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applications, parallel algorithms for solving the LCSABSTRACT
problem are desirable.  On the concurrent-read exclusive-
write (CREW) parallel random access machine (PRAM),

A longest common subsequence (LCS) of two strings
with mn/log n processing elements (PEs) an efficient

is a common subsequence of the two strings of maximal
algorithm runs in O(log m + log2 n) time [17].  On thelength.  The LCS problem is to find an LCS of two given
same model, a cost-optimal algorithm usesstrings and the length of the LCS.  The LCS problem has
m n /max{ log  m , log2 n log log  n } PEs and takesbeen the subject of much research because it can be

applied to many areas.  In this paper, a scalable systolic O(log m  + log2 n loglog n) time [17].  Because it is
algorithm is presented.  For two given strings of length infeasible to build a PRAM with more than a few tens of
m  and n , where m  ≥ n , the systolic algorithm can PEs, the PRAM models are not practical for this problem
solve the LCS problem in m + 2r – 1 (respectively n + when m and n are large.
2r – 1) time steps with r < n/2 (respectively r < m /2) In contrast, the systolic model [10] is practical for the
processors.  Experimental results show that the algorithm LCS problem.  A systolic architecture is a regular array of
has satisfactory performance on the IBM SP2 identical PEs.  It can be implemented with VLSI chips or
multicomputer. a distributed-memory multicomputer that has many more

PEs than PRAMs.  All PEs operate concurrently to
1. Introduction achieve high performance.  

Many systolic algorithms for the LCS and related
If string C  is obtained by deleting zero or more problems have been proposed.  Robert and Tchuente

symbols from string A, then C is a subsequence of A. propose using a 2-D systolic array to solve the LCS
For example, ccb is a subsequence of bcabcb.  String C problem in m + 5n – 3 time steps [23, 24].  Lin uses a
is a common subsequence (CS) of strings A and B if C linear systolic array of n PEs to solve the problem in m
is a subsequence of both A and B.  For example, ccb is + 4n – 2 time steps [13].  Luce and Myoupo solve the
a CS of bcabcb and abccb.  A longest CS (LCS) is a problem on a linear array of n PEs in m  + 3n + p – 1
CS of the two strings with maximal length.  Two strings time steps [18].  Lecroq et al. propose using a linear
may have more than one LCS.  For example, abcb and array of n  PEs to solve the problem in m  + 2n  time
bccb are two LCSes of bcabcb and abccb.  The LCS steps [12].  Lin and Chen devise two systolic algorithms
problem is to find an LCS of two given strings and the that use a linear array of n PEs to solve the problem in
length of the LCS (LLCS).  Unless otherwise stated, we m + 2n – 1 time steps, achieving the exact lower bound
assume that the strings in question are A = on the number of time steps when the m  + n symbols
A (1 )A (2 ) . . .A (m ) and B =  B(1 )B (2 ) . . .B (n ), m ≥ are input sequentially [14, 15].  Lin and Yeh introduce a
n , and that the LLCS of A  and B  is p .  The LCS systolic algorithm that uses  n/2  PEs and takes m + 2
problem can be applied to many areas, such as molecular  n/2  – 1 time steps [16], in which two symbols of
biology, word processing, pattern recognition, and data string B are input at a time.  It should be noted that no
compression [6, 7, 17, 24-26]. existing automatic approaches can be used to synthesize

The sequential time complexity of the LCS problem LCS systolic algorithms [20].  Algorithms for two
has been shown to be Ω(mn ) when the number of extensions of the LCS problem can be found in [19, 20].
distinct symbols is not fixed [2].  Sequential algorithms Given a systolic algorithm requiring a linear array of
achieving this time bound can be found in [3, 7-9, 21, n  PEs, the locally sequential globally parallel, or
27].  Since m  and n are usually very large for typical coalescing, method and the locally parallel globally



sequential, or cut-and-pile, technique can be applied to       LCS(i – 1, j – 1) 
obtain a new systolic algorithm using fewer PEs to solve = the first L(i – 1, j – 1) symbols of LCS(i – 1, j).
the same problem [11, 22].  In this paper, we use a new
method to obtain an efficient systolic algorithm that Consequently, the equation
solves the LCS problem on a linear array of a fixed
number of PEs.  If r < n/2 (respectively r < m/2) PEs LCS(i, j) = LCS(i – 1, j – 1) B(j)
are available, the array can receive  n/r  (respectively
 m /r ) symbols of string B (respectively A) at a time in Property 1 can be replaced by
and solve the LCS problem in m + 2r – 1 (respectively
n  + 2r  – 1) time steps.  When implemented on LCS (i, j) = the first L (i – 1, j – 1) symbols of
multicomputers, since this algorithm takes fewer time LCS(i – 1, j) appended by B(j).
steps than previous systolic algorithms, it can be the
fastest, although it involves more computations than the Thus, Property 1 can be modified to become the following
others in a time step. property.

In Section 2, we present new properties concerning the
LCS problem.  Our new systolic algorithm is derived Property 2.
from these properties.  In Section 3, we introduce the new For 1 ≤ i ≤ m and 1 ≤ j ≤ n,
systolic algorithm for solving the LCS problem and give if A(i) = B(j) then
an example to illustrate the algorithm.  In Section 4, we L(i, j) = L(i – 1, j – 1) + 1
present experimental results.  Section 5 concludes this LCS(i, j) 

paper. = the first L(i – 1, j – 1) symbols of
LCS(i – 1, j) appended by B(j)

else if L(i, j – 1) ≥ L(i – 1, j) then2. Some properties
L(i, j) = L(i, j – 1)
LCS(i, j) = LCS(i, j – 1)Let LCS (i, j) denote an LCS of A (1)A (2)...A (i)

else    {L(i, j – 1) < L(i – 1, j)}and B(1)B(2)...B(j), and L(i, j) denote the length of
L(i, j) = L(i – 1, j)L C S ( i , j ), 1 ≤ i  ≤ m , 1 ≤ j  ≤ n .  When
LCS(i, j) = LCS(i – 1, j)A (1)A (2)...A (i) and B (1)B (2)...B (j) have only one

end ifLCS, LCS(i, j) represents it.  However, when there are
more than one LCS, LCS(i, j) represents an appropriate

Further, by replacing the integer j in Property 2 with
LCS of A (1 )A (2) . . .A ( i) and B (1 )B (2) . . .B ( j) to

j + k, where 1 ≤ k < n, we can obtain Property 3.
make the context meaningful.  In addition, let L(i, 0) =
L (0, j) = L (0, 0) = 0 and L C S (i, 0) = L C S (0, j) = Property 3.
LCS(0, 0) = ε, where ε denotes the empty string.  By For 1 ≤ i ≤ m, 1 ≤ j ≤ n – k, and 1 ≤ k < n,
combining two properties presented in [7, 12], we have if A(i) = B(j + k) then
the following property: L(i, j + k) = L(i – 1, j + k – 1) + 1

LCS(i, j + k) 
= the first L(i – 1, j + k – 1) Property 1.

symbols of LCS(i – 1, j + k) For 1 ≤ i ≤ m and 1 ≤ j ≤ n,
appended by B(j + k)if A(i) = B(j) then

else if L(i, j + k – 1) ≥ L(i – 1, j + k) thenL(i, j) = L(i – 1, j – 1) + 1
L(i, j + k) = L(i, j + k – 1)LCS(i, j) = LCS(i – 1, j – 1) B(j)
LCS(i, j + k) = LCS(i, j + k – 1)

else if L(i, j – 1) ≥ L(i – 1, j) then
else    {L(i, j + k – 1) < L(i – 1, j + k)}

L(i, j) = L(i, j – 1) L(i, j + k) = L(i – 1, j + k)
LCS(i, j) = LCS(i, j – 1) LCS(i, j + k) = LCS(i – 1, j + k)

else    {L(i, j – 1) < L(i – 1, j)} end if
L(i, j) = L(i – 1, j)
LCS(i, j) = LCS(i – 1, j) Property 2 and Property 3 can be combined to obtain

end if Property 4.

Moreover, it has been shown in [15] that 
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     {Operations performed by PE y, 1 ≤ y ≤ r.  Let q =  n/r and j = (y – 1)q + 1}
1. if YI < 0 then {LI[1..q] belong to string B}
2. if YI = –1 then {LI[1..q] = B(j) ... B(j + q – 1)}
3. BR[1..q] := LI[1..q] {load B(j) ... B(j + q – 1) to BR[1..q]}
4. LR[0..q] := 0 {L(0, j – 1) = ... = L(0, j + q – 1) = 0}
5. else {LI[1..q] = B((h – 1)q + 1),..., B(hq), where h > y}
6. LO[1..q] := LI[1..q] {forward B((h – 1)q + 1),..., B(hq)}
7. YI := YI + 1
8. end if
9. else {SI belongs to string A, say, A(i)}

10. TR := LR[1] {save L(i – 1, j)}
11. if SI = BR[1] then {A(i) = B(j)}
12. LR[1] := LR[0] + 1 {L(i, j) = L(i – 1, j – 1) + 1}
13. LCS[1, LR[1]] := BR[1] {the first L(i – 1, j – 1) symbols of LCS(i – 1, j) 

 in LCS[1, 1..LR[0] appended by B(j) make LCS(i, j)}
14. else {A(i) ≠ B(j)} 
15. if YI ≥ LR[1] then {L(i, j – 1) ≥ L(i – 1, j)}
16. LR[1] := YI {L(i, j) = L(i, j – 1)}
17. LCS[1, 1..LR[1]] := LI[1..YI] {LCS(i, j) = LCS(i, j – 1)}
18. end if {if L(i, j – 1) < L(i – 1, j), no operations are needed}
19. end if
20. for k = 1 to q – 1 {compare A(i) with B(j + k), 1 ≤ k < q}
21. QR := LR[k+1] {save L(i – 1, j + k)}
22. if SI = BR[k+1] then {A(i) = B(j + k)}
23. LR[k+1] := TR + 1 {L(i, j + k) = L(i – 1, j + k – 1) + 1}
24. LCS[k+1, TR+1] := BR[k+1]  {the first L(i – 1, j + k – 1) symbols of 

  LCS(i – 1, j + k) in LCS[k+1, 1..TR] 
  appended by B(j + k) make LCS(i, j + k)}

25. else if LR[k] ≥ LR[k+1] {L(i, j + k – 1) ≥ L(i – 1, j + k)}
26. LR[k+1] := LR[k] {L(i, j + k) = L(i, j + k – 1)}
27. LCS[k+1, 1..LR[k+1]] := LCS[k, 1..LR[k+1]] {LCS(i, j + k) = LCS(i, j + k – 1)}
28. end if {if L(i, j + k – 1) < L(i – 1, j + k), 

  no operations are needed}
29. TR := QR {save L(i – 1, j + k), to be L(i – 1, j + k – 1) in
  the next iteration}
30. end for
31. SO := SI {send out A(i)}
32. YO := LR[q] {send out L(i, j + q – 1)}
33. LO[1..YO] := LCS[q, 1..LR[q]] {send out LCS(i, j + q – 1)}
34. LR[0] := YI {save L(i, j – 1)}
35. end if

Fig. 1.  Systolic algorithm for the LCS problem.



by the LI[1..q] inputs are loaded into the BR[1..q] Finally, some more operations are needed to output
registers (line 3), and LR[0..q] registers are set to 0 to data and save a temporary value.  The symbol A(i) and
represent L(0, j – 1) =...= L(0, j + q – 1) = 0 (line 4). L(i, j + q – 1) in register LR[q] are sent out through
Otherwise, when YI < –1, the LI[1..q] inputs, which ports SO and YO, respectively (lines 31-32).  The
carry B ((h  – 1)q  + 1),..., B (hq ), where h  > y , are LCS (i, j + q  – 1) in registers LCS[q , 1..LR[q]] are
sent out through the LO[1..q] ports (line 6), and the YI sent out through ports LO[1..YO] (lines 33).  The YI
input plus 1 is sent out through the YO port (line 7) so input, which is L(i, j – 1), is saved in register LR[0]
that registers BR[1..q ] and LR[0..q ] in PE y  + 1 (line 34).
through PE r can be initialized. The correctness of the presented algorithm is made

If YI ≥ 0 and thus the SI input is a symbol of A, say clear by considering the correspondence between Property
A ( i), PE y  computes L ( i , j),..., L ( i , j  +  q  – 1), 4 and the core operations of the algorithm.  Each equation
and L C S ( i ,  j ),..., L C S ( i , j  + q  – 1).  First, in Property 4 has a corresponding operation in lines 11-28
consider finding L(i, j) and LCS(i, j).  Note that as of Fig. 1 except for the following two cases:
shown in Table 1, before the inputs are processed,
registers LR[0] and LR[1] hold the values L(i – 1, if A(i) ≠ B(j) and L(i, j – 1) < L(i – 1, j) then
j – 1) and L (i – 1, j), respectively.  If A (i) = B (j) L(i, j) = L(i – 1, j)
(line 11), register LR[1] is loaded with L(i – 1, j – 1) + LCS(i, j) = LCS(i – 1, j)
1, or L ( i , j ) (line 12).  Because registers end if
LCS[1, 1..LR[0]] contains the first L (i – 1, j – 1)
symbols of LCS (i – 1, j), LCS[1, 1..LR[1]] holds and
LCS (i, j) after loading B (j) to LCS[1, LR[1]] (line
13).  In case A ( i) ≠ Β ( j), if L ( i, j – 1) ≥  L ( i – 1, if A(i) ≠ B(j + k) and
j) (line 15), register LR[1] is also loaded with L(i, j), L(i, j + k – 1) < L(i – 1, j + k) then
which is L(i, j – 1) from the YI input (line 16), and L(i, j + k) = L(i – 1, j + k)
LCS[1, 1..LR[1]] is loaded with LCS(i, j – 1) from LCS(i, j + k) = LCS(i – 1, j + k)
LI[1..YI] (line 17); if L (i, j – 1) <  L (i – 1, j), no end if
operations are needed since LR[1] has already obtained
L ( i  – 1, j) = L ( i , j), and LCS[1, 1..LR[1]] has As already mentioned, in these two cases, no operations
contained LCS(i – 1, j) = LCS(i, j). are need.

Next, consider finding L ( i ,  j  + 1) through Fig. 2 shows initial snapshots for finding an LCS and
L ( i ,  j  + q  – 1) and L C S ( i ,  j  + 1) through p  on two PEs for the case of A  = acbdcbe  and B  =
LCS (i, j + q  – 1).  From the comments in lines 10 abceba.  The first snapshot is taken just before the first
and 29 we can see that at the beginning of each iteration time step begins.  An LCS abcb  and p  = 4 can be
of the for-loop between lines 20 and 30, register TR holds obtained simultaneously at ports LO[1..p] and YO of the
the value of L ( i  –  1,  j  +  k  – 1), and TR will be rightmost PE at time step m + 2r – 1 = 10.  
updated to hold L (i – 1, j + k ) at the end of each If string A is input before string B, that is, the roles
iteration as a result of executing lines 12 and 29.  If A(i) of A and B are interchanged, a dual algorithm can be
= B (j + k), register LR[k+1] is loaded with L(i – 1, easily obtained.  If each PE has mq + 2q + 3 registers,
j  + k  – 1) + 1, or L ( i , j  + k ) (line 23).  Because where q =  m /r, as a result of reading q symbols of
registers LCS[k+1, 1..TR] contains L C S ( i  – 1, A at a time before B, the dual algorithm takes only n +
j +  k – 1), LCS[k+1, 1..LR[k+1]] contains LCS (i, 2r – 1 time steps.
j + k) after loading B (j + k) to LCS[k+1, LR[k+1]] We now name the algorithm presented in [16]
(line 24).  In case A ( i ) ≠ B ( j  + k ), if Algorithm 1, and the one specified by Fig. 1 Algorithm
L ( i ,  j  +  k  – 1) ≥ L ( i  – 1, j  + k ) (line 25), 2.  Like Algorithm 1, Algorithm 2 can be modified by
register LR[k+1] is loaded with L(i, j + k), which is using the broadcast operation, as follows:  In the first
L(i, j + k  – 1) from LR[k] (line 26), and LCS[k+1, step, symbols of string B  are broadcast to every PE.

Registers BR[1..q] and LR[0..q] are initialized in the1..LR[k+1]] is loaded with LCS (i, j + k – 1) from
same step.  After that, a symbol of string A can be sentLCS[k , 1..LR[k+1]] (line 27); If L (i, j + k  – 1) <
to the array at each following step, and each PE performsL (i – 1, j + k), no operations are needed because
the operations specified by lines 10-34 of Fig. 1.  Hence,L R [ k +1] has already held L ( i  – 1, j  +  k ) = L ( i ,
the broadcast variant of Algorithm 2 takes m + r steps.j + k ), and LCS[k+1, 1..LR[k+1]] has contained

LCS(i – 1, j + k) = LCS(i, j + k).
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4. Experimental results

We have implemented the broadcast variants of
Algorithm 1 and Algorithm 2 with Message-Passing
Interface (MPI) [5] and C on the IBM SP2 [1].  In this
section, we present experimental results of algorithms
after briefly introducing the SP2 and MPI.

With a scalable architecture, the SP2 allows us to
build a system that ranges in size from 4 to hundreds of
processor nodes, which can achieve performance in
TeraFLOPs.

The SP2 we used on the National Center for High-
performance Computing (NCHC), Taiwan, had 110
processor nodes: 40 POWER2 (P2) nodes with clock rate
66.7 MHz, 40 POWER2 Superchip (P2SC) nodes with
clock rate 120 MHz, and 30 P2SC nodes with clock rate
160 MHz.  The peak performance for each node is 266
MFLOPs for P2 or 480 MFLOPs for P2SC.  In addition,
each processor has its own I/O ports, 128 MB or 256 MB
main memory and 2 GB to 9 GB hard disk space; it can be
regarded as an independent workstation.

A high-performance switch is available for low latency
and high bandwidth communication.  It provides the
interconnection network for all the nodes to be regarded as
fully connected.  The switch is a multistage network; by
adding switches, the system can continue to provide the
same level of bandwidth to each processor node while we
expand the number of processors.

MPI is a portable message-passing standard for easing
the development of parallel applications.  The standard
defines the syntax and semantics of library routines useful
in writing message-passing programs in Fortran 77 or C.
In a word, MPI is used to communicate messages among
a set of processors.  In addition, MPI is easily compatible
with distributed-memory multicomputers, shared-memory
multiprocessors, networks of workstations and the
combination of these elements.

In order to evaluate the performance of a program, we
recorded the starting time and the ending time in each
processor.  Then, we took the earliest starting time and
the latest ending time in all processors to compute the
total execution time of the program.  Although there are
two kinds of processor nodes in the NCHC's SP2, we
choose only P2 nodes to conduct the experiment.  Because
there are some factors that may affect the execution time,
such as the workload and the competition of the network
with other users, we took the least execution time of 10
runs as the result.Fig. 2.  Initial snapshots for finding an LCS and the

Two important performance measures for evaluatingLLCS for A= acbdcbe and B = abceba.
parallel algorithm are speedup and efficiency [4].
Absolute speedup is the ratio between the time needed for



the fastest serial algorithm running on one processor and 5. Conclusion
the time Tp needed for a parallel algorithm running on p
processors.  Relative speedup, Sr, is defined as T1/Tp We have presented a systolic algorithm that uses a
and relative efficiency is defined as Sr/p, where T1 is linear array of r < n/2 PEs to solve the LCS problem.

It takes the fewest time steps of all systolic algorithms forthe execution time for the parallel algorithm running on
the LCS problem.  Compared with other systolicone processor.  In this section, relative speedup and
algorithms, the algorithm also requires fewer processors.relative efficiency are used to evaluate algorithm
Experimental results confirm that multicomputerperformance.
implementation of the presented algorithm can beTable 2 shows the comparison between Algorithm 1
efficient.and Algorithm 2.  Clearly, the performance of Algorithm

2 is better than Algorithm 1.  Tables 3 and 4 show the
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Property 4. represents L(j, 0) = 0.  As specified in Fig. 1, the value
For 1 ≤ i ≤ m, 1 ≤ j ≤ n – k, and 1 ≤ k < n, of YI input to a PE affects the operations performed by

if A(i) = B(j) then {Property 2} the PE.  The SI input stream contains r symbols of "-"
L(i, j) = L(i – 1, j – 1) + 1 followed by symbols of A.   The LLCS p  can be
LCS(i, j) obtained at the YO port of the rightmost PE at the

= the first L(i – 1, j – 1) symbols of (m + 2r – 1)th time step, and an LCS can be retrieved
LCS(i – 1, j) appended by B(j) simultaneously from the LO[1..n ] ports, or more

else if L(i, j – 1) ≥ L(i – 1, j) then precisely LO[1..p].  The comments in Fig. 1 describe the
L(i, j) = L(i, j – 1) meanings of operations performed by PE y, 1 ≤ y ≤ r.
LCS(i, j) = LCS(i, j – 1) It is helpful to understand the roles played by the

else  {L(i, j – 1) < L(i – 1, j)} registers and the meanings of the I/O data of PE y, 1≤ y
L(i, j) = L(i – 1, j) ≤ r, to understand how the whole array can produce an
LCS(i, j) = LCS(i – 1, j) LCS and the LLCS.  Table 1 summarizes the meanings of

end if values in registers BR[1..q], LR[0..q], and LCS[1, 1..n]
if A(i) = B(j + k) then {Property 3} through LCS[q, 1..n]; values transferred through input

L(i, j + k) = L(i – 1, j + k – 1) + 1 ports YI and LI[1..YI] to PE y; and values transferred
LCS(i, j + k) through output ports YO and LO[1..YO] of PE y.  For

= the first L(i – 1, j + k – 1) ease of presentation, let j = (y – 1)q  + 1.  Note that
symbols of LCS(i – 1, j + k) although registers LCS[k , 1..n] are assumed to be
appended by B(j + k) available for storing LCS(i, j + k – 1), for 1 ≤ k ≤ q,

else if L(i, j + k – 1) ≥ L(i – 1, j + k) then it is quite probable that only portions of the registers are
L(i, j + k) = L(i, j + k – 1) needed; specifically, since register LR[k ] keeps
LCS(i, j + k) = LCS(i, j + k – 1) L (i, j + k  – 1), only LCS[k , 1..LR[k]] are needed

else  {L(i, j + k – 1) < L(i – 1, j + k)} to hold L C S ( i, j + k  – 1).  Similarly, only ports
L(i, j + k) = L(i – 1, j + k) LI[1..YI] of LI[1..n] and LO[1..YO] of LO[1..n] are
LCS(i, j + k) = LCS(i – 1, j + k) needed.

end if
Table 1. Meanings of values in registers and values

3. The algorithm transferred through I/O ports at the time.step
in which A (i) is sent to PE y .  Note: j =

Property 4 can be mapped to a systolic algorithm (y – 1)q + 1 and 1 ≤ k ≤ q.
specified by Fig. 1.  Fig. 1 shows a linear array of r PEs,

Register orto which q =  n/r  ≥ 2 symbols of B can be input at a
I/O port

Before inputs are
processed

At the end of the
time steptime.  The algorithm computes L (m , n ) = p  and

LCS (m , n) in m  + 2r – 1 time steps.  Each of the r BR[k] B(j + k – 1) B(j + k – 1)
PEs contains n q  + 2q  + 3 registers: BR[1..q ] , LR[0] L(i – 1, j – 1) L(i, j – 1)
LR[0. .q ], TR, QR, and LCS[1, 1..n ],..., LCS[q ,

LR[k] L(i – 1, 1..n].  Each PE except for the first one has n + 2 input
j + k – 1)

L(i, j + k – 1)
ports, named YI, SI, LI[1..n], and n + 2 output ports,
called YO, SO, LO[1..n].  Note that in Fig. 1 it is LCS[k,
assumed that q  = n/r.  If n  mod r = k  ≠ 0, then q  = 1..n]

LCS(i – 1, 
j + k – 1)

LCS(i, 
j + k – 1)

 n /r  , each of the symbols B (n  – q  + k  + 1),...,
YI L(i, j – 1) –B(n) in the LI input streams should become a special

symbol “-”, and the symbol B(n  – q  + k) should be LI[1..YI] LCS(i, j – 1) –
replaced by B(n).  For ease of presentation, we assume

YO – L(i, j + q – 1)n mod r = 0, unless otherwise stated.
Before explaining how the algorithm works, we first LO[1..YO] – LCS(i, j + q – 1)

examine the input and output data.  The YI input stream
consists of r negative integers –1,..., –r and m 0-valued The operations of PE y are explained in the
flags; a negative integer –i  indicates that the following.  If the YI input is negative (line 1), registers
accompanying symbols in the LI[1..q] input streams are BR[1..q] and LR[0..q] are initialized.  Specifically, if YI
B (( i –  1)q  + 1),..., B ( iq ).  The jth 0-valued flag = –1 (line 2), symbols B (j),..., B (j + q  – 1) carried


