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An Efficient Algorithm for the Connected Two-Center Problem*

P. H. Huang'

Abstract

This paper considers the connected two-center prob-
lem, which is to find two congruent closed discs of
smallest radius whose union covers a set of n given
points in the plane and whose centers are close as speci-
fied connectivity. The previously best known algorithm
for this problem is straightforward and based on the
exhaustive searching paradigm which leads to O(n°)
time complexity. In this paper, we design an O(n®)
time algorithm for solving the problem by using a new
data structure called center-hull, which has rather close
relationships with the farthest-point Voronoi diagram.
The properties of center-hull are also discussed in this

paper.

Keywords: Computational Geometry, Connected
Two-Center problems, Center Hulls, Farthest-Point
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1 Introduction

Let NV be a set of n points in the plane. The k-center
problem is to cover N by k congruent closed discs
whose radius is as small as possible. The problem was
proved to be NP-complete when the parameter k is a
part of the input [19]. A recent best known algorithm
for this problem is given in [15] with time complexity
O(n"(‘/’;)). The two-center problem is a special case
of the general k-center problem and is much simpler.
However, it is a long time for authors to solve this prob-
lem [4, 1,8, 16, 17, 22, 9, 11, 3]. In 1996, Sharir [22] pro-
posed a near-linear time algorithm for the two-center
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problem, and in 1997, Eppstein [9] proposed a random-
ized algorithm with O(nlog® n) expected time for the
problem. The important applications of the two-center
problem include transportation, station placement and
facility location [4, 16, 3] .

In this paper, we consider a restricted version of
the two-center problem, namely, connected two-center
problem (abbreviate to C2C problem). Given a set IV
of n points in the plane, the C2C problem is to find two
congruent closed discs of smallest radius whose union
covers N and whose centers are close as specified con-
nectivity. One of applications of the C2C problem is to -
set up the medical centers. Suppose that we want to
place two medical emergency units so that the worst-
case response time to each of n given sites is minimized.
If the two units are well-independent, then everything
will be okay. However, in realistic environment, it is
possible that one of the unit may request blood (or
technical support) from the other unit for emergency
surgical operations. As a result, to shorten the distance
of the two units seems somewhat necessary.

Huang [13] is the first researcher to discuss this prob-
lem, and he gave an algorithm with O(n%) time com-
plexity for this problem. We shall present a new al-
gorithm for solving the C2C problem which runs in
O(n®) time. Our new algorithm is mainly based on
the farthest-point Voronoi diagram [20] and a new data
structure called center-hull, which is similar to circular-
hull [9, 12, 7, 6]. The new algorithm is. conceptually
much simpler and has more explicit geometric flavor.

This paper is organized as follows. In Section 2 we
introduce the constrained C2C problem. For solving
the constrained C2C problem, we proposed a new data
structure, center-hull, in Section 3. In addition, the
properties of center-hull are also exploited. The algo-
rithm for solving the constrained C2C problem is given
in Section 4. Some open problems and directions for
further research will be presented in Section 5.
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2 The constrained C2C problem

In this section, we shall describe how we reduce the
C2C problein into the constrained C2C problem (abbre-
viate to CC2C problem). We solve the C2C problem
by firstly dividing the problem into O(n?) instances of
CC2C problem. Then we aim to develop an algorithm
for solving the CC2C problem and apply it O(n?) times.
To proceed further we need some definitions that are
necessary to formulate the CC2C problem and that are
also used in the description of the rest of this paper.

Definition 1 The point set N = {p1,p2,...,pn} is @
set of n points in the plane. '

Definition 2 C(p,r) denotes the circle centered at
point p with radius r.

Definition 3 Circle C(p,r) is called to cover N if
Ipg] < r for each g € N.

Definition 4 The connected two-circle C2C(z,y,r) is
a pair of circles, C(z,r) and C(y,r), such that 0 <
|zy| < 2r. Note that C2C(z,y,r) becomes the one-
center problem if |zy| equals to 0.

Definition 5 The C2C(z,y,r) is called to cover N if
lpz] <ror|py| <rforeachp€ N.

Definition 6 The connected ratio a of the C2C(z,y, )
is defined to be 1 — |zy|/2r. And we further call
the two circles a-connected two-circle, denoted as -
C2C(z,y,7)-

Definition 7 The a-C2C(z,y,7) is said to be strongly
connected if 1/2< a < l;andfor 0 < a < 1/2,it is
said to be weakly connected.

In Figure 1, we show three examples of a-connected
two-circle a-C2C(z,y,r). (From above definitions, we
can redefine the C2C problem as follows:

Definition 8 Given a set N of n points in the plane
and the value of a, the connected two-center problem is
to find an a-connected two-circle a-C2C(z,y,r) cover-
ing N such that r is minimized.

Definition 9 The linear partition (Ny, Na) of a point
set N is partitioning N into two subsets, N; and Ny,
with a straight line such that Ny N N2 = ¢ and N; U
Ny = N.

Definition 10 Given a linear partition (N, N3) of N
and the value of «, the constrained connected two-
center (CC2C) problem is to find an o-C2C(z,y,7)
such that N; and N, can be covered by C(z,r) and
C(y,r), respectively, and r is minimized.

For simplicity, from now on we omit specifying the
« factor in the following description, and this does not
affect the correctness of our discussions. The reader
could think our description to be for the 1/2-connected
case. However, it is, in fact, also applicable for all the
cases of a.

Theorem 1 Given a point set NV, there exists a CC2C
problem whose solution is same as the C2C problem.

Proof. We prove it by generating a CC2C problem
which has the same solution as the orginal C2C prob-
lem. Let C2C(z,y,r) be the solution of the C2C prob-
lem, we can generate a linear partition (N3, N;) by
drawing a straight line I which is the perpendicular
bisector of the line segment zy, that is, line [ will
pass through the cross points of the two circles C(z,r)
and C(y,r). Obviously, N; and N; can be covered by
C(z,r) and C(y,r) respectively. The solution radius r*
of the CC2C problem with linear partition (N;, Na) can
not be less than r, otherwise C2C(z,y,r*) will become
the better solution to the orginal C2C problem. Hence,
C2C(z,y,r) is the solution of the CC2C problem with.
linear partition (IVq, N2). Q.E.D.
The immediate consequence of the above theorem is
that we can solve the C2C problem of a given point set
by solving all of the possible instances of CC2C prob-
lem, each with different linear partition. The number
of possible partitions is asymptotically O(n?). In the
following sections, we shall first introduce the notion of
center-hull. Then we show that the CC2C problem is,
in fact, a distance problem between two center-hulls.

3 The center-hull

The a-hull(also known as circular-hull) [9, 12, 7, 6] of
a set N of n points in the plane is the intersection of
all closed discs with radius 1/a that contain all the
points of N, where a@ > 0. In this section, we con-
sider a variant of this concept. A new data structure,
center-hull, is proposed. We shall firstly introduce the
notion and properties of center-hull. Then we introduce
the close relationship between center-hull and farthest-
point Voronoi diagram (FPVD) [20], which is crucial
to the development of our algorithm.
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Definition 11 The center-hull of N with radius r, de-
noted CH(N,r), is the locus of points which are the
centers of the circles with radius r that cover NV, that
is, CH(N,r) = {p|C(p,r) covers N'}.

The following two propositions are quite straightfor-
ward.

Lemma 1 Let ry be the radius of the smallest enclos-
ing circle of N. The CH(N,r) is empty if r < ro.

Lemma 2 The point p is in CH(N,r) if and only if
the distance between p and its farthest neighbor in N
is less than or equal to r.

There are also several properties of center-hull that
will be useful, We state them below.

Theorem 2 The center-hull is convex.

Proof. Let a, b be any two points in CH(N,r)
and p be a point on ab. Furthermore, let the far-
thest neighbors in N of a, b and p be A, B and
P respectively, and thus we have |aP| < |aA| and
|6P| < |bB|. Obviously, [pP| < max{|aP]|,|bP|}. Then
by Lemma 2 and from the above inequalities, we have
|pP| < max{|aA},|bB|} < r. So the point p is also in
CH(N,r), this completes the proof. Q.E.D.

Lemma 3 A point p is on SCH(N,r), the boundary
of the CH(N,r), if and only if the distance between p
and its farthest neighbor in NV is equal to 7.

Proof. It follows immediately from Lemma 2. Q.E.D.

The following description of the relationships be-
tween center-hull and FPVD of a given point set stems
from Lemma 3.

Definition 12 Let p be a point in N.. The farthest-
neighbor Voronoi region associated to p is the open re-
gion in the FPVD of N so that pis the farthest neighbor
in N of all the points in the region.

Lemma 4 The OCH(N,r) within each farthest-
neighbor Voronoi region associated to p is an subarc
centered at p with radius r.

Proof. It follows from the properties of FPVD and
Lemma 3. Q.E.D.

Theorem 3 The 8CH(N,r) is a circular list of sub-
arcs each centered at the associated farthest-neighbor
in N with radius r.
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Proof. FEach farthest-neighbor Voronoi region of
FPVD is associated to one vertex of the convex
hull [21], that is, each vertex of the convex hull is
the farthest neighbor in N to the associated farthest-
neighbor Voronoi region. Thus the farthest-neighbor
Voronoi regions can be ordered as a circular list of
the vertices of the convex hull. Then by Lemma 4,
OCH(N,r) can be found by taking a round trip over
the circular list of the farthest-neighbor Voronoi regions
and the vertices of the convex hull. Q.E.D.

In Figure 2, we show an example of the FPVD to-
gether with the CH(N,r) for N = {a,b,¢,d}. ,

Let the center of each subarc on 8CH (N, r) be called
the control point of that subarc. Then the CH(N,r)
can be described by the circular list of the control
points together with the radius r. We refer to this
circular list of the control points as the control point
configuration CP(N,r). For the same FPVD, the con-
trol point configuration differs from one to others, due
to the changes of the value of r.

Let o be the radius of the smallest enclosing circle of
N. The number of points in the control point configu-
ration may increases as the value of r grows. The value
of r at which the control point configuration changes
is called a bresking radius. A breaking radius occurs
while the fatting center-hull intersects with a new ver-
tex of the FPVD, so we can find all of the breaking radii
by tracing along the edges of the FPVD. The number
of vertices of the FPVD is asymptotically O(n), so the
number of breaking radii is the same. By sorting on
the values of breaking radii, we obtain a breaking ra-
dius sequence of N.

4 Solving the CC2C problem

In fact, the center-hull CH (N, r) is indeed the locus of
centers at which the circles covering N centered (with
radius r). In this section, we present an algorithm for
solving the CC2C problem. Key to our approach is to
transform the CC2C problem into a distance problem
between two center-hulls.

Definition 13 The distance between CH(N;,r) and
CH(Na,r) is min, 4|pg| where p € CH(N1,7) and g €
CH(Na,r), and p, q are called the nearest points of the
two center-hulls.

From above definition, it is easy to see that the near-
est points of two center-hulls lie on the boundaries of
the center-hulls.
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Theorem 4 If r* is the minimal r such that the dis-
tance between CH(N,,r) and CH(Nz,r) is equal to
2r(1 — @), then there exists a a-connected two-circle
a-C2C(p, q,r*) that is a solution to the a-connected
CC2C problem with linear partition (Ny, Nz).

Proof. Let p, ¢ be the nearest points of CH(Ny,r*)
and CH(Nz,r*) where p in CH(N;,r*) and ¢ in
CH(N3,7*). ;From the property of center-hull as de-
scribed at the beginning of this section, we can draw
two circles C(p,r*), C(g,r*) that cover N; and N; re-
spectively. Moreover, since |pg] = 2r*(1 — o) and r*
is minimized, C(p,r*) and C(g,r*) form a a-connected
two-circle a-C2C(p,q,r*). Then by the definition of
constrained connected two-center problem (Definition
10), it follows. Q.E.D.

Theorem 4 gives us the idea to solve the CC2C prob-
lem (with given linear partition) by solving the distance
problem between the two corresponding center-hulls.

Let ¢; in CH(Ny,r) and ¢z in. CH(Nz,r) be the
nearest points of the two center-hulls. Before pro-
ceeding, we further define the dual critical point set
DCPS(N;, Na,r) as (Si, S2), where S; is the set of the
farthest neighbors of ¢; in N; for i =1, 2.

Since each nearest point of the two center-hulls lies
either on an edge (subarc) or on a vertex (the intersec-
tion of two subarcs), we have the following corollary.

Corollary 1 There are one or two points in S; of the
DCPS of two center-hulls for ¢ =1, 2.

Given a linear partition (IV1,N;) of a point set N
and the value of r, CH(N;,r) and CH(N,,r) are de-
fined. Since the center-hull has the convex property
as the convex n-gons, we can use the algorithm given
in [2] to find the nearest points of two center-hulls (and
so DCPS) by replacing the straight lines of the convex
n-gons with the subarcs of the center-hulls. Inversely,
suppose DCPS(N;, No,r*) = (57, 53). If S} and 55 are
known, we can find the value of r* by solving a poly-
nomial equation with degree no more than four. For
more detail about solving such polynominals, see [5].

Here we start to describe our algorithm. For a given
linear partition (N;,N2) of a point set N, the con-
strained connected two-center algorithm consists of the
following three phases.

Let r; and 72 be the smallest enclosing radius for
N, and N, respectively, and without loss of generality,
assume that r; > ro. The first phase checks whether
1 is the solution, i.e., there exists two circles C; with
radius r; that covers N; respectively, for 1 = 1,2, and
they are also a-connected as demanded. If it does, we

are done and r* = r; is the solution radius, otherwise
proceed to the next phase.

The second phase finds the range (r;,r) that r* lies
in and both CP(Ny,r) and CP(N,r) keep unchanged
for r in (r,r5). This phase is composed of many steps
which will be outlined later.

The third phase is to find the exact r* in the range
(r1,71). After phase 2, we have only ensured that both
shapes of the two center-hulls keep unchanged for r in
the range (ry,75). Since the DCPS(Vy, N2, 7;) may not
equal to the DCPS(N;, N2, r*), so we cannot compute
r* directly from DCPS(Ny, N2, 7). Figure 3 shows an
example that DCPS changes from ({4}, {B,C}) into
({A}, {B}) while the radius grows from r to 7/, where
p, q (respect to P/, ¢') are the nearest points of the two
center-hulls with radius r (respect to r’). Let’s now
disscuss on how we find the DCPS(Ny, N2, r*) and the
value of r*.

In the third phase, we gradually increase the ra-
dius value starting from r;. Let r be the current ra-
dius value, and the current dual critical point set be
DCPS(N;, Na,7). By taking a look on CH(Ny,r +€)
and CH{Nz,r+¢€) where € is a very small value, we can
find out the change of relative positions of the nearest
points of the two center-hulls. This change gives us
the information that how the dual critical point set
would change while r is growing. Then by computing
on the boundary conditions, we can find the next radius
value v’ (r’ > r) which makes the corresponding dual
critical point set to be changed into the other config-
uration, denoted as DCPS(N;, N2, ). This process is
repeated until the DCPS(Ny, N3, r*) is reached. Then
we can compute r* directly from DCPS(Ny, Np,r*) as
described above.

Definition 14 An element of center-hull is a vertex or
an edge of the center-hull.

Definition 15 The distance between two elements of
center-hulls is the distance between the nearest points
of the two elements.

Definition 16 Let a; be an element of CH(Nj,r) for
i = 1,2. Let @} be an element of CH(N;,r + €) and
has the same control point with a;, where € > 0, such
that |a;al| = € for ¢ = 1, 2. The potential of a; and as,
denoted by P(ay,as2), is defined as |a; as| — |ajas).

Figure 4 shows the case that the two center-hulls are
just two circles. It is easy to see that P(@im,bin) >
P(aip,big) f m < pandn < gfori=0,1. In par-
ticular, P{ago,boo) = 2¢ is the highest potential, and
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P(c,d) = 0 implies that |cd] would never be changed
while r is growing.
Observation 1. For two center-hulls, CH(N;,r) and
CH(Na,r), there exists two elements a € CH(N,,r)
and b € CH(N,,r) such that a, b have the highest
potential. And for elements ¢ € CH(N;,r) and d €
CH(Na,r), the P(c,d) monotonically decreasing while
c getting farther from a or d getting farther from b.
The changes of the DCPSs in the third phase cor-
respond to the changes of the nearest points on the
relative positions of the two center-hulls. Let p, ¢
be the nearest points of the current two center-hulls,
and p/, ¢ be the next nearest points. Obviously,
P(p',q') > P(p,q), otherwise p/, ¢’ cannot become the
new nearest points. It is true that the next nearest
points always have higher potential than the current
nearest points while r is growing. Then from observa-
tion 1, we conclude that the moving directions of the
two nearest points are both monotonically toward the
positions of highest potential. Thus, the repetitions
of tracing the changes of DCPSs would be definitely
bounded.

Lemma 5 If DCPS(Ny,Na,r) = (51, 52) and ||S1]] =
”52” =1, then DCPS(N],NQ,T') = (51,52) fOT >,

Proof. The case||S:]| = ||S2|| = 1 implies that the two
critical points and the two nearest points are colinear.
And so the potential of the two nearest points equals
to 2¢. Since 2¢ is the maximum value for the potential,
the two nearest points would stay nearest while r is
growing. And hence the DCPS(Ny, Na,r') would never
be changed for r' > 7. Q.E.D.

Now we outline the algorithm for solving the con-
strained connected two-center problem below.
Algorithm: The constrained connected two-center al-
gorithm - ‘

Input: A point set IV, the linear partition (Ny, Na)
and the connected ratio a.

Output: the minimal radius r*

Phase 1: :

Step 1.1 Let the radius of the smallest enclosing
circle for N; is ry, for i =1, 2.

Step 1.2 Let r = max{r;,r} and the distance be-
tween CH(Ny,r) and CH(Na,,r) be d.

Step 1.3 If d < 2r(1—a) then r* = r is the solution,
otherwise proceed to Phase 2.

Phase 2:

Step 2.1 Construct the farthest-point Voronoi dia-
gram for IV; , and then compute the breaking radius
sequence R; of N; , fori=1,2.
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Step 2.2 Merge (sort) R; and R; into an ascending
sequence R = {r1,72,...,"m}.

Step 2.3 Let min = 1 and maz = m, and let mid =
(min + maz +1)/2.

Step 2.4 Let the distance between CH (N, Tmia)
and CH(Na,rmig) be d.

Step 2.5 If 2r,;4(1 — @) < d then min = mid else
maz = mid.

Step 2.8 Let mid = (min + maz + 1)/2.

Step 2.7 If maz # mid then go to Step 2.4, else
proceed to Phase 3.

Phase 3:

Step 3.1 Let r = 7rpin , p and g be the cur-
rent nearest points of CH(N;,r) and CH(Na,r), and
deS = DCPS(Nl,N2,T).

Step 3.2 Compute the next dual critical point set
dcps’ , the next radius value r' and the new nearest
points p’ and ¢’ as described above.

Step 3.3If|p'¢'| > 2r'(1—a) thenlet r =7/, p =7/,
g = ¢, deps = deps' and go to Step 3.2, else proceed
to Step 3.4.

Step 3.4 Compute r* from deps.

Theorem 5 The constrained connected two-center al-
gorithm takes O(nlogn) time.

Proof. Step 1.1 can be completed in O(n) time by us-
ing the one-center algorithm posed in [18}. In step 1.2,
the two center-hulls can be computed in O(n) time,
and their distance can be found in Oflogn) time [2].
Phase 2 is dominated by the time to construct the two
farthest-point Voronoi diagrams which takes O(n logn)
time. There are at most O(n) iterations in Phase 3
since the moving directions of the tracing are mono-
tonic, and each iteration takes O(1) time. Therefore,
the time complexity of the constrained connected two-
center algorithm is O(nlogn) Q.E.D.

There are only O(n?) ways to partition an n-point
set by a line, this implies O(n3 logn) time to solve the
connected two-center problem (by invoking the con-
strained connected two-center algorithm O(n?) times).
However, by using the sweepline approach posed in [14]
and the technique of randomized incremental construc-
tion of Voronoi diagram [10}, step 2.1 can be completed
in O(logn) time. Thus the total time complexity to
solve the connected two-center problem is improved to
O(nd).

Theorem 8 The connected two-center problem, for a
set of n points in the plane, can be solved in O(n?)
time.
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5 Conclusions

We have shown the notion of the center-hull of a set
of points in the plane and the relationship between the
center-hull and the planar farthest-point Voronoi dia-
gram. Because center-hulls have nice geometric prop-
erties, especially for the center problems, we believe
that center-hulls will be very helpful in solving a large
variety of geometric problems.

We also have presented an O(n3)time algorithm for
solving the connected two-center problem which is a
variant of the two-center problem. Our algorithm could
be improved if the number of linear partitions to be
examined is reduced. Alternately, some unexploited

properties of center-hulls will help us to design a better

algorithm.

Like the two-center problem, the lower bound for the
connected two-center problem is still open now. It is of
interest to design approximation algorithms for solving
connected k-center problems. Furthermore, of much
great interest is the question of solving the connected
two-center problem in three dimensions. -
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Figure 1: Three examples of a-C2C(z,y,r)with a = 0, 1/2 and 1, respetcively.

Figure 2: The farthest-point Voronoi diagram and the associated center-hull for the point set N = {a,b,¢,d}.
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Figure 3:

Figure 4:
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