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Abstract ) In order to counteract this attack, an

, , additional parameter is needed to result in
To enhance ElGamal’s protection based

. ) a failure to find the private key. In our
on a discrete logarithm problem, He & ‘

. . scheme, an attacker can hardly detour
Kiesler propose a protection based on

. i o factorization problem. Thus, in addition
discrete logarithm and factorization

. to the He & Kiesler advantage, our
problems.  Although Tiersma suggests

. . method can be used to counteract the
that as long as the discrete logarithm

. Tiersma attack.
problem can be solved, the He & Kiesler

scheme can also be crypt-analyzed. This
paper is to strengthen the He & Kielser I Introduction

scheme. In addition to the He & Kiesler
To enhance ElGamal’s protection

advantage, Tiersma’s attack can .be
based on discrete logarithm problem [1],

stopped. Given the solution of discrete .
He & Kiesler [2] broach a protection

logarithm, Tiersma focuses on obtaining .
based on discrete logarithm and

the square of the private key and forging
factorization  problems. Although

the digital signature of the user under
Tiersma [3] suggests that if the discrete

attack to detour the factorization problem.
logarithm problem can be dismantled, the
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He & Kiesler scheme can also be crypt-
analyzed and exposed to attacks. This
paper is to enhance the He & Kielser
scheme. In addition to providing He &
Kiesler advantage, Tiersma’s attack can
be stopped.

The layout of this paper is as follows.
Section II introduces ElGamal’s signature
scheme.  Section [I is our scheme.
Section IV analyzes and discusses the
security of our scheme. In Section V, we
conclude the paper and provide the

research direction for the future.

Il. ElGamal’s Signature

Scheme

Let p be a strong prime number and g a
primitive element over GF(p). A user in

network U, selects a number

x(I<x<g(p)) as his/her private key.
The public key satisfies the following

equation
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y =g"(mod p)

The procedure for the user u, to attach
the digital signature to message m is as
follows.

(I) Selecting a number k(1< k <¢@(p))
which is relatively prime to ¢(p) and

finding r and s satisfying the following

equations.
r = g" (mod p) (1
m = xr + ks(mod ¢(p)) (2)

sign(m) = (r, 5) is the .digital signature

attached to the message m by u,.

IHl. Our Scheme

Let p be a strong prime number and g a
primitive element over GF(p). ¢(p) has
two big prir.ne factors p, and g, [2]. |

A user in network u, selects a number
x,(1<x, <@(p)) as histher private key
and then find x and y satisfying the

following equations.

x = x; (mod 4(p)) - ®
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y=g"(modp) @
| wherg y is the public key of the user u,.
The user u; can put a digital signature
on the message m as follows:
Selecting a number f,(1< f; < ¢(p))
and a number f (1<t <@(p)t, = f)
which is relatively prime to op). tfk

7, R, s, and c are generated from ¢, f; on

the basis of the following equations.

t =1 (mod ¢(p)) (5)
f = £ (modg(p)) (6)
k =1’ (mod g(p)) (7)
r = g*(mod p) (8)
R =g’ (modp) 9)
mf = x(r + R) +ts(mod ¢( p)) (10)
¢ = x,1, £, (mod () (11)

sign(m) = (, R, s, ¢) denotes the u,’s
digital signature of the message m.
We can verify the validity of the

equation

Rm" éy(r+l(')“g.’vm.v(r+R)c3r‘s"" (mOd p) (12)

The digital signature is correct if Eq.(12)

is valid. If not, flaws can be expected.

V. Analyses and

Discussion

In this section, three theorems are
proposed to deal with the cases if an
attacker is going to attack our scheme,
he/she has to solve discrete logarithm and
factorization problems. However, we have
pointed out that Tiersma’s attack is
improper to our scheme. In addition, this

paper provides discussion about the use of

parameters in verifying digital signature.

Theorem 1: Eq.(12) is true
Proof:

To have cubic on both sides of Eq.(10),

we obtain six equations as follows.

m 2 =x>(r+ R} +3x3(r+R)’ts +
3x(r + R)’s” + 57 (mod ¢(p))

m' £ =x*(r+ R) +3x(r + R)ts[x(r + R)

+1s]+1's’ (mod ¢( p))
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According to Eq.(10), we have

m’ f? = x>(r + R)’ +3sm(r + R)xft +
£’s* (mod g(p))

According to Egs.(3), (5)-(7), (11), we
have

m® ¥ = x*(r+ R)> +3sm(r + R)c* +
ks’ (mod ¢(p))

m.'_f‘: .\'F(H-R):v 3.\'/::(r+-R)c3

gl =gt g g* (mod p)

According to Egs.(4), (8), (9),

Rm = y(r+R)‘gSm.\'(HR)c“rv' (modp)

 Theorem 1 is proven, E.O0.Q.

Theorem 2

The Tiersma attack on the He & Kiesler

method is no longer valid to our scheme.
Preof:

Let the digital signature intercepted by an
attacker be sign(m) = (r, R, s, ¢) and m be
relatively prime to ¢(p). The attacker

is capable of solving the discrete

logarithm  problem. According to
Egs.(4), (8), and (9), the attacker can find

x', k, and f’. From Eq.(10), the
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attacker can obtain the following

equations.

s=t7[mf —x(r+ R))(modg(p))  (13)

sc> = xf[mf —x(r + R))(mod 4(p))  (14)

From Eq.(14), the attacker fails to find
x because he has no knowledge of f xf.
Thus, unless the attacker can solve
factorization problem, he/she can hardly
find x. Consequently, the attacker cannot
forge the digital signature and associated
message m’ as Tiersma claimed. Thus,
our theorem  can be proved.
E.0.Q.

Theorem 2 tells us that an attacker
can hardly undermine our scheme if
he/she the discrete

can only solve

logarithm problem. Theorem 1 shows
that Eq.(12) is correct. As long as the
attacker can forge some parametefs and

make Eq.(12) valid, can the attacker win?

Theorem 3 provides the answer.

-153-



1998 International Computer Symposium
Workshop on Algorithms
December 17-19, 1998, N.C.K‘U.. Tainan, Taiwan, R.O.C.

Theorem 3

According to Eq.(l-2), only when an
attacker has to solve discreté logarithm
and factorization problems, can he/she
win in forging digital signature.

Proof:

If an attacker tries to look for the forged
digital signature sign(m,)=(r,R,,s,,c,)
and attempts make Eq(12) valid, we

classify five cases as follows.

Case 1.

Selecting m,,r,,R,,s, at random and
looking for the correspondent ¢,. The
Eq.(12) into the

attacker transfers

following equation

g:;(,_].'.kl)m,.\'lcl3 = Rll"' /[y("|+R| ¥ rl.w;] (15)
(mod p)

The attacker can find ¢ by solving

discrete logarithm and obtain ¢, by

working out factorization problem.

Case 2.

Selecting m,,r,R,,c, at random and
looking for correspondent s, .

The attacker has to transfer Eq.(12) into
Eq.(16).

3(n+R, )m,.\'lcf .s'|3 = m,s
g nt=R"/

) (16)
[y J(mod p)
As long as we are going to find s,
making Eq.(16) valid, no literature can
propose any easier method than to solve
discrete logarithm and factorization

problems.

Case 3

Selecting m,,r,,c,,s, and trying to work
out R,. The attacker transfers Eq.(12)
into Eq.(17)

le," /[y(r,+R,)’g3(r,+RI)m,slc,’] (17)
= r,"'13 (mod p)

No literature has proposéd a better
approach to solving discrete logarithm and

factorization problems to work out R, .

Case 4
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Choosing m,,R,,c,,s, at random and

finding correspondent #,.

The attacker transfers Eq.(12) into Eq.(18)

(rl+lcl)7

y g

3(R+R s r 5
!

.. (18)
= R (mod p)

No literature has proposed a better
approach to solving discrete logarithm and
factorization problems to work out 7.
Case 5

Choosing  r,,R,,c,,s, and finding

" correspondent m, .

The attacker transfers Eq.(12) into

Eq.(19).

Rm,:‘/ 3(r,+R,)m,.v,ul"'

s (19
= y""™ " (mod p)

No literature has proposed a better

approach to solving discrete logarithm and

factorization problems to work out m, .

In order to avoid being attacked,
ElGamal suggests not using the same r in
Eq.(1) to find the private key. For the
same reason, in digital signature, the

values of (r should

!

»R,)and (7,,R,)
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satisfy the four conditions as follows.
r, # R, (mod p)

r, # R, (mod p)

r, # r,(mod p)

R, # R,(mod p)

Then, the Tiersma attack cannot win.

V. Conclusion and
direction for future
research

Given the solution of discrete logarithm,
Tiersma focuses on obtaining the square
of the private key (i.e., x, please see p.47
of reference 3) and then forging the digital
signature of the user under attack to
detour the factorizatiofl problem. In
order to counteract this attack, we need an
additional parameter f, to result in a
failure to find the private key (x, see
Egs.(3) & (14)). With our scheme, an

attacker can detour the

hardly
factorization problem. Thus, in addition

to the He & Kiesler advantage, our

-155-



1998 International Computer Symposium
Workshop on Algorithms
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

method can be used to counteract the
Tiersma attack.

If a time stamp scheme can be.linked
with the method presented in this paper,
we can stop replay attack. To be sure, a
hashing function plus the ElGamal theory
can strengthen our scheme. In addition,
the study of methods for reducing the
parameter numbers of digital signatures
and the applications of our approach to
multi-signature, secret sharing, and group-
oriented digital signature are worthy of

future research.
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