1998 International Computer Symposium
Workshop on Algorithms
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.O.C.

SEGMENT B-TREE:

A DYNAMIC AND EFFICIENT INTERVAL INDEXING DATA STRUCTURE
Wenbing Zhang and Jiang-Hsing Chu

Department of Computer Science
Southern Illinois University
Carbondale, IL 62901, USA

jchu@cs.siu.edu

ABSTRACT

Spatial data are widely used in Computer Graphics, GIS,
CAD, DBMS, etc. To find an efficient data structure is
very important to the system performance. In this paper,
we introduce a new data structure, which we call Segment
B-tree, for dynamic and efficient interval indexing.
Segment B-tree is an improvement to the segment tree by
supporting dynamic updating and using B-tree as the frame
structure. Algorithms are developed using this new data
structure. We give a theoretical analysis of the complexity
of those algorithms, which shows the data structure is very
good for point query and insertion. We also give the
empirical results, which are compared with the results of
using other data structures. The empirical results verify the
theoretical analysis.

1. INTRODUCTION

Spatial data are widely used in Computer Graphics, GIS,
CAD, DBMS, etc. Those data include segments,
rectangles, multi-dimensional points, etc. The
representation of those data is very important to the system
performance. In this paper, we will focus on data structures
for segments.

Most database systems available do not support efficient:

indexing on segment data or other multi-dimensional data.
The problem we want to solve is, given a collection of line
segments or intervals, how to organize them to achieve a
small space requirement and to find an efficient interval
indexing algorithm for insertion, deletion and searching.

Several data structures and algorithms have been
developed for solving this problem. While those data
structures and algorithms are good in some cases, they
have their drawbacks. In this paper, we will introduce a
new data structure, which we call Segment B-tree, for
efficient interval indexing. Before we proceed, we first
give a brief survey of several data structures in this field.

1.1 Segment Tree

Segment tree [1] is a simple yet efficient data structure for
interval indexing. Fig 1.1 shows an example of a segment
tree. The end points of the segments are sorted in an array.
The index of the array is stored at the leaf level of a
complete binary tree. Each leaf node corresponds to an
interval of { K[#], K[i+1]). Each nonleaf node corresponds
to an interval that is the union of the intervals represented -
by its children. For example, in Fig 1.1, the root
corresponds to the interval of [10, «) and the node marked
with * corresponds to the interval of [20, 35). Finally, each
node is associated with a list of [Ds of segments that cover
the interval represented by the node.

In a segment tree containing N segments, a node ID can
appear at up to O(log N) nodes. Thus the space

complexity is OWlog N). According to [l], The
insertion complexity is O(log N). The complexity of
point query is O(log N + n), where n is the number of
segments found. Deletion is a bit more complicated. On
average, its complexity is O(log2 N). However, by

adding a linked list for each segment that links all the IDs
of the segments in the tree, the deletion complexity can be

reduced to O(log NV).

Since all the possible end points must be known before we
can build a segment tree, it does not support dynamic
insertion and deletion. This limits the application of
segment tree greatly. Another problem common to all
binary tree based data structures is the performance drops
significantly when the whole tree is too large to be brought
into the main memory.

1.2 R-Tree

R-tree [2] is a very popular data structure for collection of
multi-dimensional objects, esp. rectangles. Since segments
can bé regarded as 1-D rectangles, they can be represented
by R-tree. The approach in R-tree is: Data segments are
stored in leaf nodes. Each nonleaf node stores the
minimum segments that cover the segments stored in its
children. It is easy to see that the space complexity of R-
tree is O(V). Hence it is space efficient.

-165-

1998 internationatl Computer Symposium
Workshop on Algorithms
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

The problem with R-tree is the segments stored in one
node can overlap and have no order essentially.
Overlapping means we might have to search all nodes in a
search. Because there is no order, it is necessary to
compare all segments in a node when search the node.
Therefore, the worst case complexity for search is linear.
Another problem with R-tree is when a node is overflow or
underflow, it is very inefficient to find an optimal way of
rearranging the segments into different groups. This makes
it inefficient in dynamic insertion and deletion.

1.3 Interval Tree

Interval tree [3] is a data structure designed specifically for
solving the intersection query problem. However it can
also be used for point query. Fig 1.3 shows an example of
interval tree: Similar to the segment tree, all the possible
end points are first sorted and stored in the leaf nodes of a
complete binary tree. A nonleaf node is assigned a value
between the maximum value stored in its left subtree and
the minimum value stored in its right subtree. A segment is
stored in the first node from the root whose value is
overlapped by the segment. Segments stored at the same
node are organized as a linked list or as a binary search
tree, which is called the secondary structure. The tertiary
structure is used for indexing the active nodes, which are
either nodes with second structures or have active nodes in
both of their children.

The interval tree is also space efficient. Its space
complexity is O). If the secondary structure is
implemented as a binary search tree, then the complexities
of insertion and deletion are both O(log N). The search
complexity is O(log N + n). This data structure is very
nice. The main problem is, like the segment tree, it does
not support dynamic updating. Moreover, the data
structure is quite complicated. Each node has 8 pointers. If
the secondary structure is simply implemented as a linked
list, the deletion and search performance could drop
significantly.

Most other data structures, while having some advantages,
also have their drawbacks. In a word, they are not both
efficient and dynamic. Some data structures may also have
some special restrictions. For example, priority search
trees [4] require the end points of the segments to be all
different, which is not practical. One further problem with
almost all available algorithms is they do not distinguish
whether a segment is open or closed, or they simply
assume every segment is left closed and right open.

In the following sections, we will discuss a new data
structure, which we call Segment B-tree, for interval
indexing. Segment B-tree is an improvement to segment

tree. It is B-tree based and is capable of dynamic updating.
There are two reasons for choosing B-tree as the frame
structure. First, dynamic updating a binary tree often
makes it unbalanced, thus affects the performance; while a
B-tree is always balanced regardless of dynamic updating.
Second, B-tree is an external search tree, so the
performance is much better than that of a binary tree when
the data set is too large to be accommodated in the main
memory.

With this new data structure, we develop efficient
algorithms for insertion, deletion and query. The
algorithms also handle the end point problem. We will give
an analysis on the complexity of the algorithms and the
storage requirement.

2. SEGMENT B-TREE

A Segment B-Tree is an augmented B-Tree. As mentioned

before, B-tree has some nice properties. So we first very

briefly recall some properties of B-tree. A B-tree of order

M is an M-way search tree in"'which

1. All leaves are at the same level.)

2. All internal nodes have at least [A /2] non-empty
children. However the root may have only 2 children,
but not less, unless it is also a leaf node.

Before we proceeds, we give a few conventions used in

this paper:

1. “Segment” and “interval” are synonyms. However, in
this paper, “segment” is used to refer the given-
collection of segments/intervals, while interval is used
to refer a range.

2. A Key value is often referred as a point.

A Segment B-tree is a B-tree with additional structures

used for interval indexing. In a Segment B-tree of order M,

each node is defined as a structure which has the following

fields (MAX = M —1, MIN = [MAX /2]):

1. B[0.MAX]: an array
children/branches.

2. K[1..MAX]: an array of Key values stored in this node.

3. count. an integer which is the number of key values
currently stored.

The above fields are the same as in a B-tree. In order to

store segments, we let each node represent an interval. The

root represents (-oo, o). Each leaf node represents

an interval of (pre(K[1]), succ(K[count])). Each nonleaf

node represents the union of the interval represented by all

of its children.

of pointers to the

We also add the following fields:
4. iList[1..MAX]: an array of linked lists where iList[i] is
the list of the IDs of the segments that cover the Key

-166-

point K[/] but do not cover the interval represented by
this node, except if this node is the root.

5. eList[1..MAX]: an array of linked list where eList[i] is
the list of the IDs of the segments that have K[/] as an
end point.

6. cList[0..MAX]: an array of linked lists where cList[i] is
the list of the IDs of the segments that cover the
interval (K[i], K[i+1]) but do not cover the interval
represented by this node, except if this node is the
root. Note here we assume K[0] and K[count+1} equal
to the left and right end points of the interval
represented by this node respectively.

From the above description, it is clear that a Segment B-
tree is merely a B-tree with three kinds of linked lists,
which are used to store IDs of segments. Note in this paper
a segment is of general type, i.e., it can be open or closed
at either end. Thus it
is defined as a structure with the following fields:
o left, right : the left and right end points;
o lopen, ropen: bits indicating whether the segment
is lef/right open;
e id: an integer used for reference of the segment. It
can also be used as a pointer to the segment.
For convenience, we refer B[] (B[i-1]) as the
child/branch in the right (left) of K[:]; iList[i] (eList{i])

as the iList (eList) of K[i]; cList[i] as the cList in the right -

of K[i] or cList of the interval (K[i], K[i+1]).

Compared with a segment tree, a Segment B-tree is much
more complicated. However, they are essentially very
similar. The cList in a Segment B-tree is just like the ID
list in a segment tree. The other two lists are used for some
additional features, which will be discussed later. They can
be discarded if those features are not needed.

It’s rather strange that a Segment B-tree can have no nodes
while not empty. This happens when all the intervals are (-
o0, o). In this case, it has a cList. Since it is very rare and
not useful, we will assume a segment B-tree is either empty
or has at least a root.

“The following figure shows a Segment B-tree node format.
Note that the lists in a node are arranged in the order of
iList, eList, cList.

Keys: ——» 10 30
iLists: ———> [1 |11
eLists: ——» [A] | [A]
cLists: — []{[A] !]

Figure 2. The segment B-tree node format

-167-

1998 International Computer Symposium
Workshop on Algorithms
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

3. STATIC ALGORITHMS

In this section we give static algorithms for insertion and
deletion. We also show how the Segment B-tree can be
used for interval indexing. A static algorithm differs from a
dynamic algorithm in that a static algorithm assumes that
the set of possible end points is given and never changes.
The static algorithms provide a basis for the dynamic
algorithms, which will be discussed in the next chapter.

3.1 The Static Insertion Algorithm

As mentioned before, here we assume a set of possible end
points is given. We first ignore all the lists and build a
Segment B-tree that stores all the possible end points. This
step is the same as for B-tree. When it finishes, all the lists
are empty and the tree stores nothing. We can now insert a
segment into the Segment B-tree. All the work an insertion
algorithm need to do is to insert the ID of a segment into
the corresponding lists. Below is a detailed description of
the static insertion algorithm.

3.1.1 Insertion of Segments with Infinite Length
Insertion of (-0,) is very simple. The segment ID is
simply inserted into all the cLists and iLists in the root
node.

We now consider the case that only one end point of the
segment is infinity, say the segment is (X,,). An
example is shown in Fig 3.1.1, where the segment A:(20,
co) is to be inserted into the tree.

A (20,)
, '
20 30 40 50 60

10

(3 |03 (ol
(i
Lo o jopnnjn
o 1 2 3 4 5 6

Figure 3.1.1 Insertion of segment (20,)

We use a function to find the i, 0 < i < count, such that K[7]
< Xx, <K[i+1] (Note: for convenience, here we assume
K[0] = -coand K[count+1] =). In the above example, i =
2. There are two possibilities: X, = Klijor x5 < K[1.

Next we need to ﬁpdate the lists. This step is fairly
straightforward.

Case 1: x, = KJi]
It’s easy to see that all keys in the right of K[i] are .in the
segment, so we need to insert the segment ID, which is ‘A’,

1998 International Computer Symposium

Workshop on Algorithms.)
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.O.C.

into the iLists of iList[i], ... , iList{count]; Since K1) is the
left end point of segment A, ‘A’ is inserted into eList[i];
Finally we need to update the cLists. By definition if a
segment covers the interval (K[k], K[k+1]) then the
segment ID is in cList[k]. Thus, the segment ID should be
inserted into the cLists of cListi], ..., cList{count]. The
result is shown in Fig 3.1.2.

A (20, w)

‘ v
10 | 20 | 30 | 40 50 60
[J |01 | [A]]| [A]l] [A]] [A]
(1t I on|n
(101 | [A]] [A]] [A] | [A] | [A)

0 1 2 3 4 5 6

Figure 3.1.2 After insertion of segment A.

Case 2: K]i] < X,

The analysis is almost the same as in case 1. In Fig3.1.1, if
we change segment A to (25, «), everything is the same
except the eLisf[2] and cList[2] are not changed. However,
we need to recursively insert segment A into the subtree

rooted at B[7] (in the example it is B[2]). Since X, isin the
Segment B-tree, so at some stage the recursion will end at
case 1. Insertion of (-a0, X,) is similar and thusomitted.

3.1.2 Insertion of Segments with Finite Length

Now we discuss a more common case when the segment to
be inserted is of finite length, say (Xo, X1).

The first step is: compare X, X, with the keys in the
root. We find some / and j, 0 </, J < count+] such that
K[l € x, < K[i+1] and K[j] < X; < K[j+1]. Again, here
we assume K[0] is defined to be -co and K[count+1] is co.
We know that i < /.

Case1:i<j, Xy =K[i] and X, = Kj]
An example of this case is shown in Fig 3.1.3, where the
picture before insertion of (20, 40) is shown in Fig3.1.1.

A: (20, 40)

, y
10 |20 |30 [40 | 50 | 60
(101 I)0t
(0 [0 n
(101 [AT [AY 0y [111 1)
0 1 2 3 4 s s

Fig 3.1.3 Insertion of segment (20, 40)

Both end points are found in the node. This case is very
simple, we need to insert ‘A’ into the iLists of iListli+1], ...
, iList[j-1], dependent on whether the segment is closed or
open, we may also need to update iList[i] and iList{j]. In
this example since the segment is open in both ends, we do
not need to update the iLists. We then insert ‘A’ into the
end point lists of eList[#] and eList[j]. Finally, weé insert ‘A’
into the cover lists of cList[i), ..., cListfj-1].

Case2:i<jand X,=K[i] and X; = K[j]
An example of this case is shown in Fig 3.1.4.

A: (20, 45)

A

20 | 30 | 40 | 50 | 60

(1 | AT [AY] (1 [1)

ALV LY 10 010

[] AL T IAV 0D | 11 1]

0 I 2 3 4 5 6

Recursively insert | to the subtree
(-, 45),

———
et b ey O

Fig 3.1.4 Insertion of the segment (20,45)

Similarly, we update the iLists, eLists, cLists as in case 1.
After that, we recursively insert the segment A into the
subtree rooted at B[;] (B[4] in this Example). To simplify
the analysis, we can now think of the left end point of A to
be -co. This is because the left end point of the interval
corresponding to the subtree is covered by the segment. To
this subtree, changing the left end point to -0 makes no
difference. Thus the remaining question can be solved by
the analysis used in 3.1.1.

Case3:i<jand X, = K[{] and X, = KJj]
This is symmetric to case 2 and is skipped.

Cased:i<jand X, = K[i], X; # KJj]
An example of this case is shown in Fig 3.1.5 and Fig
3.1.6.

A: (15, 45)

‘ ’ |
10 |20 | 30 [40 | 50 | 60

(r om0 in

Ly 1 (00 ln
(o0 o0]0ln
0 1 2 3 4 5 6

Figure 3.1.5 Before Insertion the segment A:(15, 45)

-168-

In this case i = 1, j = 4. It’s easy to see that all keys
between K[/+1] and X[j] (including K[i+1] and K[]) are
in the segment A. So we insert ‘A’ into all the iLists:
iList[i+1]}, ..., iList[j]. Since neither 15 nor 45 is found in
the node, so we do not need to update the eLists. Finally
‘A’ is inserted into cLists of cList[i+1],..., cList[j-1].

For our example, the result is:

A: (15, 45)

J

0 |20 |30 | 40 | 50
% [A] | [A]| [A]} []
]

|00
[1 (Al AT D 1 D
0 1 2 3 4 5 6

Recursively |insert Recursively jinsert

(15, o) (-0, 45*’

—_em -
e — N
—_— et s O

y

Figure 3.1.6 After insertion of A:(15, 45)

The next step is recursively insert A:(Xx,, o) into the

subtree rooted at B[i] and insert A:(-co, X;) into the

subtree rooted at B[j]. Again this step has been discussed
in 3.1.1. (Note: We do not really change the end points of
A).

Case 5: i=jand X, = K[i] and X # KJj]

In this case, we do not need to make any change for the
current node, but recursively insert A:(Xx,, X,) into the
subtree rooted at B[i].

Case 6: i=jand X, = X, = K[i]

This is the degenerate case when the segment is simply a
point. In this case, we only need to insert the segment ID
into the iList and eList of this point. (Note: In this case the
segment must be closed in both ends.)

3.1.3 Analysis of Space and Insertion Complexities

The space and insertion complexities of Segment B-tree
are both near the same order as segment tree. A brief study
is given below.

For a set of N segments, the space complexity of a
Segment B-tree of order M is O(MNlog,, N). The
original B-tree requires a storage of only O(¥). The
additional space required is for the linked lists. The eLists
use O() memory space. Each segment ID can only appear
in the cLists / iLists of at most 2log,, N nodes. Each

1998 international Computer Symposium
Workshop on Algorithms
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

node can have at most M +1 lists. Therefore, the total
storage usage is O(NMlog,, N). From this result, we can

infer that the average length of cLists / iLists is
OMlog,, N).

Insertion of a segment consists of recursively finding /, j
and updating the lists. Recursively finding / and j takes at

most log M log,, N = log N operations. Updating
the lists takes at most Mlog,, N operations. The total
complexity is O(Mlog,, N). Compared with a segment
tree, both the space complexity and insertion complexity
are M/log M times higher. However, M is usually not

very large. A reasonable choice of M=16 causes the
insertion and space complexity increase by 4 times. A
smaller M could be used to ensure a good performance if
the program is expected to run in core.

3.2 The Static Deletion Algorithm

The process of deletion algorithm is almost the same as in
the insertion algorithm. Given a Segment B-tree rooted at

the node root, we want to delete a segment A:(X,,X,)

from the tree. It is also accomplished by recursion. All the
steps are just the same as in insertion, except that we delete
‘A’ from each list where we insert ‘A’ in the insertion
algorithm. However, the complexity for static deletion is
not the same as that for static insertion. The reason is
inserting a segment ID into a list requires only one
operation, while deleting requires to find the ID first,
which takes O(L) operations, where L is the length of the
list. As pointed out in 3.1.1, the average length of iLists

and eLists is O(Mlog v N), the complexity for deletion
is O(M* log, N).

3.3 The Search Algorithms

There is no difference between static and dynamic
search/query algorithms. Search algorithms are developed
for solving query problems. Our data sturcture works well
for alll types of queries, but due to space limitation we
shail not discuss it here. Please refer to [6] for details.

4. DYNAMIC ALGORITHMS

Static algorithms are relatively easy since insertion and
deletion do not change the underlying B-tree structure,
hence they do not change other segment IDs that have been
inserted in a list. However, they have some drawbacks and
are not very useful in practice. The problems include: 1.
Usually the set of segments is not fixed. So in general we
just can not build the frame B-tree once and for all. Very

-169-

1998 Intermational Computer Symposium
Workshop on Algorithms)
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

often we need to dynamically update the Segment B-tree.
2. After a segment is deleted, the end points still remain in
the Segment B-tree, this causes waste of memory space
and also makes the tree unnecessarily deeper and hence
adversely affects the performance.

Dynamic algorithms must be developed to solve the above
problems. Insertion of a new point may cause some nodes
overflow and hence split, which changes the underlying B-
tree structure, demanding some of the lists be updated.
Similarly deletion of a segment may result one point no
longer being an end point of any segment, hence this point
should be removed from the tree. This again changes the
underlying B-tree structure, and some of the lists should be
updated.

We can develop dynamic algorithms from scratch.
Probably it will be more efficient. But it is very
complicated. So here we make use of static algorithms we
have developed.

4.1 The Dynamic Insertion Algorithm

The dynamic insertion algorithm makes use of the static
insertion algorithm. The algorithm has three steps:

1. Insert the left end point to the Segment B-Tree.

2. Insert the right end point to the Segment B-tree.

3. Update the iLists, eLists and cLists.

The third step is the same as in the static algorithm.
However, the first two step is much more complicated.

4.1.1 Dynamic Insertion of a New Point

We now discuss the first two steps. The problem is simply
how to insert a new point into a Segment B-tree. We first
give some examples and then give an outline of the
algorithm at the end of this section.

Example 4.1.1: Fig 4.1.1 shows a fragment of a Segment
B-tree with M=5. Suppose node 1 is a leaf node and 70 is
to be inserted into the tree.

The first step is the same as insertion in a B-tree, the point
70 is first inserted into a leaf node. This can easily be done
as in Fig4.1.1.

\ 70

.
\\
. A 4

60 80 90
[Al | IC1 | [C]
[AC] | [A] | [B]
(1 [AC] | [C] | [BC]

node 1

a. Before point 70 is inserted

60 70 80 90 .
. [Al | [AC] | [C] | [C] | podet
(AC] | [] fA] | [B] .

[1 [[AC] | [AC] | [C] | [BC]

b. After point 70 is inserted

Figure 4.1.1 Insert 70 into the Segment B-tree with M=5

After the point is inserted into the leaf node, the number of
keys is still less than MAX=4, so this node does not split.
We now need to update the lists. First all lists in the right
of 60 are moved right for 1 place. Since 70 is between 60
and 80, all segments that cover (60, 80) must also cover
(60, 70), thus the cLisf[1} is not changed. Also all
segments that cover (60, 80) must cover (70, 80), so the
cLisf[2] is a copy of cList[1]. Finally, the iList for 70 is
also a copy of the cList of (60, 80).

Example 4.1.2: This example is a bit more complex. Fig
4.1.2 shows a fragment of a Segment B-tree with A=3.
Assume node 2 is the leaf node, where 70 is to be inserted.
Fig 4.1.3 shows the segment B-tree after the insertion.

\\

10 30 100
[1 |[El | [D] | ntodel
[E] | (Al | [CE]

Ol E | E |0

70

40 60 80 90
(Al 1 [A] | [C] | [C]
Bl | [BC] | [A] | [D]
[Al{_[AB] | [AC] | [C] | [CD]

node 2

Figure 4.1.2 Before 70 is inserted. The relevant
segments are{ A:(30, 80), B:(40, 60), C:(60, 100),
D:(50, >100), E:(10, 100) }

In this example, after insertion the number of keys in the
leaf node is greater than M4.X=4. Thus the node need to be
split. Nevertheless, we insert the point in the way as in the
previous example, and the node comes to a temporary
state, which need split soon. When the node is in this state,
we update the lists. Then node 2 splits, and a new node 3 is

-170-

created. The tuple of (70, node 3, iList[3], eList[3]) is
reinserted into its parent node.

Insertion of (70, node 3, iList[3), eLis#[3]) into node 1 is
much harder than in the first example. We need to consider
two factors. One is the same as in the previous example.
We just copy the cList of (30, 100) to the cLists of (30,70)
and (70, 100). Another factor is now the intervals
represented by node 2 and 3 are smaller than the original
node 2, some intervals do not cover (30, 100) may cover
either (30, 70) or (70, 100). So we need to update the
cLists in the right of 30 and 70, and also the cLists and
iLists in the corresponding child nodes. We scan the
cList[0] of node 2. If no segments in this list cover the
interval represented by node 2, which is (30, 70), then we
are done. Otherwise, the segments that cover (30, 70) are
inserted into the cList of (30, 70) in node 1, and these
segment IDs are removed from the iLists and cLists of
node 2. This process is similarly applied to node 3. In this
example, segment A covers the interval (30,70) and
segment C covers the interval (70, 100), so ‘A’ is inserted
into the cList of (30,70) and ‘C’ is ingerted into the cList of
(70, 100); And finally ‘A’ is deleted from the cLists/iLists
in node 2 and the same is done for ‘C’ in node 3.

.,
AN

AN

10 30 7] 70 100
[] | [@E |IAcE)] pj | "odel!
El | [A] | [| [E]
(1| (] | [AE] | [CE] | []

40 60 80 90
[] (1 [] (]
(B] (BC] [Al | M}

(1{-[B] [C]1 |node2 [A]| [] [D] |node3

Figure 4.1.3 After insertion of point 70

4.1.2 Complexity Analysis

The complexity of the dynamic insertion algorithm is hard
to estimate. So we just give a rough estimation. If a point is
inserted into a leaf node and the node does not split, the

complexity is O(Mlog,, N). The average length of
eLists (cLists) is O(Mlog, N). The- total operations
needed to split a node and update the 2M-1 iLists/cLists is
o(M log,, N). In the worst case, insertion of one
point into a leaf node causes all the nodes from the leaf

-171-

1998 International Computer Symposium
Workshop on Algorithms
December 17-19, 1998, N.C.K.UJ,, Tainan, Taiwan, R.O.C.

node to the root to split. That happens when the height of
the B-tree is increased. The complexity in this case is

O(M* log?, N'). However, the probability for a node to
split after insertion of one key is small. The number of
keys in a B-tree ranges from l_M / 2_' to M-1. Assume
this number is uniformly distributed, then the probability
for a node to have M-1 keys is about 2/ M (A more

accurate estimation on this probability is given in [5]. The
results are very close). A node splits after insertion of a
key only if it has M-1 keys before insertion. Thus the

probability of splitting is onty 2/M . On average, the
insertion complexity is

-2
log,, N -M

2 2
o +—MlogMN-M) =

O(Mlog,, N).

The performance is also dependent on the probability that
different segments have common end points. If the
probability is large, the depth of the tree is smaller and
dynamic insertion becomes more like static insertion since
only the third step is needed. In this case the insertion
performance will be better.

4.2 The Dynamic Deletion Algorithm

The dynamic deletion algorithm also makes use of static

deletion algorithm and has three steps:

1. Delete the segment ID from all lists that contain it.

2. Check if the eList corresponding to the left end point.
of the segment is empty. If it is empty, which means
no other segments have this point as their end points.
Then this point can be deleted from the segment tree,
and thus delete it.

3. Apply step two with the right end point.

The first step is the same as static deletion, which only

delete the segment ID from the tree. Step 2 and 3 are

symmetric, we only consider how to delete a point from a

Segment B-tree. The deletion algorithm first check whether

the eList corresponding to this point is empty. If not, the

step ends.

Due to space limitation, the details of dynamic deletion
algorithms are not given here. Please refer to [6] for
details.

5. CONCLUSION

In this paper we have introduced a new spatial data
structure for interval indexing, which we call Segment B-
tree. With this data structure we developed the algorithms
for insertion, deletion and searching. The most impressive

1988 International Computer Symposium
Workshop on Algorithms
December 17-18, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

property of this data structure is that it supports dynamic
insertion and deletion while it is still very efficient in
searching. We have given a theoretical analysis, which
shows that the point query complexity of segment B-tree is
exactly the same as that of segment tree. Also the insertion
complexity is O(Mlog,, N), which is a bit greater than
that of segment tree. The complexity of deletion algorithm
is O(M* log?, N), which is not as efficient as that for

modified segment tree. However, Segment B-tree can also
solve the intersection query problem in O(logN + n) while
segment tree can not.

We have implemented the algorithms for insertion,
deletion, and point query using Segment B-tree and our
empirical results well match our theoretical analyses. The
results are compared with the algorithms using segment
tree and R-tree, which we have also implemented. All the
comparisons are made when the programs run in core. We
use the 2-3 Segment B-tree and 2-3 R-tree as the
representatives in our tests, since they have the best
performance when run in core. Our results show that
Segment B-tree has almost the same performance as
segment in search, but is worse than 2-3 R-tree in insertion
and deletion. 2-3 R-tree has a very good performance in
insertion and deletion, but it is poor in search. We are
satisfied with the results because unlike segment tree,
segment B-tree is a dynamic data structure. Since search is
the most frequently performed operation, with a
comparable performance in search as segment tree,
segment B-tree is certainly the favor in a dynamic
environment.

One possible way to solve the unsatisfactory performance
in deletion is to modify the data structure in the same way
as used in the (modified) segment tree. The method is by
adding a linked list for each segment. The list links all the
IDs of the segmént in the Segment B-tree. Thus static
deletion of a segment could be realized in O(Mlog,, N).

However, unlike in a segment tree, change in the tree
structure causes change of linked lists. This affects the
performance of insertion and the last two steps of dynamic
deletion. Further study need to be done on this problem.

Another possible way is to replace the linked lists by
binary search trees. This can slow down the insertion

performance to O(Mlog,, N -log(Mlog,, N)), but
will improve the performance of deletion to
OMlog,, N-log(Mlog,,N)). The actual

performance is not tested.

Nevertheless, we believe the tradeoff is worthwhile even
without those improvements we just mentioned. Static
insertion is virtually useless in practice. Static deletion

-172-

causes wastes of memory and makes the performance
degenerate. The frequency of searching is the highest in
practice, while insertion is the second and deletion is the
lowest. However, each operation is important. Segment B-
tree achieves the capability of dynamic updating at the
small cost on memory usage and deletion. The overall
system performance is still almost not affected.

Another special feature of this data structure is that it
supports general types of segments, which most of other
data structures do not.

REFERENCES

[1]1]. L. Bentley, “Algorithms for Klee’s Rectangle
Problems”, unpublished, Computer Science
Department, Carnegie-Mellon University, 1977.

[2] Antonin Guttman, “R-trees: A Dynamic Index
Structures for Spatial Searching”, Proceedings of the
SIGMOD conference, Boston, June 1984, pp45-47.

[31H. Edelsbrunner, “A New Approach to Rectangle
Intersections: Part I and II”, International Journal of
Computer Mathematics, vol.3-4,1983, pp209-229.

[4]E. M. McCreight, “Priority Search Trees”, SIAM
Journal on Computing, May, 1985, pp257-276.

[5] Hanan Samet, The Design and Analysis of Spatial Data
Structures, Addison Wesley, 1990.

[6] W. Zhang, “Segment B-tree: A Dynamic and Efficient
Interval Indexing Data Structure”, Master Thesis,
Southern Illinois University at Carbondale, 1997.

	
	165
	166
	167
	168
	169
	170
	171
	172

