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Abstract

In this paper we propose a complete diagnostic system
Jor digital circuits (DSDC). Our work is based on
Reiter's theory of diagnosis from first principles [6],
incorporated with Hou's theory of measurements [4] to
discriminate among all possible diagnoses in a fault
diagnosis task. Meanwhile, in order to determine the
best order in which measurements are to be taken, a
measurement selection sirategy using the genetic
algorithm (MSSGA) is proposed.

Keywords:  circuit  diagnosis,  first  principles,
measurement, genetic algorithm

1 Imtroduction

Although almost all theories of diagnosis
intend to be domain-independent, digital

circuits are the most frequent and suitable test-
bed for these theories. One of the reasons is that the
model of digital circuits can be easily built in 2 compact
form, and their behaviors have been well studied and
formalized. The other reason is that due to the advances
of VLSI technology in recent years, the dramatically
increasing complexity of digital circuits together with
their short life cycle makes any &agnostic approaches
based only on intuitions impractical. It is then necessary

and important to build automatic diagnostic systems for
such diagnostic tasks.

In this paper we propose a complete diagnostic
system for digital circuits (DSDC) based on the work of
Reiter [6] and Hou [4]. DSDC has the following
characteristics:

1. DSDC is complete in the sense that all possible
diagnoses under the observations of a
malfunctioning circuit obtained so far can be
found. '

2. DSDC uses a simple language called DSDC
Language (DSDCL) for describing digital circuits.
Hierarchical diagnosis is possible by using circuit
specifications at different granularity.

3. DSDC derives minimal conflict sets (IMCSs) by the
derivation method using a CS-tree with mark set,
which is an improvement to Hou’s method.

4. DSDC uses an incremental propositional calculus
prover (PC prover) for logic inferences. To be
more specific, a PC prover implemented by trie
data structure (PCPT) with chronological-
backtracking capability [7] is incorporated in
DSDC as the underlying inference engine.

5. DSDC selects the best next measurement

via the'genetic algorithm [3].

2 Overview of DSDC

DSDC receives a circuit specification in DSDC
Language (DSDCL), evaluates different possible
measurement orderings via the genetic algorithm and
prompts for measurement results from user input. The
interactive diagnostic process is going on until only one
possible diagnosis is left. Upon this point the user may
replace the faulty components found within the system,
and use a fault-detection method to verify the soundness
of the sysiem [5]. Fig 2.1 shows the block diagram of

A-103



TREREN+A]E2ERE RS

DSDC.

DSDC  Preprocessor translates the circuit
specification in DSDCL into a set of clauses in
conjunctive normal form (CNF) and other parameters
for the use of Inference Engine and Measurement
Request (MR) Generator. A circuit specification
contains component definitions, component declarations,
component connections, circuit observation and other
related parameters for DSDC.
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Fig. 2.1. The block diagram of DSDC

Inference Engine receives the CNF clauses from
DSDC Preprocessor and responds the minimal conflict
set (MCS) derivation requests from Diagnosis Generator
with the derived MCSs. It uses an efficient incremental
Propositional Calculus (PC) prover for deriving MCSs
from a possible conflict set (CS) using CS-tree with
mark set. To improve the efficiency of the PC prover,
we choose trie data structure for representing CNF
clauses internally, and various reasoning rules are
performed based on the work of Zhang and Stickel [8].

Diagnosis Generator is responsible for generating
all possible diagnoses, viz., all Minimal Hitting Sets
(MHSs) from the collection of MCSs received from
Inference Engine. To discriminate among competing
diagnoses, Diagnosis Generator issues a request for a
Measurement Request List (MRL) from MR Generator
and prompts for the measurement result from user input
in the order specified in the MRL received. Such
interactive diagnostic process is going on until only one
possible diagnosis is lefi.

MR Generator generates a promising MRL
according to past experiences of diagnosing the circuit.
A promising MRL should minimize the effort for
deriving the unique cause of the disorders of the circuit.
Specifically speaking, the MR Generator of DSDC
exploits Measurement Selection Strategy using the
Genetic  Algorithm (MSSGA) for evolving and
determining promising MRLs. The population of MRLs
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required by MR Generator is generated randomly or
obtained from the previous runs on the same circuit.
Various parameters for GA are given in the circuit
specification in DSDCL.

3 DSDC  Preprocessor  and
Language (DSDCL)

DSDC

In DSDC, the model of a digital circuit is built by using
DSDCL. DSDC Preprocessor iranslates the circuit
specification in DSDCL into a set of CNF clauses and
other related parameters for other modules in DSDC.
This section presents the details of DSDCL, and a
complete language formulation in Backus-Naur form is
given.

The terminals of DSDCL are listed in Table 3.1.
The meaning and the precedence of each operator used
in DSDCL is listed in Table 3.2.

keyword: one of
define declare connect
observe assign
in/inx out/outx
token: Any string other than any one of the keywords
real: A real number
integer: An integer
output-predicate: outfroken)
outx(token]
input-predicate: inftoken)
inx[token]
truth-value: either O or 1
unary-operator. i
binary-operator: one of
O _~ * + @ = >

Table 3.1. All terminals of DSDCL

DSDC Preprocessor iranslates an expression using
Huntington's postulates [2] into its equivalent CNF
clauses. In particular, the equality “a = #” is translated
into (wa v b) A (=b v a). Table 3.3 shows the basic
structure of a circuit description.

Operator Meaning Precedence
() Parentheses 0
~ Not 1
* And 2
+ Or 3
@ Xor 3
= Equality 4
> Implication 5

Table 3.2. The meaning and the precedence of each operator
- used in DSDCL
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circuit-specification:
define-block declare-block connect-block observe-
block assign-block

Table 3.3. The basic structure of a circuit specification in DSDCL

A define-block is defined as shown in Table 3.4.

define-block: define { define-sub-
blocks }

define-sub-blocks: define-sub-block

. define-sub-block  define-
sub-blocks
define-sub-block: token {
expressions }

define-expressions:

define-

define-expression .
define-expression define-
expressions
define-expression:
primary-expression;
define-primary-expression:

output-predicate = define-

input-predicate
unary-operator  define-
primary-expression
define-primary-expression
binary-operator define-primary-expression
(define-primary-
expression)

Table 3.4. The formulation of define-block in DSDCL

The formulation of declare—block is shown in
Table 3.5.

declare-block: declare { declare-sub-blocks }
declare-sub-blocks:  declare-sub-block

declare-sub-block declare-sub-
blocks

declare-sub-block: token { tokens }
tokens: token;
token; tokens

Table 3.5. The formulation of declare-block in DSDCL

Table3.6 shows the formulations of the other
blocks in DSDCL.

4 Inference Engine

In DSDC, Inference Engine is responsible for
deriving all MCSs from a possible CS via a sound and
complete PC prover. We enhance the efficiency of
Inference Engine in DSDC by using an incremental

Davis-Putnam PC prover [1] implemented by irie data

siructure [8].

connect-block: connect { connect-expressions }
observe-block: obsexrve { observe-expressions }
assign-block: assign { assign-sub-blocks }
connect-expressions.  connect-expression

connect-expression connect-
expressions
observe-expressions.  observe-expression
© observe-expression observe-

expressions
assign-sub-blocks: assign-expression
assign-sub-block

assign-expression  assign-sub-

blocks

assign-sub-block  assign-sub-
blocks
connect-expression.  output-predicate = input-
predicate; .

input-predicate = oulpui-
predicate;

observe-expression:  output-predicate = truth-value;
input-predicate = truth-value;
token { assign-sub-blocks }
token = real,

token = integer;

assign-sub-block:
assign-expression:

Table 3.6. The formulations of conneci-block, observe-block and
assign-block in DSDCL

4.1 A PC Prover Implemented by Trie Data
Structure (PCPT) '

PCPT represents ground CNF clauses in irie data
structure, and efficiently performs unit propagation on
the representation. The nondestructive approach used in
PCPT makes it very suitable for repeated satisfiability
computation.

A trie structure of a set of ground CNF clauses is
then defined as follows.

Definition 4.1 A trie structure of a set of ground CNF
clauses is a 3-ary free defined below.

(l) Each node of the structure is either empty (¢), or a
clause end-mark (), or labeled by a 4-tuple <var,
pos, neg, rest>, where var is a variable index, pos
is its positive child node, reg is its negative child
node and rest is its brother node.

(2) An empty node or a node labeled by a “clause end-
mark has no child and brother nodes.

(3) The left edge of a node labeled by <var, pos, neg,
rest> is interpreted as the positive literal of the
variable with index var. The right edge of the node
is interpreted as the negative literal of the variable
with index var. Brother edges, viz. the edges
between brother nodes, represent nothing.
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(4) A clause is obtained from the collection of
left/right/brother edges of the path starting from the
root node to some clause end-mark node.

A trie structure of a set of ground CNF clauses is
said to be ordered if for each node labeled by <var, pos,
neg, rest> in the tree, var is smaller than any variable
index appearing in pos, neg and rest. Fig. 4.1 shows the
ordered trie structure of the clause (av b) A (maVv b v

—¢) A (mave).
a —a
‘ﬁb b ¢
—C
Fig. 4.1. The ordered trie structure of the clause (av b ) A
(mavbv-ac)a(-ave)

In PCPT, the unit resolution technique of Davis-
Putnam procedure is implemented on an ordered trie
structure by first building a variable table.

Definition 4.2 A variable table is an array of
variable records. Each variable has its own variable
record, which is a 4-tuple <truth, head-list, positive-tail-
list, negavive-tail-list>, where truth denotes the truth
value (TRUE, FALSE or UNASSIGNED) of the
corresponding variable, head-list is a list containing all
occurrences (viz. the corresponding nodes in the trie
structure) of the corresponding variable as the first
variable in the clauses, and positive-tail-list (resp.
negative-tail-list) is a list consisting of all occurrences of
the corresponding variable in positive (resp. negative)
form as the last variable in the clauses. Note that head-
list has at most one element.

The unit resolution can then be achieved by updating the
variable table. The following procedure is used for
updating the variable table in PCPT.

Procedure 4.3  Assume that we assign TRUE/FALSE
to a variable v, whose variable record is <truth, head-list,
positive-tail-list, negative-tail-list>. Update the variable
table as follows.

(1) Assign TRUE/FALSE to truth.

(2) Update head-list if it is not empty:
Let the only element in head-list points to node n in
the trie structure, and remove the element. Assume

the case is truth = TRUE (resp. FALSE). If the
right (resp. lett) child of » in the ifrie structure is a
clause end-mark, then a null clause is found. If the
right (resp. left) child is empty, stop updating
head-list. Otherwise add the right (resp. left) child
of » and the brothers of the right (resp. left) child of
n in the trie structure into their corresponding
head-list if the truth values of the corresponding
variables are UNASSIGNED. For each of those
added nodes, assume its corresponding variable is

v, If positive-tail-list/negative-tail-list of v’

contains the same node, then either v/ or —v’is a

unit clause. For each of the right (resp. left) child of
n and the brothers of the right (vesp. left) child of n
in the trie structure such that the truth value of the
corresponding variable v” is not UNASSIGNED,
set v =v" and repeat this step.

(3) Update positive-tail-list (resp. negative-tail-list) if
it is not empty: —
For the case truth = TRUE (resp. FALSE), remove
all elements of positive-tail-list (resp. negative-tail-
list). If no parent node exists for the nodes pointed
by the elements of negative-tail-list (resp. positive-
tail-list), then a null clause is found. Otherwise for
each of the nodes pointed by the elements of
negative-tail-list (vesp. positive-tail-list), add the
parent node of the node in positive-tail-
list/negative-tail-list of the corresponding variable
of the parent node if the truth value of the
corresponding variable of the parent node is
UNASSIGNED. For each of those added nodes,
assume its corresponding variable is v’ If head-list
of v“contains the same node, then either v’ or —v‘is
a unit clause. Moreover, if the tail list with the
opposite polarity to the tail list which the new node
is added contains the same node, then a null clause
is found. For each of the nodes pointed by the
elements of negative-tail-list (vesp. positive-tail-list)
such that the truth value of the corresponding
variable v” of its parent node is not UNASSIGNED,
set v =v"” and repeat this step.

The unit clauses found in the unit resolution process are
collected in a unit clause list in PCPT. If a null clause is
found in the unit resolution process, PCPT will rewind
the assignments to the most recent splitting point,

The .splitting rule of Davis-Puinam. method is
handled in PCPT as follows. If no unit clause is
available, an unassigned variable is chosen such that the
total number of elements in its head-list, positive-tail-list
and negative-tail-list is the largest one compared to all
other unassigned variables. The intuition is that selecting
such a variable might lead us io update more variable
records than choosing other unassigned wvariables. Each
assignment step is then recorded down in a stack so that
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future rewinding is possible.

4.2 Incremental Proving Using PCPT

In DSDC, we exploit simple idea of chronological
backiracking [7] to improve the efficiency of deriving
MCSs from a CS. At the root node in a CS-tree with
mark set, for each unit assumption except for the last one,
we insert it into PCPT’s unit clause list and initiate
PCPT to run the assignment process to the point where
no unit clause is available and a splitting has to be made.
An s-point mark is then placed at the iop of the
rewinding stack. For the last unit assumption, we do the
same thing except that we run the assignment process to
the end, and we do not place any s-point mark. When
testing the descendant set, we simply rewind PCPT to
the last s-point marked.

To make such incremental proving possible, the
order of inserting unit assumptions is important. In
DSDC, we insert the unit assumptions in a mark set first,
then we push the other unit assumptions into the unit
clause list of PCPT.

5 Diagnosis Generator

Diagnosis Generator in DSDC is responsible for
generating all possible diagnoses under the observations
obtained so far. In [6], Reiter has shown that an MHS for
the collection of all MCSs for a system is a diagnosis for
_it. Moreover, he has proposed an MHS derivation
‘method using a pruned HS-tree to computes all MHSs
for a collection of MCSs. To refine old diagnoses, Hou
{4] suggested a method by deriving new MCS
from old diagnoses. However, his method is incomplete
and would miss some MCSs. Therefore, we propose an
improvement to Hou’s method, which is called CS-tree
with mark set.

Definition 5.1 A CS-tree with mark set Ty, rooted in a

CS Cis defined as follows:

(1) Iisrootis labeled by [C, T;

(2) Each node n of Ty, is labeled by [Sy, Sy, n], where
SpeC is the label set of node n, and Sy, ,S;, is the
mark set of node n. If Sy, p, = Sy or |Sy| = 1, then
node n has no descendants. Otherwise for each
c€Sy-Sy, n, node n is a descendant of node n such
that node n,-is the immediate left brother of node
ne and node ne is labeled by [Sy Sy - Sun -
{eh) Su,q, Vict)

(3) For the leftmost node n in every subiree of Ty,
Sun = SM'”p , where np is the parent node of

node n.

To derive all MCSs from C, we generate a pruned CS-
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tree with mark set Ty, rooted in C by the following
procedure.

Procedure 5.2 Generate a pruned CS-tree with mark

set Ty, ‘rooted in a CS C by the following rules:

(1) Generate T,,” depth-first, i.e., generate the
descendants of a node before generating its
brothers.

(2) Pruning rule:

(@) If S, of node n is not a CS, then we close
node n.

(b) If Sy » of node n is a superset of some MCS
already used as a label set of some node in
T\, then we close node n and do not generate
any right brothers of node ».

Note that not every label set requires a PC prover call for
testing if it is a CS because a superset of a known CSis a
CS. Also note that for a node » labeled by a CS C, if
does not have any descendant or all of its descendant
nodes are labeled by non-CSs, C is not necessarily
minimal - a check must be made to see if it is minimal
against all other CSs of this kind.

Example 5.3 Let C= {¢y, ¢,, ¢5, ¢,} and suppose that
all the MCSs we can derive from C are {c,}, {¢c,, ¢;} and
{cy, ¢4}. The following figure shows the derivation using
our method:

<CCpCaCy>

<CpC5C4>

tlsa,cz

(Cau 04) @.@;2 CS>
/ \

{c) fcp

Fig. 5.1. Deriving the MCSs from C, using our method

In some case, Hou’s method would lose {c,, c,}. Besides,
compared to Hou’s approach, out method needs fewer
PC prover calls and nodes generated.

After deriving all possible diagnoses, Diagnosis
Generator prompts for the measurement result from user
input according to the MRL it receives from MR
Generator. It discriminates among competing diagnoses
based on the measurement result. When only one
possible diagnosis is left, Diagnosis Generator reports
the number of prover calls of each measurement request
to MR Generator as the indication of the MRL’s
performance. This data forms the basis on which MR
Generator will gradually find effective MRLs for future
operations.



TERENTAFEZEHERER

6 Measurement Request Generator

For a nontrivial circuit with the initial observation only,
we always have more than one possible diagnosis. To
discriminate among these competing diagnoses, new
information must be observed by probing some
terminals of the components within the system. The
effects brought by such measurements on the possible
diagnoses have been formalized in the work of Reiter [6]
and Hou [4]. However, they did not address the problem
as how to select the best next measurement. In DSDC,
MR Generator is responsible for pointing out the best
next measurement by MSSGA.

A good MRL should shorten the diagnostic
process while lower down the cost for obtaining the only
one possible diagnosis. In particular, two important
quantities are used as indications of the quality of an
MRL: the first one is the nurber of measurements
needed for a diagnostic system to settle down to the only
one possible diagnosis, and the second one is the total
number of PC prover calls needed during the course of

reasoning. These two numbers, ny, and #,, respectively,

are then combined into one quantity P/ (performance
index) in the following simple form:

Pl=ny < ny
Our goal here is to minimize the average PI values of the
population of MRLs using MSSGA.

MSSGA consists of the following steps:

(1) Initialization: Randomly initialize a population of
MRLs.

(2) Initial evaluation:

Compute the P/ value of each MRL within the
population by performing diagnosis using the MRL.
Then calculate the fitness value of the MRL based
on its Pl value.

(3) Test if one of the stopping criteria (time, fitness,
etc.) holds. If yes, stop the procedure. For example,
one would like to stop the procedure when the
average fitness value goes down under some
threshold.

(4) Genetic operator selection:

Choose a genetic operator using the roulette wheel
selection method. Assume that the operator
selected requires n MRLs as operands.

(5) MRL selection:

Select n MRLs from the population using the
roulette wheel selection method.

(6) Using the genetic operator:

Generate descendant chromosomes by using the
genetic operator selected in (4) on the MRLs
selected in (5).

(7) Evaluation:

Select one of the new MRLs generated in (6).

Compute the P/ value of the MRL by performing
diagnosis using the MRL. Then calculaie the
fitness value of the MRL based on its PI value.

(8) Updating the population:

If the new MRL evaluated in (7) already exists in
the population, replace the MRL in the population
with the newly generated one. Otherwise replace
the worst MRL, i.e. the MRL with largest P/ value
in the population, with the newly generated one.

(9) Updating the fitness values of the genetic
operators:

Update the fitness values of all related genetic
operators according to the performance of the new
MRL. :

(10) Repeat (7) to (9) until all of the descendant MRLs
generated in (6) are evaluated and inserted into the
population.

(11) Repeat (3) to (10).

7 Conclusion

In this paper, we proposed and implemented a complete
diagnostic system for digital circuits (DSDC). Our work
is based on Reiter’s theory of diagnosis from first
principles [6], incorporated with Hou’s theory of
measurements [4] to discriminate among all possible
diagnoses in a fault diagnosis task. In addition, our
system is capable of improving its performance online
by incorporating MSSGA. :
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