptions for the se-
lection and non-selection filters. For instance, the
RCRS filters pertain to the former, whereas the
NN filters belong to the latter.

Definition 2.1 A digital intensity image T with

size n. X n is represented by a matriz defined as

follows.
[ 213 T1j Tin W
.T21 24 T2n.
M = | 1
i1 Tij Tin )
L Tni Tng LTnn |
= [$ij]n><n

zi; € {0,1,2,---,255} is called the grey level of
the pivel located at (i,7) in Z. Note that M €
{0,1,2,---,255}™""

Definition 2.2 A sliding window with size r X 1
covers on the image I to obtain an observation vec-
tor Xi; at position (i,7), and is defined below

Limk, j—k Ti—k,j Tk, gtk
Xig = | Tij—k T35 T gtk

where k = |_§J and |-| stands for floor function.

Definition 2.3 A pattern Pi; = (X;;, dij) means
that X;; is obtained from a noisy image Myoisy and

Moriginal at position (i, §) where Myoisy = [Zijlnxn

is an observation sample of the original image

and Moriginal = [dij]nxm dij € {0,1,2,--- ,255}.
Example 2.1 Suppose we already
have two images Moriginat =
46 46 80 53 76
51 51 82 50 98
113 113 67 70 60 | and Mnoisy =
120 120 88 66 70
| 58 58 143 61 64
[ 46 146 0O 53 0
0 51 82 50 98
113 113 167 70 O , and also have
120 120 83 66 70
| 58 58 143 61 164
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a sliding window with size 3 x 3 (ie, 7

= 8 ). A pattern P33 = (Xs3,d33) is rep-
‘51 82 50

resented by Xs3 = 113 167 70 =
120 88 66

(51,82,50,113,167,70,120,88,6) and d33 = 67

Another pattern Pss = (Xss,d3s) is rep-
50 98 98

resented by X3z = 70 0 0 =
: 66 70 70

(50,98,98,70,0,0,66, 70, 70) and d3s = 60.

Note that one of the appending strategies
must be exploited for avoiding the situation
that the central position of the sliding window
covers those pixels which are near the four
boundaries of the image. In this paper, we
use the first strategy shown in [8]. In short,
it appends the four boundaries pixels several
repeated times. The number of repeated times

depends on the size of the sliding window to the

image formed the appended image. Thus, the
given images are applied this kind of appending
strategy and are redrawn below. M:ﬁ%ﬁggﬁd =
[ 46 46 46 80 53 76 76 ]
46 46 46 80 53 T6 76
51 51 51 82 50 98 98
113 113 113 67 70 60 60 and
120 120 120 88 66 70 70
58 58 58 143 61 64 64
| 64 53 58 143 61 64 64 |
46 146 0 53 0
0 51 82 50 98
Mpoisy = | 113 113 67 70 0 Those
120 120 88 66 70
58 58 143 61 164

pixels located at the top row, the bottom row,

the leftmost column and rightmost column of

appened
original

pixels located at the corresponding boundary,

are appended by means of taking the

respectively. This example has at most 25 train-
ing patterns, i.e., the set of training patterns
T = {(X;j,di;) : 1 <4 <5,1 <j <5} Therefore,
the cardinality of T is 25.

Subsequently, we know the mneural networks
can approximate the unknown functions if their
input-output measurement patterns are available.
We are able to say that the problem of that finding
the noise-removal function when both the original
and corrupted images are available is akin to the
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X; F() [—>d,

Figure 1: The desired function F.

problem of that finding the input-output mapping,.

If two given images are available, dne is an original

image represented by M, iginal = [dij]lnxn and the
other is a corrupted version of the original image
represented by Mpoisy = [Zij]nxn. Then, a set of
measurement patterns S is specified as follows.

Definition 2.4 Suppose that both Mpisy =
[Zijlnxn and Moriginal = [dijlnxn are given, and
the size of the sliding window is T x r. The element
PB;; of S is comprised of two components, one is the
observation vector X;; and the other is the grey
level dij of Moriginar at position (3,7).  That is,
S = U{P; = (Xij,d;5) : 1 < 4,5 <n} where i,j,7
and n are positive integers. In general, S =T UC
where T is called the set of training patterns, and
C s called the set of checking patterns and is the
difference between S and T.

However, the exaét formula of input-output
mapping is hard to find it by means of using the
approach of mathematics. It is pictorially shown
as Fig. 1.

The function F () represénts the exact formula
with respect to the given set of input-output ob-
servations Patterns, S. In our case, F is defined
as

F:{0,1,2,---,255}"°" — {0,1,2,---,255}
or an another expression,
F(Xij) = dz]

As before, we know that it is difficult to obtain F.
Our goal therefore is triggered to approximate F
by virtue of neural networks which act as the func-
tion l/?\depicted in Fig. 2 such that there are the
minimization difference between its actual output
d/z-; and desired output dj;.
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Figure 2: The estimated function F.

In summary, a set of input-output observation
patterns are transformed to the function performed
by a neural network such that this network learns
enough about the past to generalize to the future.

Finally, we know the RCRS filters which are a
large class of selection filters. The output of selec-
tion filters is one element of the observation vector
fed into the filters ( ie., d;; € X;;). As contrast
with the output of the non-selection filters may be
or may be not the element of the observation vec-
tor (i.e., 3:] ¢ X5, perhaps); Henceforth, we claim
that the NN filters possess more adaptive capabil-
ity than that of the RCRS filters. Fortunately,
the experimental results demonstrate the claim we

propose is correct.

3 Neural Network Filters

In this section we first introduce the architecture of
the NN filters, and then derive the learning algo-
rithm under the least mean square error criterion
by virtue of the steepest decent method. Actu-
ally, this learning algorithm derived is based on
back—propagation algorithm [5]. The difference be-
tween our learning algorithm and one of learning
algorithms, shown in [5], is the selection of the ac-
tivation function used by each neuron. This kind
of the activation function is exploited by our algo-
rithm to incur two advantages, one is the speed of
convergence is faster than the others, and the other
is the overflow problem. The latter does not occur
during the comiputing process if the asymmetric
activation function is employed.

3.1 Architecture of Neural Network
Filters

A p-g-1 multilayer perceptrons is employed to the
design of the NN filters, its architectural layout

shown in Fig. 3. It needs p input observation sam-
ples, such as z;,z;2, ..., Zsp, has only one hidden
layer with ¢ neurons, and has single output neuron.
In Fig. 3, the square stands for one of the input
observation samples, and the circle represents the
neuron. The neuron model is pictorially depicted
in Fig. 4. Those neurons shown in Fig. 3 form a

Figure 3: Multillayer perceptron with a single hid-
den layer and output layer.

fully connected graph which means that each neu-
ron is connected by either all inputs or all neurons
located at previous layer. Each connection edge
between two neurons has a corresponding weight
value. To be specific, each neuron must be given
a model depicted as Fig. 4. The neural model in-

Figure 4: Neuron model of neuron k at layer [.

cludes three basic terms. The first term is a set
of synaptic weights, such as wfco, wfal’.‘., wﬁzp. The

second term is a linear combiner,

P

I ! l-1 !

Uk = E WY — Wig
=

(3)
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1
where wj,

represents the threshold value. The
third term is an activation function (. In addition,
the output of the linear combiner is called internal
value, vfc, and becomes the input of ¢. Then the
output of ¢ is the actual output of the neuron. The
details about the model of neuron refer to [5]. As
mentioned before, the function of neural network is
decided by the weights among connected neurons.

In our case, Fig. 2 is also expressed as
F(Xi5, W) = dy

where W is a set of synaptic weight vectors among
connected neurons. Next, it is important that what
sort of the learning algorithms is able to compute
W to a specific structure neural network such that
it can achieve the minimum difference between all
of the desired outputs and the corresponding ac-
tual outputs.

3.2 Learning Algorithm

In fact, if the neural network wants to work well,
it then must include not only a fixed structure
MULPs, but also it needs a learning algorithm to
decide W.
propagation learning algorithm, our learning al-

In analogy to the well-known back-

gorithm is derived where the activation function
is different from [5]. Our activation function is
the use of a hyperbolic tangent function, a sig-
moidal nonlinear function, which is asymmetric
corresponding to origin and for its amplitude of
output between -1 and 1, shown in Fig. 4. Our
learning algorithm adopts a hyperbolic tangent
function, ¢, to be the activation function in which
@ is defined as

1— (=)

»(v) = atanh(bv) =a [m

] @

where the parameters a and b denote the amplitude
of ¢’'s outputs and ¢'s slope, respectively. The
shape of  is depicted in Fig. 4 when parameter a
is equal to 1.

The learning algorithm is actually called as the
updated rule of the weights shown as Eq. (5), and
is derived when Eq. (4) is chosen as the activation

function of a neuron.

whi(n +1) = wiy(n) + 0 (n)y; " (n)  (5)
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The term w);(n) means that the weight between
neuron i at the (I — 1)th layer and neuron j at
the lth layer, and is obtained after the nth train-
ing pattern had been learned. 7 is a learning rate
which is a small constant. y'~'(n) (ie., ga(v;.'l)
is derived by Eq. (3) and Eq. (4)) represents the
actual output of neuron ¢ at the (I — 1)th layer
after the nth training pattern had been learned,
and is computed during the forward-propagation
phase. 5; stands for the local gradient of neuron j
at the Ith layer, and is computed during the back-
ward propagation phase. However, computing 5§
must consider two cases, either when neuron 7 is
an output neuron or an hidden neuron. The corre-
sponding two formulas are represented by Eq. (6)
and Eq. (7), respectively. The formula of the for-

mer case is

i

k() = ef(n)p;(vf(n)
b (a* = (0;(n))”)

2a

(6)

&5 (n)

where 635(71) is the local gradient for neuron j at
the output layer L, o;(n) is the actual output of
the neuron j (i.e.,0;(n) = yF(n)), and e (n) is the
difference between the desired output d;(n) and
0j(n), expressed as ef(n) = d;(n) — 0j(n). Then,

the latter case has
‘ 1 l
0;(05(n) > o !
k

(o - (s(m)°) (

2a

(7)

85(n)

141 141
_S_ :5k Wy s )
k

where 65(7&) is the local gradient for neuron j at
the hidden layer [.

4 Experimental Results

Two methods of the construction for a set of mea-
surement pafterns S which includes both the set
of training patterns T and checking patterns C,
and which is obtained from an original and a cor-
tupted version of the image are introduced. Then,
some experimental results which concern the per-
formance of the adaptive capability for the RC RS
and the NN filters are exposed.
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Table 1: Partitioned image

In the experiment, a 2-dimensional image 7,
basically, can be partitioned into 16 subimages,
each subimage has the same length and width,
depicted as Table 1, where 7={I*: 1 =1,---,16},
I* denotes a subimage of 7 and can be represented

by Eq. (1). Suppose we have the original (de-

sired) image Zopiginal= Iomgml i= 1,~~~,16}
and a corrupted version of the image
nozsy—{Inmsy t = 1 16} Both Ioriginal

and Z,esy are formed as Table 1 and repre-
sented by Eq. (1), a8 Moriginat = [Tijlnxn and
If a sliding
window is available, then a set of measurement

Muoisy = [dijlnxn, respectively.

patterns Sz which includes both the set of training
patterns T and checking patterns Cz is set up in
which

Tz = {P? : the sth subimage I*

in 7 isselected to be
trained, s € {1,2,--:,16} }

(8)

and

C1 = {P? : the sth subimage I°
in 7 is selected to be
checked, s € {1,2,---,16} }

(9)

where

P = {(X;;,di;) : Xi; is obtained when
the sliding window masks Inmsy
at position (%,7) and d;; is the
grey level of the pixellocated
at (Z J ) in Iorzgznal where Inozsy
denotes the sth subimage in
Tnoisy and I7; .., Tepresents
the sth subimage in Z,piginat }-

Three images, “Lenna”, “Bridge”, and “Ba-
boon”, with size 512x 512 are employed in the ex-
periment. Their noisy images are their correspond-
ing original images corrupted by impulse noise
which is ubiquitous in the transmission channel
such as the satellite communication channel. The
sort of noises is so-called salt-pepper noise which

includes positive and negative impulse [9]. The

noise rate of those noisy images exploited in this
experiment is 10% positive impulse and negative
impulse ( i.e., 10% impulsive noise ). From Defini-
tion 2.4 and Eq.s (8) - (9), we have Eq. (10) when
a pair of two images, an original image of “Lenna”
and a corrupted version of “Lenna’”, are available.
In short, to let Z be image “Lenna”.

Slllenna = T}/enna U C%enna (10)

where S} ..., denotes a set of measurement pat-

terns,
Tlenne ={P°| I, s=2k—1and 1 <k <8}
and
Clomma={P°| I°,s=2kand 1 < k < 8}

Suppose the method used to construct the set

" 8} onma 18 called the first method, for convenient

explanation. We introduce the. second method
to generate another set of measurement patterns
52 ..na When we make an exchange of the elements
of T}.ne @and C}, . . Therefore, SLe,ma is ex-

pressed by Eq. (11).

S%enna = T.genna U C%enna (11)

where
T2 e =1P°| I, s=2kand 1 < k < 8}
and
c2  ={P°| I°,s=2+1and1<k<8}.

In analogy to the construction of S}.,,, and
52 .o for image “Lenna”, both image “Bridge”
and image “Baboon” have the sets of measurement
patterns, Si.izge Stridger Staboon 214 Sapoon, TE-
spectively. In the experiment, a RCRS filter with
order 1 and a NN filter whose architecture is 25-
9-1 MLPs are employed. The experimental re-
sults are shown in Table 2 and 3 when a 5x5 slid-
ing window is available to generate those sets of
measurement patterns using the first and second
method, respectively. We show the results of im-
age “Bridge” in Fig 5. Only those subimages which
are exploited to generate the checking patterns are
restored in each image. Therefore, the claim we
propose in Section 2 is verified by the experimen-
tal results.

292



S%;enna S, gridqe Sl}a.boon
RCRS filter | 26.37 151.78 | 223.31
NN filter 17.17 78.94 96.18

Table 2: Comparion of simulated results for a
RCRS filter with order 1 and a NN filter based on
mean square error (MSE) criterion when the set
of measurement patterns is generated by the first
method.

S%enna Sl?ridqe Sga,boon
RCRS filter | 27.44 162.91 | 206.53
NN filter 18.75 90.17 84.28

Table 3: Comparion of simlulated results for a
RCRS filter with order 1 and a NN filter based
on mean square error (MSFE) criterion when the
set of measurement patterns is generated by the
second method.

5 Conclusions

ki

In this paper, a new approach of experiment re-
lated to study the performance of adaptive capabil-
ity for the design of filters has been proposed. The
experiment results demonstrate that the RCRS fil-
ters possess less adaptive capability than that of
the NN filters. In addition, one of the problems is
that the RCRS filters need the exponential com-
putation complexity to achieve their filtering pro-
cess. The NN filters can avoid this problem, but
there are three factors that affect the requirement
of the number of computational operations to the
NN filters. The first factor is the size of the set of
training patterns, the second factor is the number
of neurons, and the last factor is the number of
epochs. The NN filters are constructed by a fixed
M LPs structure and are applied by a supervised
learning method. Thus, the design of the NN fil-
ters also needs a large number of computational
operations when the number or size mentioned in
the three factors increases. Therefore, we know the
adaptive capability performed well by the design of
neural network filters. Unfortunately, a large num-
ber of computational operations is required in the
training phase. Thus, how to reduce the time of
the training phase and how to improve the perfor-
mance of adaptive capability at the same time are

the most important problems.

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

References

(1

2l

4]

(5]

[6]

7l

(9]

293

P.-T. Yu and R.-C. Chen,' “Fuzzy Stack Fil-
ters - Their Definitions, Fundamental Prop-
erties, and Application in Image Processing,”
IEEFE Trans. on Image Processing, vol. 5, no.
6, pp.838-854, June 1996.

R.-C. Chen and P-T. Yu, “An Optimal De-
sign of Fuzzy (m, n) Rank Order Filtering with
Hard Decision Neural Learning,” Journal of

Information Science and Engineering, 11, pp.
567-593, 1995.

L. Yin, J. Astola, and Y. Neuvo, “A New Class
of Nonlinear Filters - Neural Filters,” IEEE

Trans. on Signal Processing, vol. 41, no. 3, pp.
1201-1222, March 1993.

L. Yin, J. Astola, and Y. Neuvo, “Adaptive
Neural Filter,” First IEEE-SP Work shop on
Neural Networks for Signal processing, Sept.
29-Oct. 2, 1991, Princeton, New Jersey, USA,
pp. 503-512.

S. Haykin, Neural Networks, Macmillan Col-
lege Publishing Company, 1995.

M. F. Tenorio, and W. T. Lee, “Self-Organizing
network for Optimum Supervised Learning,”
IEEE Trans. on Neural Networks, vol. 1, No.
1, March 1990.

R. C. Hardie and K. E. Barner, “Rank Con-
ditioned Rank Selection Filters for Signal
Restoration,” IEEE Trans. on Image Process-
ing, vol. 3, no. 2, pp.192-206, March 1994.

P-T. Yu and W. -L. Wang, “Root properties of
median filters Under Three Appending Strate-
gies,” IEEE Trans. on Signal Processing, vol.
41, no. 2, February 1993.

1. Pitas and A. N. Venetsanopoulos, Nonlinear
Digital Filters - Principles and Applications,
Kluwer Academic Publishers, 1990.



Proceedings of International Conference
on Artificial Intelligence

(f)

Fig. 5. (a) Original image “Bridge”, (b)
Original image “Bridge” corrupted by 10% impul-
sive noise, (c) Impulse corrupted image “Bridge”
restored using a 5x5 RCRS filter with order 1
when the measurement patterns are generated by
the first method, (d) Impulse corrupted image
“Bridge” restored using a NN filter with a 5x5
sliding window when the measurement patterns
are generated by the first method, (e) Impulse
corrupted image “Bridge” restored using a 5x5
RCRS filter with order 1 when the measurement
patterns are generated by the second method, and
(f) Impulse corrupted image “Bridge” restored us-
ing a NN filter with a 5x5 sliding window when
the measurement patterns are generated by the

second method.
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