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Abstract

Though genetic algorithins have shown their power
in search and optimization, improving in solution
accuracy and convergence speed are still the necessary
researches. Aany researchers on genetic algorithis
lay great emphasis on the genetic operators or the
parameter adjustment. In this paper, however, we
propose a new operator called extraction.  The
common alleles of several best individuals of the
population are extracted as good genes (the alleles’
values are the same), and reserved with a probability,
while the other genes are destroved with another
probability. e also propose hro advanced
population initialization methods that force the
individuals’® distribution to be uniform in the search
space. Experimental results show that these methods
evidently improve the performance than that of the
simple genetic algorithms.

Keywords: operator, extraction, initialization

1. Introduction

Genetic algorithms (GAs) are robust search and
optimization algorithms based on natural selection in
environments and natural genetics in biology. That is,
they are based on the natural evolution according to the
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principle of survival of the fittest (natural selection).
GAs are first proposed by Holland in 1970s.
Theoretical developments by Holland [12] and DeJong
[7] have laid the foundations of GAs.

GAs have been successfully applied to many fields
of optimization, machine learning, adaptive system
design, neural networks, image processing, pattern
recognition, biological simulation, and others [6, 10].
GAs have been theoretically and empirically proven to
have the efficiency of robust search in complex spaces
[10].

In many cases, GAs are better than traditional
methods in optimal search, but they have their own
problems from the nature. These problems are described
as follows:

1. Premature convergence

It prevents GAs from finding the optimal solution,
and causes GAs to converge to suboptimal or undesired
point. The selection, crossover and mutation operators
may cause this result. The main reason is that the
superior individual appearing in the early evolution
stage, and it dominating the entire population quickly.
In biology, if all individuals of a population are the same,
and their fitnesses are low, then they will be destroyed
fully by the natural environment. Crossover and
mutation also may destroy the good individuals of the
population,

2. Convergence speed

If the similarity of the population is too high, then
the convergence speed is low. If the convergence speed
is low, and the fitness of the population is low, then it
will cause a poor evolution.

3. Execution time

The execution speed of a GA is slowed if there are
mass computation of evaluating fitnesses and operations
of genetic operators during the evolution.

In this paper, we propose some novel valuable
methods including gene extraction and advanced
initializations., These methods have better performances
than simple genetic algorithms and other methods,
especially the extraction operator, The extraction
operator alters the structure of the individual. It analyzes
and extracts the good genes and the bad genes, and
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reserve the good genes and destroy the bad oncs. The
uniform initialization method modifies the population
initialization. It makes each initial individual locating
on the diagonal linear subspaces of the search space
uniformly. The unbiased initialization method is also
used to modify the population initialization. It makes the
population initialization unbiased. That is, the alleles
(the genes at the same position) contain the same
number of ones and zeros. All these methods are
described in section 3 in details.

This paper is organized as follows. In section 2, the
terminologies of GAs and some previous improved
researches on GAs are examined. The ideas and
algorithms of our improved methods are proposed in
section 3. Experimental results are showed in section 4.
In section 3, some conclusions are given.

2. Preliminary

Before presenting the proposed method, some
terminologies are stated.

2.1 Terminology
1. Gene
Abit is usually used to represent a gene in GAs. One
or some genes can represent a feature in GAs.
. Chromosome:individual
A binary string that represents a solution of the
problem in GAs. It may contain several variables
depending on the problems.
3. Locus
The position of the gene in a chromosome.
4. Allele
The gene at the same locus.

[38]
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5. Schema
The template of some chromosomes. For example,
the schema H = 1001**01 contains four

chromosomes suchas 10010001,10010011,

10010101and10010111.
6. Population

A set of individuals P={S), S....., Ss}.
2.2 About the improvements on Genetic Algorithms

Many researchers on GAs attempt to improve the

performance of GAs. They lay great emphasis on the
improvements of the mechanisms and rates of genetic
operators, and they have proposed the methods of
improved operators [1, 3, 4, 6. 8, 15, 17] and adaptive
operator rates [5, 6, 9. 17]. These adaptive methods
include adaptive crossover and mutation rates, varying
population size and varying encoding length. Other
improving methods such as real number encoding and
multi-populations are also available in [6, 13, 14, 18].
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3. Gene Extraction and - Advanced

Initializations

The main problems of simple genetic algorithms are
the premature convergence, the convergence speed and
the execution speed. To overcome these problems, in
this section, we create an artificial genetic operator to
reserve the good individuals and reduce or replace the
bad ones, and to increase the average and maximum
fitnesses of the population.

3.1 Extraction

Genetic algorithms have the ability of locating the
area of the optimal or acceptable solution with the
evolution. Even simple genetic algorithms can find an
acceptable solution easilv, and sometimes provide a
better performance than other modified methods. New
operators can be combined with the simple genetic
algorithm to enjoy both benefits. So we have the idea of
creating a new operator to make the bad individuals
destroved and the good ones reserved. To determine
which individuals are good and which are bad, we adapt
the average fitness of the population as the threshold.
That is, if the individuals’ fitnesses are bigger than or
equal to the average, then they are good individuals, else
bad ones. Similarly, in an individual, the bad genes can
be destroyed and the good ones should be reserved. But
which are good or bad genes of the individual?
Generally, better individuals have more or important
desired genes (the solution schema) since they have
higher fitnesses than others. The above ideas lead to our
new operator that is based on the following statements:
1. For any problem with single or multi solutions, it has

the solution schema (the schema of optimal
solutions). If an individual matches more genes of the
solution schema, then the individual has higher
probability to be the optimal solution.

. In statement 1, it is necessary to consider the gene
weight (the importance of the gene). The genes that
are more important can be found easier since they
make higher fitnesses than the others.

. The better individuals of the population have higher
probability to contain the desired genes (the solution
schema) since they have higher fitnesses than the
others. '

4. In statement 3, the common alleles of those better
individuals may be the desired genes (the solution
schema).

Basing on the above statements, we conclude that
the common alleles of the better individuals play an
important role in finding the solution schema. Hence. at
every generation, the common alleles are extracted as
the desired genes. These common alleles are reserved
and the others are replaced, both with random values.

o

(98]



hERBE/NTAFEEEEE TR

It is because that the common alleles of the better
individuals have higher probabilities to match the
solution schema, the common alleles are reserved with a
probability, and the others are destroyed with another
probability. If the locus of a gene in an individual is
equal to the locus of a good gene, then the good gene is
put into the locus of this individual with a higher
probability, else the gene at the locus is replaced with
random bit with a lower probability. We call this
operator as extraction.

For example, assuming that the encoding length is
8, and the five best individuals are as list in figure 3.1.
Consider the locus 1, since all of the genes are “1”, the
alleles are the same, so locus 1 should be a good gene
and has a value 1.

We now use figure 3.1 to describe the extraction
operator step by step as follows;

1) Sort the individuals according to their fitnesses after
a generation.

2) Make two arrays A [1..Len], Bf1..Len], where Len is
the encoding length. where
A indicates that whether the alleles are common ones
or not, in which 1 represents yes, and 0 represents no;
B indicates the values of the common alleles (1 or 0).

3) Initialize .4 as a zero array (no common alleles at the
beginning). .

4) For alleles at locus i of the five best individuals do
step 5 and 6.

5) Compute the number of ‘1° of the alleles at locus i of
the five best individuals. Let the number be n.

6) If n =3 (all the five alleles are 1°s), then.4/i] = 1 and
BJfi] =1, else.4/i] = 0 and B/i] neither equal 1o 1 nor
to 0.
If n = 0 (all the five alleles are 0°s), then A4[i] « 1
and Bfi] « 0, else 4/i] « 0, and Bfi] neither equal
to 1 norto 0. :

7) For alleles at locus / of the remaining individuals do
step 8.

8) If 4Afi] = 1, then the ith gene of each of these
individual equals to Bfi] with probability 0.6.
If 4/i]=0, then the ith gene of each individual equals
to a random bit with probability 0.6.

Best individual 1 10101010
Best individual 2 11101000
Best individual 3 10100000
Best individual 4 10101110
Best individual 5 11100010
Array 4 10110001
Array B 1 10 ¢

Figure 3.1 Extracting the good genes
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9) Recompute the fitnesses of these remaining

individuals.

10) Enter next generation. )

There are four parameters in the extraction operator
that influence its performance.

1. Reserve rate
The probability of reserving the good genes. Our
experimental results show that the range from 0.4 to
0.8 gives a good performance. So, the default value
is 0.6.

. Replacement rate .
The probability of destroying the bad genes. This is
the probability of replacing the bad genes with
random values. Qur experimental results show that
the range from 0.4 to 0.8 gives a good performance.
Hence, the default value is set as 0.6.

3. The number of best individuals for comparison

The number of best individuals that are used to
extract good genes. We find that the range from 3 to
10 gives a good performance, and our default value
is 5.
4. Interval of executing extraction

This is the interval number of generations that the
extraction operator operates. Our experimental
results show that the range from 1 to 5 gives a good
performance, and we set the default value as 1.

S8

3.2 Uniform Initialization

Generally speaking, the initialization of the
individuals of the population should be as uniform
distributed as possible. But it is hard to achieve because
the initialization is random. The uniform initialization,
however, gives the GAs a better performance because
there is an individual in each area of the search space.
So, unless the property of the problem is known, and a
special initialization is used, otherwise in general
problems, we force that there is an individual locating in
each subspace of the search space. That is, the search
space is splitted into subspaces of population size to
make each subspace contain an initial individual.

It is practicable to do so for one-dimensional
problems but is not so easy for multi-dimensional ones.
For example, consider a two-variable problem, assume
that the population size is 30, then the search space is
splitted into 30 subspaces. But for two-dimensional
space, it can only be splitted into subspaces such as
1x30, 2x15, 3x10 and 5x6 types. And for five
variables, it can only be splited into 1x1x2x 3x5 type
subspaces. Hence, uniform initialization (mxn,
nxnxnxnxn)is not so easy to obtain.

- To overcome this problem, we find that for many

- problems, the diagonal linear subspaces of the search

space contain important information. In our eleven
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popular test problems, there are nine problems whose
optimal solutions are located in the diagonal linear
subspaces. For the other two problems, there are still
high fitness solutions in the diagonal linear subspaces.
According to the above observations, in our method,
each dimension is splitted into intervals with an amount
of the population size. So it will forms Pop™rem
subspaces (Pop is the population size, Param is the
number of variables or dimensions). Only the diagonal
linear subspaces are extracted. For example, assuming
that there are four individuals in the population (Pop =
1), and the search space is two-dimensional (Param =2).
The origin initialization is illustrated in figure 3.2(1).
The first proposed uniform initialization and the linear
diagonal uniform initialization are demonstrated in
figure 3.2(2) and figure 3.2(3), respectively. In the
figures, gray areas indicate that there is an individual in
i1, whereas the blank areas are not.
The linear diagonal uniform initialization (in short
uniform initialization) is described as follows:
Step 1. Compute the interval size used to split each
dimension
Interval-= m_m_ze__
population size
Step 2. Locate the initial values
The value of each parameter of individual i = a
random number / between inrerval*(i —1) and
interval* (i), where * means multiplication.
Step 3. Convert those initial value / of the individuals
into the binary string of a parameter.
Step +. Repeat step 2 and 3 for each individual.

3.3 Unbiased initialization

Unbias means that the count of “1” in the alleles is
equal to the count of “0”. If the alleles at some locus are
the same, then it is impossible to alter the genes at this
locus by crossover. Hence, initialization with unbiasing
should be benefit for the crossover operator. In most
cases. however. the initial population is usually biased,
so we propose an algorithm that can force it to be
unbiased. The algorithm is as follows:

Step'l.Let the (2#i —1)th individual be “111..1" and
the (2%i)th individual be “000...07, where i is
from 1 to the population size:

Each gene of every individual i = the Boolean
operation (i AND 1).

Step 2. Select two alleles at locus j
exchange their values.

Step 3. Repeat step 2 population-size times.

Step 4. Repeat step 2 and step 3 for each locus (j is from
I to string length).

randomly to
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(1) Origin distribution

Paramter 1

Z 1atounaey

(2) First proposed uniform distribution (3) Linear diagonal uniform distribution

Paramter 1

T Jepueied
Z Jopuresed

Figure 3.2 Demonstration of the uniform initialization

Individual 1 1 1 1 1 12 0 1 1 1
Individual2 0 0 0 Q__le3 y1 0 0 0
Individual3 1 1 1 1 2«4 0 1 1 1
Individual4 0 0 0 0 12 1 0 0 0

Figure 3.3 An example for unbiased initialization

For example of step 2, consider the four individuals
in figure 3.3. If the first genes of individual 1 and 2, and
then 1 and 3, and then 2 and 4, and finally 1 and 2 are
exchanged, then the four new individuals are as shown
in the right of the figure which is unbiased.

4. Experiments and Results

In this section, the performance measures and test
problems are introduced before displaying the
experimental results. In the experiments, we compare
the performances and execution times of our improved
methods with the simple genetic algorithm’s. Besides,
we also compare the performances of the -extraction
operator and other improved methods with various
parameters setting.

4.1 Performance Measures
To know how good the performances of genetic
algorithms are, we must formulate some measures.
Because GAs involve randomness, each method is run
50 times. The performance measures are as follow:
1. Average curve _
f; : the fitness of the jth individual at generation i. iy
i
avg
generation /.
2. Maximume curve
! . the maximum fitness of all individuals ai

the average of all individuals’ fitmesses at

e
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generation /.
3. Average fitness
Sae the average of average fitnesses of all

generations.
. ‘m
2 Sas
f, = J=1 y .
a8 m
where /n is the number of evolution generations.
4. Maximum fitness
© Joa s the average of maximum fitness of all

generations.

m
{
f _ ;‘f max .

max ’

m
where m is the number of evolution generations.
5, Best fitness
free 1ndicates the best of maximum fitnesses of all

generations. The individual with best fitness is the
solution. The individual is the precise solution if its
fitness is equal to 1.0 after normalizing. It is
impressed on the average and maximum fitnesses
typically. but the best fitness is most important since
the best individual is the solution of the problem.

4.2 Test functions and the experimentul results

Many test functions are discussed in some papers (2,
7. 10, 11, 15]. In our experiments, eleven test functions
are applied, and we show two of them. The space sizes
and the numbers of variables of these test functions are
listed on table 4.1. The parameter settings of these test
functions are listed on table 4.2.

The five methods applied are as follows:
. SGA (curve 1): The simple genetic algorithm.,
. Unbiased (curve 2): SGA + unbiased initialization.
. Uniform (curve 3): SGA + uniform initialization.
. Extraction (curve 4): SGA + extraction operator.
. Extr/Uni (curve 3): SGA + extraction operator +
uniform initialization.

In this subsection we analyze the average,
maximum and best fitnesses and average and maximum
curves of the experimental results.

1. Function f1

This is a five-variable step function. The traditional
search methods such as hill-climbing are hard to find
the optimum since it is a discontinuous function. The
goal is to find the minimum,

T S R
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Table 4.1 Space sizes of test functions

Function variables Length(biry  Space size
il 5 50 1.13*10"
2 2 44 1.76*10%
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Table 4.2 Parameter settings of test functions

Parameter ¥ 2
Run times : 50 50
Population size 30 30
Individual length 50 44
Crossover rate 0.8 0.8
Mutation rate .005 .005
Generation 100 300
Extraction reserve rate 0.6 0.6
Extraction replacement rate 0.6 0.6
Extraction comparison best# 5 5
Extraction interval 1 1

Table 4.3 Average, maximum and best fitness of f1

Maximum Best
0.84101386  0.91320000

Average
SGA 0.74314693

Unbiased 10.76146693  0.85939010  0.92480000
Uniform (0.79855063 0.89121188  0.94760000
Extraction0.95272290  0.97743366  1.00000000
Extr/Uni {0.96695221  0.99019802  0.99960000
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Figure 4.2 Maximum curve of f1
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2. Function 2

This is a rapidly varying multimodal and extremely
complex function. f2 has been employed in [6] and [16],
where it is referred to as the “Sine envelope sine wave
function”. The following is the inverted version of the
origin f2. When the global optimum is approached, the
barrier height between adjacent maxima decreases {17].
The goal is to find the maximum.

03 SENG 0 =05 00 <100

[1+0001(x," +x,°))

Table 4.4 Average, maximum and best fitnesses of 2

Average Maxinmum Best
SGA 0.72371417  0.82247035 0.95497936
Unbiased 0.72882653  0.82834490 0.949708%4
Uniform 0.74033659 0.84033818 0.96475124
Extraction | 0.89428079 0.94170151 0.97079834
Extr/Uni 0.91402931 0.96271630 0.98176081
;:soo-% Wﬁjﬁx&dﬁvﬁaﬁbﬁwﬁ
" geepsipriaeae
|
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Figure 4.3 Average curve of f2
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Figure 44 Maximum curve of 2
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5. Conclusions

In this paper, we developed some novel methods
including the extraction operator, the uniform
initialization and the unbiased initialization. The
extraction operator alters the inner structure of the
individual, whereas the uniform initialization and the
unbiased initialization methods modify the population
initialization. All of these three methods are simple and
can be combined with the simple genetic algorithms
easily. Simulation results show that these methods
exhibit an evident improvement of the GAs.
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