1998 International Computer Symposium
Workshop on Algorithms

Decemnber 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0O.C.

An Efficient External Sorting Algorithm

Fang-Cheng Leu', Yin-Te Tsai’ , Chuan Yi Tang'

'Department of Computer Science, National Tsing Hua University, HsinChu, Taiwan, R.O.C.
Email:dr814322(c)cs.nthu.edu. tw

2Department of Computer Science and Information, Providence University, Shalu, Taiwan, R.O.C.

Abstract

This paper presents an algorithm for external
sorting with two-level memories. We only consider the
number of disk I/O because the disk /O is the
bottleneck of external sorting. Our method is different
from the traditional merge sort and uses the sampling
information to reduce the disk I/O in the external phase.
Our algorithm is elegant, simple and making good use
of memory available in the computer environment now.
Under certain memory constraint, the algorithm runs
with optimal number of disk 1/Os, where N is the
number of records to sort and B is the block size.

1. Introduction

The problem of how to sort efficiently has been
widely discussed. To sort extremely large data are
becoming more and more important for the large
cooperation, banks and government institutes, which
rely on the computer more and more deeply in all
aspects. In [10], the authors confirmed that sorting
continue to account for roughly one-fourth of all
computer cycles. Much of the time of sorting is spent
by external sorts, in which the data file is too large to fit
in main memory and must reside in the secondary
memory. The external sorting first generates some

sorted subfiles and then tries to merge these sorted
subfiles into a sorted file placed in the secondary
memory.

The number of 1/Os is a more appropriate
performance measure for the external sorting, because
the I/O speed is much slower than the CPU speed. In
this paper, the internal computation time will be
ignored and the number of I/Os will be considered. We
assume there are two storage devices and there is a
single central processing unit as shown in Figure 1. We
model the secondary storage as a generalized random-
access magnetic disk. The input and output are on
separate I/O devices, i.e., we read from one device and
output the blocks to the other device. Thus, read and
write operations can be concurrent since they are
performed on independent device. The read operations
take significantly more time than writes in our
algorithm. Since the time for read operations is the
bottleneck, we will evaluate our algorithm by read
access time it requires. The essential problem is to
select the parts of the input file that are kept in the main
memory at each time. For this purpose, we fetch the
block when it is needed and remove it when it is not
necessary or already in its global final position.

ST

Internal

CPU memory

Y

\§_’___~_/
External
memory

(disk)

Figu re 1

T
A

-139-

1998 International Computer Symposium
Workshop on Algorithms
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

Basically, the external sorting algorithm consists
of two phases, the internal phase and the external phase.
The subfile that can fit in the main memory was sorted
in the internal phase. We call such a sorted subfile a
“run”. The extérnal phase sorts portions of the total file
that are too large to fit in the working space at a time.
Although the memories of current computers have been
increasing rapidly, there still exists a need for external
sorting for large file. The bottleneck in external sorting
is the time needed for the input/output (I/O) operations.
The reason that the 1/0O becomes the bottleneck is that
CPU speeds are much faster than disk 1/O speeds, and
moreover have been growing at a much faster rate than
disk speeds over the last decade.

Researchers have concentrated on the external
sorting. External Mergesort has been the most popular
choice, as described by Knuth [2], Singh [3], Kwan [1]
and the others. Let N, M, B denote the number of
records to be sorted, the number of records that can fit
into main memory, and the number of records that can
be transferred in a single block, respectively, where 1<
B < M < N. The total number of runs is N/M and the
total number of blocks is N/B. Each block transfer is
allowed to access any contiguous group of B records on
the disk.

The disk /0 complexity of k-way merge sort is
O(N log, N/M). The k-way merge sort, which chooses &
as large as possible to reduce disk /O, gets bad
performance- as shown in [1] because the disk IO
access time of the merge phase in merge sort increases
as a function of k. Besides the external mergesort, there
are other sorting algorithms. The external bubble sort is
presented in [4] with O (N'logN) disk 1/O time. The
external quicksort is proposed in [5, 7]. The external
sorting algorithm based directly on quicksort, designed
by Monard [7], is presented in [6], which leads to the
number of fetch N/B (log, N/M) -0.924. The sorting
itself is performed in an ordinary quicksort manner.
The external sorting algorithm based on shuffie sort
presented in [13] observes that the number of read
operations needed during the execution will be N/B
(1+2In((N+1)/4B)). Another types of sorting
algorithms are also proposed for the external sorting
problem, for example, the distributive partitioning,
bucketsort, and binsort (see, [2,8,10,11,12]). They have
corresponding phases as mergesort does, but they are
performed in the opposite order. In [9], Aggarwal and
Vitter proved that the optimal number of disk /O for

Nlog(N/B)
Blog(M/B)

external sort is O () in one disk system.

In this paper, we proposed an external sorting
algorithm with optimal O(N/B) disk 1/0s for M 2 N/B +
(NB)'”. The internal phase performs the same internal

sorting as in the external merge sort. In the meantime,
the priority queues are used to keep the information of
blocks in the main memory for reducing the 1/O
operations of the external phase. Each block will be
read once and could decide its global final position in
the external phase. The sorting algorithm totally takes
twice disk 1/Os for each block and we can show that
our algorithm has optimal disk 1/O complexity.

The remainder of this paper is organized as
follows. Section 2 is devoted to the new sorting
algorithm. In Section 3, we show the correctness and
analysis of our algorithm. Concluding remarks are
provided in section 4.

2. The Algorithm :

Our sorting algorithm includes two phases — the
internal phase and the external phase. In the internal
phase, we divide the input file into subfiles that can fit
into the main memory and sort them using some
internal sorting algorithm. We call each sorted subfile
as one run and the total number of runs is N/M. After
run i is generated, we store the pointers of the blocks in
a min-priority queue Q; using the blocks’ smallest
values as their keys, where | <7< N/M. Hence, the disk
I/0 time is much more important than computing time,
as long as we have enough room to keep all the
information in memory. The information in the priority
queues will be very useful for the external phase to
reduce disk 1/0. According to the priority queues, we
could read the blocks in order from the disk and write
to their sorted position in the external phase. We could
make sure that /B disk I/Os are needed in the external
phase in all cases. Aggarwal and Vitter [9] proved that

the optimal of disk [/Os for external sort is
Nlog(N/B) . .

O —————————=) in one disk system. If M > (NB)"?,
Blog(M / B)

it becomes O(N/B). Our internal phase needs N/B disk
1/0s and the external phase also needs N/B disk 1/Os.
Our sorting algorithm takes 2N/8 disk 1/Os and it meets
the lower bound. Thus the disk I/O complexity is
optimal. Our sorting algorithm takes 2 disk 1/Os for
each block in all cases.

QOur algorithm is designed based upon above
idea. Without loss of generality, we assume that each
record of the file is distinct and our goal is to sort these
records in ascending order. In the internal phase, we
read M/B blocks from disk to main memory and select
an internal sorting method, such as quick sort or bubble
sort, to sort these blocks internally to produce runs.
Each run consists of M/B blocks with sorted records.
Before writing a run to the disk. we construct the

-140-

priority queue for each run. Let Front(Q;) denote the
smallest key value in Q,. After finishing the internal
phase, the priority queue Q; of each run is constructed
as shown in Figure 2. The number of priority queues
equals to the total number of runs, N/M. We use
Front(Q;) to decide the order of blocks to be read into
main memory in the external phase. The corresponding
block of min,{ Front(Q,)} will be read into main
memory first. When one block is read into main
memory, we use the smallest record of this block as a
pivot and compare it with the records already in main
memory. In Figure 3, the first block of Run 2 will be
read first and the pivot is 5, then the priority queues
have to be reconstructed. The records in main memory
smaller than the pivot are already in their final sorted
order because no record still in the disk is smaller than

Pivot = null

Block 1 2 3 4 5 6

Runl| 8 [25]46] 89 | 179 | 205
>8 |>25[>46| =89 | 2179 | 2205

Block 1 2 3 4 5 6

Run2{ 5 45 | 79 | 200 | 277 405
>5 1>45(>79| =200 | =277 | 2405
Run3
Figure 2

1998 International Computer Symposium
Workshop on Algorithms

December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

the pivot. Then the first block of run | will be read into
main memory. The pivot is 8 and the priority queues
have to be reconstructed as shown in Figure 4. We
perform a merge process for all the records in main
memory, then the records in main memory are in partial
order. The records in main memory which are smaller
than the pivot could be written back to the disk in block.
We continue to find the block by using Front(Q;) and to
read the block into main memory. Then choose the
pivot, write blocks in final position into disk and
proceed the merge process until all the blocks are
processed. During the external phase, each block has to
be read into main memory once, thus there are N/B disk
1/0s in the external phase. Another advantage of our
algorithm is that some records written to disk are
already in their final position during the external phase.

Front(Q,) =28

Q,: 8 > 25-> 46-> 89-> 179->
205 ...

Front(Q,)=5
Q,: 5-> 45-> 79-> 200-> 277->

405 ...

Front(Q;) > 8
> 8
>38

-141-

1998 International Computer Symposium
Workshop on Algorithms
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

Pivot =5
Block 1 2 3 4 5 6 . Front(Q,) =38
Runl| 8 [25146} 89 [179 | 205 |... Q,:8->25->46->89->179->
>8 [>251246| 289 | 2179 | 2205 205 ...
Block 1 2 3 4 5 6 . Front(Q,) =45
Run 2 _| 45 79 | 200 | 277 | 405 |... Q,: 45->79->200->277-> 405 ...
245 (=79 | 2200 | =277 | 2405
Run 3 Front(Q;) > 8
>8
>8
Figure 3
Pivot =8
Block 1 2 3 4 5 6 . Front(Q,) =25
Run 1 125146 89 | 179 | 205 |.. Q,:25->46->89->179->205 ...
' 2251246 | 289 | 2179 | 2205
Block 1 2 3 4 5 6 ... Front(Q,) =45
Run 2 | 45179 200 | 277 | 405 |.. Q,:45->79->200->277->405 ...
2451279 | 2200 | 2277 | 2405
Run 3 Front(Q,) > 8
> 8
>8
Figure 4

-142-

Qur algorithm is stated as follows:
Begin
/* Internal Phase */
For i=1 To N/M Step |
Read next M records into main memory;
Use internal sorting to produce run /;
Construct a priority queue Q, with M/B keys
which are the smallest records of M/B blocks in
run i, respectively;
Write run i to the disk;
End For
/* External Phase */
Clear buffer b7;
Repeat
Let K,,,, = min, { Front (Q,) } ;
Let B,,, = the corresponding block of K,,,,,;
Let 0., = the queue with the key K,
Read block B, to buffer b2;
Delete(Qmin) .
Let pivot = the smallest record of 62 ;
LetS={X| X<pivorand Xebl}
While | S| > B
Let S’ = the first B smallestrecords of S in
the ascending order;
Write S’ to disk;
§=§-§"
End While
Merge the records in 6/ and b2, and place the
résults into b/
Until all Q, are empty
Write bl to disk:
End

3. Analysis of the algorithm

In this section. we shall prove the correctness,
/O complexity and memory requirement of our
algorithm. Now we show why the algorithm works.
Lemma 1. After the external phase, all of the records in
the disk are sorted.
Proof: The records in each run are in the ascending
order after the internal sorting. In the external phase,
the algorithm considers a block B,,, in one iteration. All
of the records in memory buffer b/ which are smaller
than pivot are placed in the disk and in their final
positions after each iteration. We know that the pivot of
the nth iteration is smaller than the pivot of (n+/)st
iteration in the external phase. After each block is read
into main memory and proceed in the external phase,
all of the records will be written to disk and in their
final position. Q.E.D.

Lemma 2. The sorting algorithm takes 2N/B disk 1/0s.
Proof: To generate one run needs M/B disk 1/0s. In the
internal phase, the total number of disk 1/Os for

1998 Intemationél Computer Symposium
Workshop on Algorithms

December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

generating N/M runs is (M/BY*(N/M) = N/B. In the
external phase, one block is read into main memory in
one iteration and in the order of the key in the min-
priority queue. It is easy to know that the external phase
performs N/B disk 1/0s. Thus our sorting algorithm
takes 2N/B disk 1/0s. Q.E.D.

Next we show the memory requirement of the
algorithm.

Lemma 3. The amount of main memory needed for our
sorting algorithms at least N/B + (NB)".

Proof: First of all, we consider the memory
requirement for the priority queue Q;. There are N/M
queues and each queue stores M/B records. Then the
total memory space for N/M queues is N/B. Therefore
M will be at least N/B.

Since we can show later that there are at most
N/M blocks kept in main memory for the external phase,
we get M > (N/M)x B for the external phase. It turns out
that M > (NB)"*. Based upon the above discussion, we
can conclude that M >N/B + (NB)"”.

In the following, we show that in the external
phase, at most N/M blocks are needed to keep in main
memory. Assume that there are already N/M blocks in
main memory. Thus these blocks must be from the
different runs. Suppose that the new pivot is from run j.
Since there are total N/M runs, one of the old N/M
blocks must be from the same run, run j. This block
will be written back to disk because that the new pivot
is larger than it in run j. Therefore at most N/M blocks
will be left in the main memory. Q.E.D.

Theorem 1. The algorithm performs optimal O(N/B)
disk 1/0s for M 2 N/B + (NB)™.
Proof: The optimal of disk /Os for external sort is

o Nlog(N/B)

) in one disk system. If M >
Blog(M /1 B)

(NB)'? , it becomes O(N/B). By Lemma 1 and
Lemma 2, we get that our sorting algorithm takes
2N/B disk 1/0s and it meets the lower bound. Thus
our algorithm is optimal. Q.E.D.

4. Conclusion :

We have proposed an optimal sequential external
sorting algorithm by using the elegant sampling
technique to optimize disk /0. The algorithm takes
exactly 2N/B disk 1/Os and could make- sure the order
of some records during the sorting process. Table 1 lists
the file size and corresponding memory size for running
our algorithm, where the block size and record size are
IK bytes and 4 bytes, respectively. The table indicates
that the memory requirement can be realized in the

-143-

1998 International Computer Symposium
Workshop on Algorithms
December 17-19, 1998, N.C.K.U,, Tainan, Taiwan, R.0.C.

current and future computer environment.

An interesting open problem is whether the idea of
the algorithm is helpful for parallel external sorting in
distributed memory environment to overlap the disk /0
and communication.

File size Memory size
(MB) (MB)
10 >0.14
100 - 20.72
500 >2.70
1,000 25.00
2,000 2941
5,000 >22.23
10,000 >43.16
Table 1

Reference

[1]1S. C. Kwan and J. Baer, “ The I/O performance of
Multiway Mergesort and Tag Sort,” in IEEE
Trans. Comput., vol c-34, NO. 4, April 1985, pp.383 -
387

[2] D. E. Knuth, The Art of Computer Programming,
VOL. 3: Sorting and Searching. Reading, MA:
Addison-Wesley,1973.

[3] B. Singh and T. L. Naps, “ Introduction to Data
Structure,” West Publishing Co., St. Paul. MN (1985).
[4] W. R. Dufrene and F. C. Lin, “An Efficiency Sort

Algorithm with no Addition Space,” in The Computer

Journal, vol. 35, NO. 3,1992.

{[s] A. I Verkamo, “Extemnal

Performance Evaluation 8, 271 - 288 (1988)

[6] G.H. Gonnet, Handbook of Algorithms and Data

Structures (Addison-Welsey, Reading, MA, 1984) 160-

162

[7] M. C. Monard, Projecto e Analise de Algorithm de

Classificacaoc Externa Baseados na Estrategia di

Quicksort, Ph.D. Thesis, Pontificia Univ. Catolica, Rio

de Janeiro, Brazil, 1980

[8] A. L. Verkamo, “Performance Comparison of

Distributive and Mergesort as External Sorting

Algorithms” The Journal of Systems and Software 10,

187 - 200(1989)

[9] A. Aggarwal and J. S. Vitter, “ The Input/Output

Complexity of Sorting and Related Problems,”

Comm. ACM, vol 31 NO. 9 Sept. 1988, pp. 1116 -

1126.

[10] E. E. Lindstorm, and J. S. Vitter, “The design and
analysis of BucketSort for bubble memory
secondary ‘storage. |IEEE Trans. Comput. C - 34,
3(Mar. 1985), 218 - 233.

[11] W. Dobosiewicz, “Sorting by Distributive
Partitioning” , Information Processing Letters
7(1),1-6(1978).

[12] B.W Weide, “Statistical Methods in Algorithm
Design and Analysis” , Camegie-Melion
University Technical Report CMU-CS-78-142,
1978,pp.3-30-3-39.

[13] D.Motzkin and C.Hansen , “An efficient external
sorting with minimal space requirement” |
Internat.) Comput . & Inform. Sci
11(6)(1982)391-392.

Quicksort,”

~144-

	
	139
	140
	141
	142
	143
	144

