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Genetic Knowledge-Integration Strategies
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Abstract

In this paper, we propose a genetic knowledge-
integration approach based on Darwin's theory of
natural selection to integrate multiple rule sets. The
proposed approach consists of two phases : knowledge
encoding and knowledge integrating. In the encoding
Dphase, each rule set is encoded as a bit string. The
combined bit strings thus form an initial knowledge
population, which is then ready for integrating. In the
integration phase, a genetic algorithm generates an
optimal or nearly optimal rule set from these initial
rule-set strings. Finally, experimental resulis from
diagnosis of brain tumors show that the rule set
derived by the proposed approach is much more
accurate than each initial rule set.

Keywords: genetic algorithm, knowledge acquisition,
knowledge integration, machine learning.

1. Introduction

Recently, a great deal of research [1][3][4][10]
has been devoted to the study of the reuse and
integration of various existing. knowledge sources to
reduce knowledge-acquisition bottleneck. Especially
for complex application problems, related domain
knowledge is usually distributed among multiple
sources. No single source may have complete domain
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knowledge. The use of knowledge integrated from
multiple knowledge sources is thus especially
important to ensure comprehensive coverage.

In this paper, we propose a genetic knowledge-
integration approach to integrate multiple rule sets into
one integrated knowledge base. It first encodes each
rule set as a bit string, and then chooses elements from
each rule set for "mating", thus gradually creating
better offspring rule sets. The offspring rule sets then
undergo recursive "evolution" until a really optimal or
nearly optimal rule set is produced.

Finally, experimental results on the brain tumor
diagnosis show that the rule set derived by the
proposed integration approach is much more accurate
than each initial rule set. They also show that the
proposed integration approach can effectively combine
multiple rule sets into a knowledge base.

The remainder of this paper is organized as
follows. A Genetic knowledge-integration approach is
proposed in Section 2. Experiments on brain tumor
diagnosis are made in Section 3. Conclusions are given
in Section 4.

2. Genetic Knowledge Integration

The objective of knowledge integration is to
integrate a set of knowledge sources into a knowledge
base that satisfies the following conditions:

1. Completeness: all the objects in the domain
space can be covered by at least one rule.
Correctness: the rule set can make correct
classification.

Consistency: no two rules contradict each other.

Conciseness: the number of rules is minimal.
These four conditions usually cannot be satisfied
at the same time, and trade-offs exist among them. In
this sense, knowledge integration can be thought of as
a multi-objective optimization problem. The genetic
algorithm (GA) is an adaptive search technique, which
is very effective in finding optimal or nearly optimal
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solutions to a variety of problems. Therefore, we
propose a genetic knowledge-integration approach to
deal with the knowledge-integration problem.

The proposed approach uses the genetic
algorithm to maintain a population of possible rule sets,
and automatically searches for the best integrated rule
set. The proposed genetic knowledge integration
consists of two phases: encoding and integration. The
encoding phase transforms each rule set into a bit-
string structure. The integration phase chooses bii-
string rule sets for "mating", gradually creating good
offspring rule sets. The offspring rule sets then
undergo recursive "evolution" until an optimal or
nearly optimal rule set is found. The knowledge-
integration procedure is illustrated in Fig. 1; RS
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Fig. 1: The genetic knowledge-integration procedure
2.1. Knowledge Encoding

Since rule sets derived from different knowledge
sources generally differ in syntax and size, designing
an appropriate data structure to accommodate these
rule sets is crucial. Several strategies have been
proposed for representing rule-set knowledge
structures for conceptual learning [8][9]. For example,
the Michigan approach [2][11] encodes individual
rules into fixed-length bit strings, with each individual
in the population representing a rule. Another, the
Pitisburgh approach [7] encodes rule sets into
variable-length bit strings, with each individual in the
population representing a rule set. Since multiple rule
sets must be combined, the rule sets are derived from
different sources, representation of variable-length rule
sets is preferred in this research to preserve the
syntactic and semantic constraints of variable-length
rule sets. We thus encode knowledge using the
Pitsburgh-style approach. The rule sets from different
sources must, however, be translated into a uniform
syntactical representation before being encoded. The
steps for iranslation of rule sets are described below.

1. Collect the features and possible values
occurring in the condition parts of rule sets. All
features gathered together comprise the global
feature set.
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2. Collect classes occurring in the conclusion parts
of rule sets. All classes gathered together
comprise the global class set.

. Translate each rule into an intermediary
representation that retains its essential syntax
and semantics. If some features in the feature
set are not used by the rule, dummy tests are
inserted into the condition part of the rule. Each
intermediary representation is then composed of
N feature tesis and one class pattern, where N
is the number of global features collected. If the
Jeature tests or class patterns are numerical,
they are first discretizied into a number of
possible regions.

. Concatenate all intermediary rules to form an
intermediary rule set. '

An example is given below to demonstrate the
translation  process of forming intermediary
representations.

Example I. The brain tumors diagnosis is used
to demonstrate the translation process of forming
intermediary representations. There are two classes of
brain tumors to be distinguished: Adenoma and
Meningioma. Each rule is described by three features:
Location, Calcification, and Edema. Each feature has
the possible values shown below.

Location = {brain surface, sellar, brain stem}

Calcification = {no, marginal, vascular-like, lumpy}
Edema = {no, <2 cm, < 0.5 hemisphere}

Assume a rule set RS, obtained from a
knowledge source has the following two rules:

rq1 2 If (Location = sellar) and (Calcification = no)
then Class is Adenoma;
rg2+ If (Location = brain surface) and (Edema < 2
cm) then Class is Meningioma.
This intermediary representations of r,; and ry»
would then be constructed as follows:
,.;l  If (Location = sellar) and (Calcification = no)

and (Edema = no or Edema < 2 cm or Edema
< 0.5 hemisphere ) then Class is Adenoma;

' I (Location brain and

Fg2
(Calcification no or Calcification
marginal or Calcification = vascular like or
Calcification = lumpy) and (Edema < 2 cm)
then Class is Meningioma.
The tests with underlines are dumnzy tests. Also,

surface)

rq1 and ryy are logically equivalent to r;x and rgz:

After translation, each intermediary rule representation
then consists of three feature tests and one class pattern.
We concatenate all intermediary rules to form an

intermediary rule set RSj.
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Afier translation, each intermediary rule set is
then ready to encode as a bit string. Using the
intermediary form, we first encode each feature test
into a fixed-length binary, with length equal to the
number of possible feature test values. Thus, each bit
represents a possible value. For example, the set of
legal values for feature Location is {brain surface,
sellar, brain stem}, three bits are then used to represent
this feature. The bit string /07 would represent the test
for Location being "brain surface” or "brain stem”.
Similarly, the class pattern is encoded into a fixed-
fength binary siring with each bit representing a
possible class. Each rule in the intermediary
representation is then encoded as a fixed-length bit
string. Since different rule sets might have different
numbers of rules, the lengths of the intermediary rule
sets might be different. An example that demonstrates
the encoding process of intermediary rule set is shown
below.

Example 2: Continuing from Example 1, assume

the intermediary rule-set RS'q is to be encoded as a bit

string. The rule ., in Example 1 is first encoded as
follows.

Location Calcification Edema  Class
' 010 1000 1 10

Since feature Location in ., has only one test

value, Sellar, the test for Location is then encoded as
"010". Similarly, the test for Calcification is encoded
as "1000". But, Edema has three possible test values,
"no", "< Zem", and "<0.5 hemisphere", the test for
Edema is then encoded as "111". Corresponding, the
class points to Adenoma, the class pattern is encoded

as "10". As a result, each intermediary rule in RS;] is
encoded into a substring as blow.

Location Calcification Edema Class
' 010 1000 111 10
- 100 1111 010 01
q2

Finally, the intermediary rule set RS'q is encoded
into a chromosome as in Fig. 2 shown.

t

RSq

rql rq2

010100011110100111101001

Fig. 2 : Bit-representations of Rg'q for Example 2

2.2. Knowledge Integration

Knowledge integration uses the genetic
algorithm for integration and optimization by
generating a population of bit strings for each
integrating rule set, and evaluating the bit sirings with
an evaluation function and a data set. Rule-set
performance is then fed back to the genetic algorithm
to control how the solution space is searched to
promote rule set quality.

During integration,

the genetic algorithm

‘requires a population of feasible solutions to be
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initialized and updated during the evolution process. In
our approach, the initial set of bit strings for rule sets
comes from the multiple knowledge sources. Each rule
set represents one individual in the initial population.
In order to develop a "good" knowledge base from an
initial population of rule sets, the genetic algorithm
selects parent rule sets with high fitness values for
mating. An evaluation function and a set of data
including documentary evidence, instances or
historical records, are then used to qualify the derived
rule set. Two important factors are used in evaluating
derived rule sets, the .accuracy and the complexity of
the resulting knowledge structure. Accuracy of a rule
set RS is evaluated using data as follows:

the total rumber of data correctly matched by RS
the total number of data

Accuracy(RS) =

The more data used, the more objective and accurate
the evaluation is. The complexity of the resulting rule
set (RS) is the ratio of rule increase, defined as follows:

Number of rules in the integrated rule set RS
m
(% (Number of rules in initial RS))]/ m
i=l

Complexity(RS) =

where RS; is i-th the initial rule sets, and m is the

number of initial rule sets. Accuracy and complexity
are combined to represent the fitness value of the rule
set. The evaluation function is defined as follows:

[Accuracy( RS )]

Jitness(RS) = R
[Complexity(RS )]c

where ¢ is a control parameter, representing a irade-
off between accuracy and complexity. The fitness
function can also reduce the impact of noisy
information that causes rule set overfitting (excessive
complexity).

2.3. Genetic Operators

Two genetic operators are applied to the rule set
population for knowledge integration. They are
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dynamic crossover and mutation. The crossover
operator used here selects crossover points differently
from the way used in the simple genetic algorithm. The
crossover operator in the simple genetic algorithm
chooses the same points for both parent chromosomes,
but, the crossover operator here need not use the same
point positions for both parent chromosomes. The
crossover points may occur within rule strings or at
rule boundaries. The only requirement for crossover
points is that they "match up semantically”.

The crossover operator thus takes two parent
rule-sets and swaps parts of their genes to produce
offspring rule-sets. If the genes swapped are desirable,
then the offspring rule-sets will inherit these
advantages from their parents and survive after this
generation. Thus, the resulting rule-sets will be closer
to the one really desired from generation to generation.
The detailed procedure is shown below.

1. Randomly select a crossover point in one of the
parents,
If the point occurs at some rule boundary, then
the crossover point of the other parent must also
occur at the rule boundary. Otherwise, the point
may be within the rule string p bits to left of a
rule boundary. The crossover point for the other
parent must also occurs within the rule string
and p bits to left of some rule boundary.
Cross the genes of the parents according to the
Crossover points.
4. Generate new offsprings.

] An example of crossover operation is shown
below.

Example 2: Assume that parent rule sets RS; and
RS, respectively, contain » and m rules for classifying
test instances with four features (F;, Fs, F3, and F)).
Feature F; has three possible values, features F», Fj,
and F all have two possible values. Three classes are
to be determined. Assume that RS; and RS, are
encoded as follows:

2.

SY!
RS!QQHQ}!QQO:I, .........
F) FyF3F,Class

r21 r2j ¥am
RS,:010011001100---110111010101- .- 100011001101

i Fin
010010101010---001010101100

As mentioned above, the crossover points on
both parents must "match up semantically”. If
crossover point cp, is the seventh bit to the left of » ;10
RS (denoted as cp, = (14, 7)), then crossover point cp,
for RS; must be the seventh bit to the left of a certain
rule Fy {denoted as cp, =(2j, 7)). Thus, the crossover
operator generates iwo offspring rule sets, 0, and o,
as shown in Fig. 3. : ’
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i1 ru . rin
RSII_QQQQHQQOFL ~~~~~~~~ 01001 0101010---001010101100
Fy FaF3FyClass cpr Tbits
ra1 r2j 2m
R522010011001100"'11011 1010101 ++-++ 100011001101
l Cp: Tbits
crossover

0:100110110001- ----+-++ 010011010101 100011001101

0,:010011001100---110110101010---001010101100

Fig. 3: An example of dynamic crossover

The mutation operator is the same as the
standard one in the simple genetic algorithm, and
randomly changes some elements in a selected rule set
to help the integration process escape from local-
optimum "traps"”.

3. Experimental Results

Brain tumor diagnosis [15] was used as the
problem domain to test the performance of the
proposed knowledge-integration approach. Due to
their inherent complexity, the diagnosis of brain
tumors is currently still very difficult for doctors. Thus,
developing a successful brain tumor diagnostic system
seems to be very important. The test instances used in
these experiments to evaluate rule-set fitness values
were obtained from Veterans General Hospital (VGH)
in Taipei, Taiwan. One of six possible classes of brain
tumors including Pituitary Adenoma, Meningioma,
Medulloblastoma, Glioblastoma, Astrocytoma, and
Anaplastic  Protoplasmic Astrocytoma ( frequently
found in Taiwan), must be identified. The numbers of
possible feature values and class patterns are shown in
Table 1.

Table 1:Numbers of feature values and class patterns
Feature Number Feature Number
Sex 2 Shape Edema 5
Location A4 Calcification 4
Precontrast 6 Enhancement Degree 4
Edema E Enhancement Appearance 9
Bone Change 6 General Appearance 9
Mass Effect 3 Hydrocephalus 3
Number of classes : 6

To evaluate the performance of our knowledge-
integration approach, ten initial rule sets were obtained
from different groups of experts at VGH or derived
from via machine learning methods [5][6][13][14]{15].
Each rule, consisting of twelve feature tests and a class
pattern, was encoded into a bit string 103 bits long.
The accuracy of the ten initial rule sets was measured
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using the test instances. The results are shown in Table
2.

Table 2: The accuracy of the ten initial rule sets

Rule Sets || Accuracy {No. of rulest! Rule Sets || Accuracy {No. of rules
Rule Set 11| 60.03% 52 Rule Set6 || 77.89% 56
Rule Set 2| 79.81% 56 Rule Set 7| 68.53% 52
Rule Set 31| 73.24% 56 Rule Set 8 || 72.83% 53
Rule Set 4| 64.74% 53 Rule Set9 || 76.24% 56
Rule Set 5{| 38.67% 52 Rule Set 10}| 70.19% 53

The automatic knowledge-integration algorithm
was implemented in C language on a SUN SPARC/2
workstation. The experiments were made to evaluate
the effectiveness of the proposed method, averaged
over 50 runs. The proposed knowledge-integration
algorithm obtained an accuracy rate of 85.83% after
2000 execution generations. The size and the
complexity of the resulting knowledge base were
respectively, 168 and 3.1168. Note that the accuracy
obtained is higher than any initial rule set in Table 2.

4, Conclusion

We have shown how knowledge-integration can
be effectively represented and addressed by a genetic
algorithm. Experimental results showed that our
genetic knowledge-integration approach is valuable for
combining multiple rule sets. Our approach differs
from some notable approaches [4][10]{12] mainly in
that it requires no human experts' intervention during
integration. Our approach is thus dependent on

computer execution speeds, not on human experts.

This saves much time since experts may be
geographically dispersed, and their deliberations may
be very time-consuming. Our approach is also scalable
and can be used effectively when the number of rule
sets to be integrated is large, and integrating large
numbers of rule sets may increase the validity of the
resulting knowledge base. Our method is also objective
since human experts are not involved in the integration
process.
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