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Abstract

Music synthesis by physical modeling methods
becomes a major research topic in the related area when
FM synthesis and Wavetable synthesis cannot satisfy the
demanding users. Combining the property of wave propa-
gation and the associate discrete-time implementation, it
is possible to generaie realistic and dynamic musical
tones. In this paper, we first start from the modeling of a
musical string by proposing a class of neural networks
called Linear Scattering Recurrent Network (LSRN) which
employs the measurement of the response of a plucked
string as the learning data such that the model can be
trained to be a counterpart of the string in the synthesis
domain. The correspondent learning algorithm and com-
puter simulations are given to demonstrate the encourag-
ing modeling resulls.

1. Introduction

With the introduction of electronic music, many tech-
niques for generating musical tones have been proposed
such as FM (frequency modulation) synthesis and Waveta-
ble synthesis which are two most popular methods used
nowadays. However, thé sound quality cannot meet the
requirements of the most demanding users, especially the
reproduction of the musical dynamics of most instru-
ments. In order to have the synthesis result closer to the

sound generated by real instruments, Smith proposed the-

so-called Digital Waveguide Filter technique [3][13]. This
synthesis algorithm starts from the equation of a 1-D
traveling wave and implements the solution to the equa-
tion on a discrete-time model. In his later efforts in the
physical modeling synthesis, algorithms of simulating the
sounding mechamsms such as the reed-driven ones and
bowed-driven ones were studied [2][3]. These techniques
make some very realistic sounds such as those of an oboe
and become more and more popular in the music synthesis
business.

DWEF uses digital filters to simulate simple wave prop-
agation on a discrete-time system. For example, the model
of an ideal string can be converted into a discrete-time
system by using the DWF. Although the traveling waves
can be explicitly simulated in the waveguide model, it is
difficult to find the correct parameters of the DWF such
that a real instrument can be closely modeled.

In our experience with the above physical modeling
techniques for music synthesis, we found that the analysis
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of the musical instruments themselves had never been
addressed. Being a universal approximator, the Artificial
Neural Network has been widely used in many applica-
tions such as pattern recognition, time series analysis, sys-
tem identification and so on. Our question is that "if the
responses at various positions of a real musical instrument
can be measured, can a neural neiwork be trained such
that it can reproduce the sounds of the very instrument
under the identical excitations other than the training sets?

In order to simplify our first attempt, we start from the
modeling of a plucked string. A string can be approxi-
mately regarded as a one-dimensional instrument. This
allows a simpler implementation on a recurrent network
and requires less computation to train the network. The
training data is obtained by the following method. A 1-D
Digital Waveguide Filter technique is used to produce
some computer simulated strings with arbitrarily assigned
parameters for each virtual strings. Plucks’ are applied to
the virtual strings and the responses of the correspondent
digital waveguide filters are used as our training data. We
propose a model called Linear Scattering Recurvent Net-
work (LSRN) which is closely mapped into the DWF in
order to simulate a plucked string and the Back-Propaga-
tion-Through-Time (BPTT) is used for the training algo-
rithm of our recurrent network [7][8]. By using this
model, even the overall response of the virtual string are
not available, it can nevertheless adjust the parameters
based on the partial response. The resultant recurrent net-
work model can response almost identically to that of the
virtual string under various 'plucks'.

In section 2, we relate the solution of the ideal lossy
wave equation to the recurrent network. In section 3, we
advance the recurrent network for the modeling of the
nonuniform musical strings and propose our Linear Scai-
tering Recurrent Network (LSRN). The training algorithm
by Back-Propagation-Through-Time (BPTT) 1s also dis-
cussed. In section 4, the computer simulation is given.
Conclusion is given in section 5.

2, The Recurrent Neural Network Model for
the Lossy Plucked String

2.1 The Lossy Vibrating String

The wave equation for an ideal vibrating siring was
fully derived by Morse[5]. "Ideal" means lossless, linear,
uniform, volumeless and flexible. Consider the uniform
string with linear mass density £ (kg/m) siretched to a ten-
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sion K (newtons). The well-known wave equation for
traveling waves within an ideal vibrating string can be
represented by

Ky" = &y M
where y=0dy/dt and y' = &y/0x. The solution of the above
wave equation was first published by d'Alembert in 1747.
The general solution of Eq. (1) can be written as:

yx 1) =y (t-x/c) +y (t+x/c) @

where that the right-going traveling wave is denoted by
y,(¢-x/c), with a velocity ¢ and y,(¢+x/c) represents
the left-going traveling wave with the identical velocity.
The transverse wave velocity c is equal to JK/¢.

Practically, there is no lossless vibrating string in the
world. In order to simulate the realistic dynamics of the
vibrating string, it is necessary to consider the loss in the
string. In any real vibrating stning, there is energy loss due
to the friction by surrounding air, yielding terminations,
and mternal friction. Many kinds of loss present an
approximaied resistive force proportional to transverse
velocity of the string. If the constant for resistive force 1s
denoted by u, the resistive force uy is involved in Eq. (1).
Therefore, we can obtain the modified wave equation as
follows.

Ky" = uy tey. ' 3)
The solution to the above equation can be easily

derived to be

e—(u/Ze) (x/¢)

y(,x) = y,(1-x/¢)

+e(u/25) (X/C)yl(t"‘x/c) (4)
According to Shannon's Sampling Theorem[6], the
traveling wave can be fully expressed by a discrete-time
system as long as the sampling interval is small enough.
For the DWF, the sampling is performed along the longi-
tudinal direction on the string, instead of time. The magni-
tude of the vibration at a sampled position is then sampled
with period equal to T (sec). To be specific, let the sam-
pling interval corresponding to the string with velocity ¢
be Ar, we have the sampling period with respect to time
as T = Ax/c. By replacing the variable x in Eq. (4) with
x,,and # with z,, we have
—(u/2¢) (x,/¢)
y(t,,, xm) e yr(tn—xm/c)
x /¢
+ e(une) G )yl(tn tx,/¢c)

L (n _m)rT] . e(u/ZE) mT)’[ [(n+m)T] (5)

where ¢t =n- T, x, =m-Mx =m-c-T.

The left-going and right-going traveling waves decay
exponentially in their respective traveling directions. The
discrete time signal representation of Eq. (4) is given by

Y(tp,) = g f, (n—m) +g "fy(n+m) ©)

where g= P s [,(m) =y (nT), and f,(n) =y,(nT).

Usually, a string 1s fixed at the two ends where the dis-
placements of the siring are zero. Let the length of the
string is L, by carrying the constraint into the general solu-
tion of Eq. (2), and assuming that the siring is fixed at x =
Qand » = L, we have

_ e—(u/Ze) mTy
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y(0,) =0 =y (ct-0) +y (ct+0) Q)
and

y(L, 1)
From Eq. (7) and Eq. (8), the relationship between the

right-going and the left-going traveling waves at the end
positions becomes

v (ct) = -y (ct), andy,(ct+L) = -y (ct-L). (9)

Carrying Eq. (9) into the discrete-time signal representa-
tionandlet L = M-¢- T, we have

f,(n) = fi(n) and fi(n-M) = - (n+M). (10)

= 0=y (ct—L) +y(ct+L). t))

2.2 The Recurrent Neural Network Model

for the Lossy Plucked String

Although the DWF simulates the wave propagation on
a plucked string, the applications are limited to the ideal
strings. It is very difficult to find the correct wave equa-
tion for a real string so that a correspondent DWF can be
built. In order to have a closer imitation of a real plucked
string, we need a model which has the ability to simulate
the wave propagation and provides a general methodology
to find the correspondent model patameters for any partic-
ular string.

In the Digital Waveguide Model of the plucked-string,
the transverse displacement of the string at any position 1s
the summation of the right-going and left-going traveling
waves. A recurrent neural network for the solution of the
wave equation with fixed ends can be expressed in Figure
1. Let the recurrent network have N displacement nodes
denoted by y;, which represents the displacement of the i-
th sampling position fori =1, 2, ..., N, and the traveling
wave from the j-th node to the i-th node be f, . through
the weight w, ., and each represents the corrésponding
loss factor according to Eq. (6). Each branch with a loss
factor also contains & unit-sample delay. If i is larger than
J» [, ; represents the right-going wave, which is the upper
track in Figure 1. On the contrary, if i is less than j, i
represents the left-going wave, which is the lower track in
Figure 1. For any displacement node i except the two end
points, there are two traveling waves, flowing into this
node from the adjacent nodes, the (i-1)-th node and the
(i+1)-th node. The displacement of the i-th node at any
time instant is the sum of these two traveling waves multi-
plied by the corresponding loss factors one-sampling
interval before this time instant.

The initial displacement of the string is normalized
such that the largest magnitude within the string are
bounded by unity. In practice, the magnitude at any posi-
tive throughout the period of vibration cannot exceed the
largest magnitude in the initial condition since the string is
assumed to be lossy. Then, the displacements of various
positions within the plucked string at time-(z+1) can be
simply represented by

al:ne[f(t)] ,i=2,...,N-1
0 Ji=Oori =N (1)
"ef:‘)(‘) R RPN O Rl PR Y )

y, e+ 1) ={



For the displacement nodes, the right-going and the left-
going traveling waves at the identical time instant are
shown in the followings, respectively.

f;‘+1,i(t+ 1) = a(neé;r Lt 1))
(12)
nel.

i+, ETD =yt D-w S (O

fori=1,...,N-1, and
{ Jioa,i e+ 1) = a(""”{—l,i(Hl))'

’“"t{-l,i(t+ D=yt —w ;o fi (O

fori=2,...,N

For those nodes which represent the right-going and
lefi-going traveling waves whose magnitudes are not
measurable externally, we called them the departure
nodes shown in Figure 1. We choose the bipolar ramp
function to be the activation function for Eq. (11), (12) and
(13) as follows:

(13)

1 , I<x
a(x) = {x ,-ISISI (14)
-1 Lx<-1

3. Linear Scattering Recurrent Network
Model for the 1-D Transverse Wave of A
String

3.1 LSRN Model

In practical situation, the wave traveling in a real string
cannot be modeled by the method shown in above since
most strings do not satisfy the uniform-impedance con-
straint. Therefore, a traveling wave may reflect partially at
a position and also allow part of the wave to pass through
it if the acoustic impedances from the two sides of the
position are not identical. The concept of the scattering
junction which deals with the nonuniform condition of
strings has been used in the application of the acoustic
tube.

Assume that there is a scattering junction in a vibrating
string with two potions of different characteristic imped-
ances on the sides of this junction. The displacemen; of
the junction can be represented as [12]

Yxn = A-pytan + (+p)liy (15
where
-4
P =7z, (16)

Z, and Z, are the acoustic impedances belonging to the
two sides of the junction and p is the reflection coeffi-
cient. Similar to the procedure in Eq. (5), the discrete-time
representations of the traveling waves within the vibrating
siring are

{fi(n+m) = —pf (n=m) + (1+p)f} (n+m)

an
F=m) = (A=p)fi (n=m) +pff (n+m)
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Figure 2 shows the structure of a node for the scatter-
ing junction based on the unit architecture for the dis-
placement node shown in Figure 1. According to the
proposed model, the junction displacement can be calcu-
lated as

Y= U-pf+r+p)f

which is discrete-time representation of Eq. (15).
The right-going and the left-going traveling waves
departing from the junction are

{/‘f =yJ—fl = —pfi; (1+p)ff
L =5 -f = A-pftef;

We can find that Eq. (19) is identical to Eq. (17) together
with Eq. (15). The new model means that the traveling
wave departing from thie junction can be computed by
subtracting the traveling wave belonging to the same seg-
ment flowing into the junction from the displacement
magnitude of the junction. According to the scattering
junction model and the recurrent network shown in Figure
1, Linear Scattering Recurrent Network is proposed. This
is shown in Figure 3.,

The departure nodes and displacement nodes, similar
to those used in our previous proposed model, as well as
the additional nodes, called the arrival nodes, are
employed to build the new model. Each arrival node in the
upper track or the low track represents the traveling wave
flowing into the junction and each departure node repre-
sents the traveling wave departing from the junction. In
order to make the model suitable for broad and complex
applications, we allow the characteristic impedance of
each segment which is represented by a unit delay to be
different from its adjacent segments such that all of the
displacement nodes except for the two ends can be
regarded as the scattering junction. It is easy to show that
if the characteristic impedance of each segment is uni-
form, the reflection coefficients of the L SRIN are zero such
that the new model is identical to the previous model in
Figure 1.

According to Figure 3, the arrival nodes for the upper
and lower tracks of the model can be computed by

@ (41 = “["e‘i}i—l (t)] =alw, fi(0120)
and
@i (LT = a["et:fiﬂ(t)] =alw iy Sy ORD

The magnitude of the displacement nodes of the plucked
string at time-(#+1) can be represent by

(18)

(19)

y(e+ 1) = {a[ne[:)(t+1):| ,i=2,...,N—1 22)
0 ,i=1lori =N
where
neg (1+1) = (1-p)o,,_, (t+ 1)
HA+p) @ (e 1) (23)

The right-going and left-going departure waves at a
certain time instant are shown in the following, respec-
tively.
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Sig1 0t = a(net{H (t+1)),f01‘i= 1,...,N-1(24)

where

nelf

i+1,i

(t+l) =}’,»(l+1) —(pi,i+l(t+1) (25)

and

S+ D) = a(net:._l’i(ﬁ-l)),Z,...,N (26)
where

nefl_, (t+1) = y,(t+ D) =g, (+ 1) (27])

3.2 Training of LSRN

We can unfold the teinporal operation of the LSRN
into the multilayer-feedforward architecture with synchro-
nous update. Figure 4 illustrates the training for the LSRN
shown in Figure 3 by the BackPropagation Through Time
(BPTT) method [7][8].

In Figure 4, we assign for each time instant a neural
network layer called a time layer. Each time layer consists
of three sublayers, displacement layer, departure layer
and arrival layer. The displacement layers, the departure
layers and the arrival layers contain the displacement
nodes, the departure nodes and the arrival nodes, respec-
tively. Because only the displacements of the displace-
ment nodes are measurable, the training vector is actually
the sampled magnitudes of the string under excitations at
various preset positions. It is unlikely to measure the dis-
placement for each physical position-on the string in order
to supply the training data of the correspondent displace-
ment node. There are only a number of positions that are
measured. As a matter of fact, we measure only 9 posi-
tions in our simulations. For those positions with meas-
ured data, we call them the visible nodes. For those
positions without measured data, we call them the invisi-
ble nodes. Tt is noted that the visible nodes and invisible
nodes are also the displacement nodes expressed by Eq.
(22). Assuming that d,(¢) denotes the desired displace-
ment of the i-th sa.mplmg position at time ¢ and A(Y)
denotes the set of visible nodes, the training task employs
the sampled data to train this network such that the gener-
ated outputs of the visible nodes are as close as possible to
the sampled data. The remaining nodes of this network,
the departure nodes, arrival nodes and the invisible nodes,
are called hidden nodes. The error signals at any time
instant, ¢, are defined as

{di(z) ~y, (1) Lified(n 2%

() =

& 0 ,otherwise (28)

where

e;(t) . the error signal of the /-th displacement node at
time 1.

d, (¢) : the desired response of the i-th displacement node
at time 1.

y,;(2) . the actual output of the i-th displacement node at
time 1.

The error function at time ¢ is defined as

E@W =125 & (29)

ic A
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and we have the total cost funciion

tl
E 1) = 3 E@) (30)

t=ty+1

to be minimized over one epoch [, ¢,], where ¢, is the last
time step and 4, is the initial time step. In order to adjust
the weights of the LSRN to approach the desired loss fac-
tors and the desired reflection coefficients, the weights
correspondent to the loss factors should change along the
negative gradient of the cost function as follows,

lotal

OE " (1g, 1)

Ay = N5,

tl
= Z Aw,ipy (D

i+l t=t+1

=n Z 81 (0 Sy (1= 1) G1)

t=t+1

fori=1,...,N-1.

tl
2 Aw 0

-1, =
t=t,+1

1
Tl Z 81 lt(t) ft lx(l 1) (32)
=ty+1
fori=2,... N

The welghts correspondent to the reflection coeffi-
cients should change along the negative gradient of the
same cost function as follow.

ttl
A" (15, 1)) 4

Ap, = “|—i——— = ,
p, = -m 3, :Eﬂ 1Ap, 0)
0

tl
DN AR RN

t=1,+1

o, ) (33)

fori=2,...,N-1. Where n is the learning constant and
i aEtoml (to, 11)
8 == —- 34
0 oed () (34)
Sf ( ) tolal([o’t )
A 0)
i-1,i ne?j 1i(t)
total (35)
Sf (t) _ (tO)t )
o 6ne?,+] 10
total([o,t )
8h (D) = - —————
(?neti+1 ;(e=1)
(36)

total
(¢ 1))

ir1,i (D =
b 6net):+l L (0

Repeating the epoch-wise backpropagation procedure



such that the cost function is minimized, we obtain the
correspondent model parameters for the LSRN to imitate
the simulated linear non-ideal string. The followings are
some computer generated plucked-string examples which
are made based on the DWFs and we use the simulated
data to train the LSRN by BPTT such that the network
parameters are as close as possible to those of the DWFs.

4. Computer simulation :

A non-ideal plucked-string simulation produced by
DWF with 21 sampling positions are used.to produce the
desired data to train the LSRN model. The two fixed ends
reside at the position of x = 0 and x = 20. Let the DWE be
plucked at the position of x = 16, from the initial time step,
t =0, and the sampling operation stops at the last time
step, £ =61. Although there are 21 correspondent displace-
ment nodes in LSRN, but only nine of them are visible
nodes. The training of LSRN employs the error signals
produced by accumulating the absolute difference
between the displacement of each visible node and the
desired displacement at the associated sampling position
in the time interval [0, 61] to adjust the weights. Each
delay unit of the DWF is accompanied by an attenuation
unit whose loss factor is 0.98 for both right-going and left-
going traveling waves. There is a scattering junction at the
10-th sampling position with the reflection coefficient
equal to -0.15.

Since the cost function is the accumulation of the
errors of those nine sampling position over the period of
61 time steps, the learning constant 1 is therefore set to be
a low 0.0002. The weights for the loss factors of LSRN
are initialized by using random-positive numbers between
0 and 1, and the weights for the reflection coefficients are
initialized by using random numbers between -1 and 1.
The Total Mean Square Error (TMSE) converges to
0.026381 after 40000 epochs of learning.

Figure 5 shows the desired and the actual displace-
ments (y-axis) of the sampling positions x = 4, 8, 10, 12,
16, and 18 against time steps (x-axis), respectively. We
can find that the 'o' dots and the solid curves almost over-
lap with each other although there are only 9 visible
nodes. 7

After the learning procedure, we pluck the string at a
different position, say x = 8. It is found that the 'o' dots and
the solid curves almost overlap with each other in Figure
6. This result demonstrates that the output of each dis-
placement node in the LSRN can imitate the desired out-
puts very well for each sampling position at every time
step after sufficient learning,

It was found that the system parameters might vary due
to different initial condition of the network. However, the
result networks with different parameters all response
very close to each other as long as the training vector is
identical. It seems that the model is not sensitive to the ini-
tial condition and is not bothered by the problem of local
minima all too common to ANN, either.

5, Conclusion

In this paper, we have aemonstrated a technique of
modeling a musical string by a new class of neural net-
works called Linear Scattering Recurrent Networks
(LSRN). By measuring the response of a plucked string,
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we can employ the sampled data to train the proposed net-
work such that it can response similarly to the original
acoustic string. This is to say that we can synthesize musi-
cal tones which is very close to those of their acoustic
instrument counterparts. Based on this approach, it is pos-
sible to analyse many musical instruments and produce
many more interesting sounds in addition to the plucked-
string presented in' this context. Our future efforts includes
the modeling of other vibrating parts of instruments such
as the bridge and top plate of a guitar, their coupling phe-
nomenon and the reduction of the computation of music
synthesis by using the proposed techniques.
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Figure 2 The model for the scattering junction within a
string.
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Figure 1 Recurrent network mapping of the plucked string
with both fixed ends.

Fi%ure 3 LSRN model of the plucked siring with fixed
ends.
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Figure 4 The feedforward architecture behaves as the

LSRN of a plucked string shown in Figure 3.
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Figure 5 The comparison of desired outputs and the
trained outputs of LSRN after 40000-epoch learning. The
'o' dots represent the trained outputs of LSRN and the
solid curves represent the desired outputs generated by
DWEF, at different sampling positions.
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Figure 6 The vibration of simulated plucked string which
is plucked at node 8.
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