hERE\AEREH AR e

\

PHBEZATHEREZIRE &
A Dynamic Allocating Approach for Dynamic Files -

on Multi-disk Systems”

PRR 2

glae

Liang-An Chen, Been-Chian Chien and Chien-Yuan Chen

RAFARE

K o5
as

%

Department of Information Engineering
1 Shou University,
1,Section 1, Hsueh-Cheng RD. Ta-Hsu Hsiang,
Kaohsiung, Taiwan, R.O.C,
Email:cbc@csa500.isu.edu.tw

&

RBE G X P BFREZ G 2B Mo 5 B
B 1A F I EFE AR R BITEI ARG E
I E 897 R E B D B TE IR K BB B FE JR B
FHaBTB B tr EMBE R £ 5wt 6B 45
HWRLET T ERELR D T2 B bt et ir
RAH o EF IR BB - '
Meks: BHE St THAER SHHSEH.

Abstract

In this paper, we are concerned with the problem
of allocating records in a dynamic file among multiple
disks. We attempt to construct a dynamic approach to
avoid reallocating all existed records in a dynamic Jile
and obtain less number of concurrent disk accesses than
that of traditional static allocation methods. We find
that our approach improves the performance of
concurrent disk accesses indeed by our experiments. The
experimental results show that our partial reallocation
method can obtain a good improvement under
reasonable extra reallocation cost.

KeyWords: database, multi-disk, strictly optimal, parallel
access, partial matching queries.

1. Introduction

Owing to the fast evolution of hardware and the
upgrading of parallel techniques, the cost of hardware
has been greatly decreased. The applications of multi-
disk systems and disk array have greatly grown. The
related researches become more important. In this paper,
we consider the problem of allocating multi-attribute
records in a dynamic file among multiple disks. About
the problem of multi-attribute allocation, approximately,
there are two main themes to be discussed. The first
theme is that:) ’ :

* This research was partially supported by National Science
Council, Taiwan, Republic of China, under contract NSC
86-2621-E-214-005-T(1996).

Given a set of data records in a database system,
the data records can be arranged into buckets in such a
way that the average number of buckets to be accessed is
reduced. The second one is that:

Given a set of buckets, the buckets are allocated to
the different disks appropriately, so that the buckets can
be accessed simultaneously for reducing the maximum
number of accesses among the disks.

The emphasis of traditional researches focuses on
the first theme. The second theme was proposed by Du
and Sobolewski in 1982[11]. According to Du and
Sobolewski’s work, there were many allocation methods
proposed for solving the multi-disk allocation
problem[1]{4]{5][9]. Most of the presented methods
focus on the Cartesian product files. The Cartesian
product file for partial matching queries on the multiple-
disk system was first shown in [11] .

It is effective for partial matching queries if a
Cartesian product file can be stored properly in advance.
There are many multiple-disk allocation methods for
allocating Cartesian product files. Some of these
allocation methods are called strictly optimal when the
conditions for strict optimality are satisfied. An
allocation method is said to be strictly optimal if the

maximum of [—n/ m—l buckets need to be accessed on
any one of m independently accessible disks to examine
the n buckets in response to a query. For instance, there

are 20 buckets totally in a three-disk system, the system
is called strictly optimal if the maximum disk accesses is

f 20/ 3-,=7 for any query. The Disk Modulo (DM)

method proposed by Du and Sobolewski [11] is strictly
optimal for two-disk systems and three-disk systems, the
Gray Code (GC) method and Symbolic Gray Code (SGC)
method proposed by Chang and Chen [4] [5] are also

. strictly optimal for two-disk systems.

A-60

hEREN\TAFEEHERTS

Furthermore, Chang, Lee and Du [6] showed that
it is very effective if a Cartesian product file can be
allocated properly into multi-attribute files in advance.
By Cartesian product files, we can arrange the records
into buckets in such a way that the maximum number of
buckets to be examined, over all possible partial
matching queries, is minimized.

However, the traditional allocation methods
proposed before are strictly optimal to assign records in
a static file but not in a dynamic file. In this paper, we
will try to construct a new partial reallocation method to
avoid reallocating all existed records in a dynamic file.
The experimental results show that the performance of
our method is better than the DM method even though
extra reallocation cost in considered.

This paper is organized as follows. Section
presents the comparisons between static files and
dynamic files according the features of dynamic files. In
Section 3, we introduce new dynamic allocation method.
Section 4 shows the experimental results of our method.
Finally, some future works for dynamic allocation
approaches are outlined.

9

2. Static Files versus Dynamic Files

A static file is that the domains of every attribute
and the records in the file are known in advance.
However, the applications usually do not have fixed
domains. The records can not be inserted at a time. The
domains of attributes will increase by inserting new
records.

So, a dynamic file is defined to be a file whose
records can be inserted or deleted dynamically.

Since the records will not be known in dynamic
files in advance, the features of dynamic files are
different from static files. The features of a static file are
listed as follows:

(1) A file contains multi-attribute records which have
fixed number of attributes.
The domains of attributes are predefined.
The total records in a static file are known in
advance.

Compared with the features of a static file, the
features of a dynamic file are as follows:
(1) The domain of each attribute may increase when a

record is inserted.

(2) The total number of records is unknown.
(3) The inserting sequences of records are random.

Therefore, a traditional allocation method is
strictly optimal in static files, but it is not in dynamic
files. Now we take the following example to show that.

Example 1: Let F1 (A1, Az, Az) be a static file. The
domain size of each attribute is Ai=4, A2=3, and
A3=2. There are 24 records in the file. The records are
arranged into four independently accessib'e disks by a
traditional allocation method, as Figure 1(a;.

@
3)

Another dynamic file F2 (A' LA 2, A 3) with
three attributes. The size of the domain is not specified
in advance. Of course, the maximal numbers of records
are unknown. Now the following six records are inserted
by the sequence of number order ascendantly.

1 (0,0,0),
@ 1,10,
(3 2,2,0),
@ (1,2,0),
(5) (2,1,0)
6) (3.0,0).

The records are arranged into four independently
accessible disks by the same traditional allocation
method as Figure 1(b).

The traditional allocation method is strictly
optimal in the static file F1, but it is not in the dynamic
file F2. 1t is obvious that disk 1 and disk 2 are empty
even though the most of records is allocated to disk 3. In
such situation, the accesses of the records will not
behave as good as the case in Figure 1(a).

According the behavior of a dynamic file, we
predict the relationship between the response time and
the record number as Figure 2. In Figure 2, the
performance of static approaches is worse than the
strictly optimal values. If there is an appropriate
dynamic approach, the performance should behave
between the static approach and strictly optimal values.

3. Our Approach

Since the records in a dynamic file are inserted
randomly, the allocated disk of records cannot be the
same as a static file. To minimize the number of disk
accesses, the traditional allocation method should

- reallocate all of the records in a file after a new record is

A-61

inserted each time. However, such complete reallocation
is time consuming. Like the dynamic hashing schemes
[9]{12] partial reallocation must be needed when the
dynamic multi-attribute file on multi-disk cannot obtain
a good allocation result for some inserted records. There
are three considerations while applying the partial
reallocating strategy to the multi-disk allocation
problem.

(1) When will the record(s) be moved ?

(2) Which record(s) should be moved ?

(3) Where will the record(s) be moved to ?

In this section, we propose an algorithm which
will satisfy the three considerations. Thus, the algorithm
can handle the dynamic allocation of multi-attribute files.
We propose the algorithm as follows:

Algorithm:

Let F be a k-attribute file and let m be the number
of independently accessible disk units (labeled 0, /,...,
m-1).

Input: A bucket B and the upper bound C. Here ,Bisa
bucket [i7, i2, ..., if], in F and C is the upper bound
of the maximum difference of the number of disk

FERBENA\TAFEZERERES

accesses for one partial matching query among m
disks.
Ouipar: The disk label n.
Step 1: Allocate a new bucket B to the disk by DM
method.
Step 2: For one of partial matching queries, R7) and
RT2 are the maximum number of disk accesses and
the minimum number of disk accesses among the m
disks respectively.
If (RTI - RTz) 2 C then goto step 3,
else goto step | to allocate another new bucket.
Step 3: Find a bucket B’ on the disk with the maximum
number of disk accesses.
If (it dot ot ie) 2 (b oot i)
then 8= [il, [E ik]
else B'= [i Wi, .,i k]
Step 4: New disk label n,

(Z;'D x m,) mod m, where Di is disk label.

mi=1,if Di is the ith disk label with the minimal

response time of one partial matching query.

mi = m , otherwise. ’
Step 5: Move the bucket B’ to the new disk n.
Step 6: Repeat step 1 to step 5 till all records in F are

already inserted.
Example 2:Here is an example of our algorithm. There
is a three-attribute dynamic file and a four-disk system.
Assume that the total inserted records are 11 so far. The
condition of moving a bucket is that
(RT\ =~ RT2)2C =3.
The following records are inserted so far:
(0,3,0), (0,1, 1), (1,0, 1), (2, ", 1),(1,0,2), (2, 1,2), (0,
1, 0), The part of partial matcl.ing queries are shown in
Figure 3(c). We can find that the partial matching query,
(2, *, *), needs 3 disk accesses at Disk 0, 1 disk accesses
(2,0,2),(1,2,3),(2, 1, 3).Now a new record, (2, 3, 3),
is inserted as shown in Figure 3(a)."

at Disk 7, 1 disk accesses at Disk 2 and 0 disk

accesses at Disk 3. So, RT,=3 and RT,=0. Because RT,-
RT,23, a bucket on Disk 0 will be moved to Disk 3.
Then the number of disk .accesses of partial matching
query, (2, ¥, *), is reduced to 2 as shown in Figure 3(d).

. From Example 2, our algorithm is not a strictly
- optimal allocatior method. But, our algorithm can keep
up the number of disk accesses “near balanced” among
disks. The results are our expectancy. ,

n=

4. Experiments and Comparisons

The records in dynamic files are randomly
generated and assigned to the corresponding disk units
by the allocation method. If the unbalanced condition of
our algorithm occurs, a bucket is reallocated to the
destination disk.

In this section, we will make a comparison among
the DM method, our algorithm and the strictly optimal

A-62

values. Our experiments consider the following cases:

(1) The numbers of independently accessible disks

are 3,4 and 3.

(2) The dynamic file is a multi-atiribute file.

(3) The sample numbers of records are 100, 200,

500, 1000, 2000 and 4000.

We consider that the experimental results of 3-disk
systems are fundamental results since the DM method
are strictly optimal in 3-disk systems. The experimental
results of 4-disk and 5-disk systems are the comparisons
of 3-disk systems. The experiments will show the
variation between the different sample numbers of
records

The experimental results will be shown in the
following tables and figures,

(1) The strictly optimal values are the best number of
disk accesses on each disk in theory. In Table 1, it
shovs the average values of the maximum access
nui-ber in the DM method, our algorithm and
strictly optimal va!:es.

(2) It shows the cost of reallocation in Table 2. In
Table 3, it shows the difference of average
maximum access number among the DM method,
strictly optimal values and the sum of Algorithm
and the reallocation cost.

(3) In Figure 4, show the comparisons of maximum
nu nber of disk accesses among the DM allocation
method, our algorithm and strictly optimal values.

(4) The average cost of reallocation is in Table 2(b).
In Figure 5, they show the average cost of
reallocation per 50 new records inserted when C=2
and C=3.

In Table 17 shows the maximum number of disk
accesses am ng disks in the 3-disk, 4-disk and 5-disk
sys.ems when the upper bound C=3. It is obvious that
the DM method behaves worse than our algorithm. The
more are the total numbers of records, the greater are the
difference of maximum number of disk accesses
batween the DM method and our ~lgorithm.

From Table 1, we can deduce Figure 4 which
show the comparison of maximum number of disk
accesses among the Di “ method, our algorithm and the
strictly optimal values. The results of experiments show
that the performance of our algorithm behaves between
the DM method and strictly optimal values. The forecast
in Figure 2 is similar to the experimental results.

The result are concluded from Table 1 and Figure
4 as follows:

(1) Strictly optimal values are theoretical results of
maximum number of disk accesses.

(2) The results of the DM method applied to dynamic
files are similar to the forecast of static approaches
in Figure 2.

(3) Our algorithm behaves better than the DM
method.

In our algorithm, partial reallocation is necessary.

hERE N AFZEFHEETR

The cost of reallocation is shown in Table 2(a). The
average cost per record is shown in Table 2(b).

In Table 1, our algorithm always behaves better
than the DM method in different cases. But, the cost of
partial reallocation should be considered in our
algorithm. From Table 2, we predict that the average
partial relocation cost per record N cos¢/ Neee is constant
when the number of records is large enough. To find the
approximation of N st/ Nre, We construct another
table, Table 3.

Table 3 shows the difference among the DM
method, our algorithm and strictly optimal values. From
Table 3, and Figure 5 are deduced. Figure 5, for a 5-disk
system, respectively, show the cost of reallocation per
50 new records inserted. From these figures, we find that
N cost/ Nree will be a constant if the total number of
records is great enough.

In Table 3, some items are defined as follows:

(1) Dvo= Nou—Nso, where Dpo is the difference
between the DM method and strictly optimal
values.

(2) D.o = (Nagoriomz + Neost [Neee) = Nso where Do
is the difference between Algorithm including the
cost of partial reallocation and strictly optimal
values.

(3) Do = Novr — (Naarg orivm2 + Ncost | Neee) , where Do
is the difference between our algorithm including
the cost of partial reallocation and the DM
method.

5. Conclusions

In the applications of information systems, the
contents of database systems are not defined in advance.
Records are inserted to or deleted from files dynamically.
The traditional allocation method cannot behave a good
performance in the dynamic allocation problem. An
appropriate dynamic allocation method can handle
dynamic allocation problems well.

The traditional allocation methods have to
reallocate all records in a file when some of the records
are inserted to or deleted from the files. Our approach is
proposed to avoid reallocating all existed records in a
file. However, partial reallocation is needed.

In the future, there are some points for improving
the performance of dynamic allocation approaches. We
conclud the future works as follows:

(1) the total cost of reallocation,

(2) which bucket to be moved,

(3) how to find RThand RT:,

(4) the dynamic allocation algorithm,
(5) theoretical analysis.

References

[1] K. A. S. Abdel-Ghaffar and El Abbadi, “ Optimal
Disk Allacation for Partial Matching Queries, ”

ACM Trans. on Database Systems, Vol. 18, No. 1,
pp. 132-156, March 1993,

{2] L. Bentley, “ Multidimensional Binary Search Trees
Used for Associative Searching, ” CACM, Vol. 18,
pp. 509-516, Sept., 1975.

[3] A. Bolour, “ Optimality Properties of Multiple Key
Hashing Function, ” Journal of ACM, Vol. 26, No. 2,
pp. 196-210,.1979.

[4] C. C. Chang and C. Y. Chen, “ Gray Code As a De-
clustering Scheme for Concurrent Disk Retrieval, ”
Information Science and Engineering (3), pp. 177-
188, 1987.

[5] C. C. Chang, H. Y. Chen and C. Y. Chen,
“ Symbolic Gray Code As a Data Allocation Scheme
for Two-disc Systems, ” The Computer Journal, Vol.
35, No. 3, pp. 299-305, 1992

[6] C. C. Chang, M. W. Du and R. C. T. Lese,
“ Performance Analysis of Cartesian Product Files
and Random Files, " [EEE Trans. on Software
Engineering, Vol. SE-10, No. 1, pp. 88-99, January
1984. '

[7]1 C. C. Chang, R. C. T. Lee and H. C. Du, * Some
Properties of Cartesian Product Files, ” in Proc.
ACM-SIG MOD 1980 Conf., Santa Monica, CA, pp.
157-166, May 1980.

[8] C. C. Chang and D. H. Su. “ Some Properties of
‘Multiattribute File System Based upon Multiple Key
Hashing Functions, " proc. 21th Annu. Allerton
Conference Commun. Control Comput., pp. 675-682,
1983.

{9] H. C. Du, “ Disk Allocation Methods for Binary
Cartesian Product Files, ” BIT 26, pp. 138-147,
1986.

[10] H.C.DuandR.C.T. Lee, “ Symbolic Gray Code
As Multi-Key Hashing Function, ” IEEE Trans. on
Pattern Analysis and Machine Intelligence, Vol.
PAMI-2, No. 1, pp. 83-90 (1982). ‘

[11] H.C.Du and J. S. Sobolewski, “ Disk Allocation
for Cartesian Product Files on Multiple-Disk
Systems, ” ACM Trans. on Database Systems, Vol. 7,
No. 1, March 1982, pp. 82-101.

[12] R. Fagin, J. Nieverglet, N. Pippenger and H. R.
Strong, “ Extendible Hashing - A Fast Access
Method for Dynamic Files, ™ ACM Trans. on
Database Systems, Vol. 4, No. 3, Sept. 1979, pp.
315-344.

[13] M. T. Fang, R. C. T. Lee and C. C. Chang, “ The
Idea of De-Clustering and its Application, ” the 12th
International Conference on Very Large Data Base
(VLDB), Kyoto, Japan, pp. 181-188, August 1986.

{14] J. H. Friedman, F. Baskett and L. J. Shustek, * An
Algorithm for Finding Nearest Neighbors, ” IEEE
Trans. on Computers, Vol. 24, No. 10, pp. 1000-
1006, 1975.

FEREN\TAEZERIERTS

Disk 0 || Disk 1 || Disk2 || Disk3 Disk 0 || Disk | || Disk2 || Disk3
(0,0,0) 1 (0.0, 1) [(0, 1, 1) [(0, 2, 1) 0,0, (2, L2)[I (0, 1, 1) (1, 0,2)
(L2, DO LOIO, 2,00 (1,1, 1) LD L0 ,0,1D
CLDIA000E0,0, 11,20 (2,0,2) (1,2,3)
(2,202, 2. D8, L0Y[(2,0, 1) (2,3.3) 2.1,3)
G.o,DIG. LDYE, 0,02, 1,0) ()
G.LOI{G.2,01(3,2.1H{(3,0,0) Disk 0 Disk 1 Disk 2 Disk 3
(a) ©00 [&Ly [oLy | (1,02
Disk 0 || Disk 1 || Disk2 | Disk3 2. L1 (0,1,0) (1,0, 1)
(0,0, 0) (LLD (2,0,2) (1,2,3)
(2,2,0) (1,2,0) (2, 1,3) (2.3,3)
(2.1,0) (b)
(3,0,0) PMQ Disk 0 Disk 1 Disk 2 Disk 3
(b)
(*,*,0)f§ Disk0 | Disk1 | Disk2 | Disk3 (0, *, *) 1 1 1 0
Fi 3 3 3 3 (L%, %) 0 0 2 1
F2 2 0 0 3 (2.%.%) 3 1 1 0
() (*,0.%) 2 0 1 1
(*. 1, %) 1 2 2 0
Figure 1: (a) The allocation of all records among 4 disks in *.2,%) 0 0 1 0
' a static file F1 (*,3,%) 1 0 0 0
(b) The allocation of records among 4 disks in a
dynamic file F2 (c)
(¢) The number of disk accesses of F1 and F2 PMQ Disk 0 Disk 1 Disk 2 Disk 3
according to the partial matching query (¥, *, 0)
Response Time St 0, *, %) 1 1 1 0
tatic
1 Approach (= 0 0 2 !
(2,%,%) 2 1 i 1
N (*.0, %) 2 0 1 1
Dynamic Approach (d)
T Figure 3:
Strictly Optimal (a) The records on each disk are inserted by our algorithm
Values (b) The record, (2, 3, 3) on Disk 0, are reallocated to Disk 3
(c) The part of partial matching queries after the bucket (2,

Record Number

All records have
been inserted.

Figure 2: The behavior of a dynamic file

3, 3) is allocated to disk 0.
(d) The part of partial matching queries after the bucket (2,
3, 3) is reallocated to Disk 3

Nrce Nboy Nutgorithm Nso

Disk=3 | Disk=¢ | Disk=3 | Disk=3 | Disk=+4 | Disk=5 | Disk=3 | Disk=4 | Disk=5
100 | 4823 | 4037 | 3643 | 41.87 | 337 | 2893 | 34 25 20
200 || 8737 | 71.20 | 63.13 | 7520 | 60.73 | 30.17 | 67 30 40
500 || 198.13 | 157.73 | 136.23 | 180.10 | 137.47 | 113.77 | 167 | 125 | 100
1000 || 379.67 | 294.77 | 246.73 | 349.03 | 263.50 | 215.67 | 334 | 250 | 200
2000 || 727.73 | 566.37 | 464.10 | 68543 | 519.17 | 41830 | 667 | 500 | 400
4000 || 1419.63 | 1096.27 | 892.10 | 1360.93 | 1026.37 | 832.40 | 1334 | 1000 | 800

(@

Nrec : the total number of inserted records.
Nuigorin : the nurnber of disk accesses of Algorithm, N cos¢ : the cost of reallocation,
N cost/ Nree : the average cost per record,
Table 1: (a) The comparisons of the maximum number of disk accesses between, Nou , Ntigoritkm and

Nso | whe

re C=3.

A-64

Nbpar : the number of disk accesses of the DM method,

hERE/\+AEZERERGE

1000
900 L
800 L
700 &
600 L
500 F
400
300 |
200 ¢
100 ¢

DM
Algorithm |
Optimal

I__'

Maximum number of disk accesses
Cost of reallocation / per 50 records

cT ‘N‘T(;‘rtaﬁu%be?oﬁef{)rdq; m AR & Total number of records / 50
Figure 4: The results show DM method, Algorithm and Figure 5: The cost of reallocation per 50 records inserted for a
strictly optimal values in a 5-disk system, where the total 5-disk system , where the total number of records is 400G,
number of records are 4000.
N rec Disk Number=3 Disk Number=4 Disk Number=3
C= =3 C=2 C=3 C=2 C=3
100 763.9 © 1448 771.2 125.9 864.0 126.9
200 2148.7 608.7 2260.5 556.2 2540.5 563.4
500 6330.8 3196.4 7272.2 2674.3 7689.8 27873
1000 14272.9 8463.8 15465.1 7847.0 16240.8 7614.8
2000 28782.0 19440.4 30433.2 18760.5 32256.1 18238.1
4000 55956.1 40350 59753.2 39741.7 62903.9 40744.5
(2)
N Disk Number=3 Disk Number=4 Disk Number=3
rec i
C=2 C=3 C=2 C=3 C=2 C=3
100 7.6) 1.4 7.7 1.3 - 8.6 1.3
200 10.7 3.0 113 2.8 12.7 2.8
500 13.1 6.4 14.3 5.3 : T 154 5.6
1000 14.3 8.5 15.5 7.8 16.2 7.6
2000 14.4 9.7 . 15.2 9.4 16.1 9.1
4000 14.0 10.1 14.9 9.9 15.7 10.2
(b)

N cos¢ : the cost of reallocation, NV cost/ Nree : the average cost per record.
Table 2: (a)The cost of reallocation, N coss.) :
(b)The average cost per record, N cost/ Nrec .

N Disk Number=3 Disk Number=4 Disk Number=35
e Dpo Do Do Dpo | Dao Dps | Dpo | Dao Do
100 14.2 9.1 51 15.4 10.3 5.1 16.4 10.5 59
200 20.4 11.7 8.7 21.2 12.6 8.6 231 12.6 10.5
500 311 17.1 14.0 32.7 19.5 13.2 36.2 19.2 17,0
1000 45.7 242 21.5 448 229 21.9 46.7 222 245
2000 - 60.7 25.0 357 66.4 303 36.1 64.1 27.0 371
4000 85.6 32.7 52.9 96.3 413 55.0 92.1 33.0 59.1

Table 3: The results of Doo, Do and Dbpa , where C=3

A-65

