1998 International Computer Symposium
Workshop on Algorithms
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

On the Shortest Length Queries for Permutation Graphs

H. S. Chaot

F. R. Hsu?

R. C. T.Leé®

1R&D Division
Syscom Computer Engineering Company
11F, No. 260, Pa Teh Road, Sec 2, Taipei, Taiwan, 104
E-mail: hschao@oodb.syscom.com.tw

?Department of Accounting
Providence University
Shalu, Taichung Hsien, Taiwan, 433
E-mail: frhsu@simon.pu.edu.

3QOffice of the President
Providence University
Shalu, Taichung Hsien, Taiwan, 433
E-mail: rctlee@simon.pu.edu.tw

Abstract

The all-pairs shortest path problem is a very im-
portant problem for both theoretical researches
and practical applications. Given an undirected,
unweighted, connected graph of n vertices, com-
puting the lengths of the shortest paths between
all pairs of vertices takes (n?) time and space,
since there are ©(n?) pairs of vertices. In this pa-
per, we present efficient algorithms to solve the
query version for the problem of computing the
lengths of all-pairs shortest paths for permuta-
tion graphs. Given a permutation graph G, our
algorithms preprocess G in O(logn) time using
O(n/ log n) processors under the EREW PRAM
model such that the shortest length query be-
tween any two vertices can be answered in O(1)
time using one processor.

1 Introduction

Let G = (V, E) be an undirected, unweighted,
connected graph and let |V| =n and |E| =m. A

path between two vertices s and ¢ is a sequence of
vertices (v1,v2,...,vk) such that (v,vi1) € E
for 1 <i < k, where s = v; and ¢ = v. The
length of the path is the number of edges in the
sequence. A shortest path between two given
vertices is a path with the shortest length. The
all-pairs shortest path problem is the problem of
finding the shortest paths between all pairs of
vertices. In this paper, we consider the distance
version of the all-pairs shortest path problem;
i.e., the problem of finding the lengths of the
shortest paths between all pairs of vertices.
Given a undirected, unweighted graph G of n
vertices, computing the lengths of the shortest
paths between all pairs of vertices in G takes
Q(n?) time, since there are ©(n?) pairs of ver-
tices. For general graphs, the best known al-
gorithm was proposed by Seidel 8] and runs in
O(M (n) log n) time, where M (n) is the time nec-
essary to multiply two n X n matrices of small in-
tegers, which is currently o(n?37%). Efficient se-
quential and parallel algorithms have been devel-
oped for special classes of graphs such as the in-

-132-

terval, circular-arc, and permutation graphs (see,
e.g., [4, 6, 7).

For the interval and circular-arc graphs, Chen
and Lee [4] presented a preprocessing algorithm
which runs in O(n) time and in O(log n) time us-
ing (n/logn) CREW PRAM processors in par-
allel. Their preprocessing algorithm constructs
an O(n) space data structure and using the data
structure, any shortest length query can be an-
swered in O(1) time using one processor. In [4],
Chen and Lee made use of the technique of the
level-ancestor query in trees introduced by Berk-
man and Vishkin [2].

In this paper, permutation graphs are consid-
ered. For a permutation graph G with its corre-
sponding permutation 7 = [(1), 7(2),. .. ,m(n)],
we propose a preprocessing algorithm which
runs in O(n) time and in O(logn) time using
(n/logn) processors under the EREW PRAM
model. Qur preprocessing algorithm constructs
an O(n) space data structure and using this data
structure, we can answer a shortest length query
in O(1) time with one processor.

2 Preliminary

Let # = [x(1),7(2),...,n(n)] be a permuta-
tion of the numbers 1,2,...,n. We can con-
struct a graph G[r] = (V,E) with vertex set
V ={1,...,n} and edge set E:

(,5) € E® (i—)x@) -7 (5) <0,

where 7~1(i) is the position of ¢ in 7 =
[x(1),7(2),...,7(n)]. An undirected graph G is
a permutation graph [5] if there is a permutation
= such that G is isomorphic to G[7]. In this pa-
per, our input is a permutation graph G[r], with
its corresponding permutation .

A permutation graph can be viewed as an in-
tersection graph, which is illustrated by the per-
mutation diagram [5], which is defined as follows:
Write the numbers 1,2, ...,n horizontally from
left to right. Under every i, write the numbers
x(i). Draw line segments connecting ¢ in the
top row and 7 in the bottom row, for each ¢. It

1998 International Computer Symposium
Workshop on Algorithms

December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.O.C.

15

4 12

16
11 17

(a)

1 23 456 7 8 9101112131415 16 17

S 21 % 3 612 41014 7 9171511 13 16
)

Figure 1: (a) A permutation graph. (b) The
permutation diagram.

is easy to see that two vertices ¢ and j of G[n]
are adjacent if and only if the corresponding line
segments of ¢ and j intersect. Figure 1 shows
the permutation graph G[n] and its correspond-
ing permutation diagram of a permutation 7 =
;5,2,1,8,3,6,12,4,10,14,7,9,17,15,11,13, 16].

Consider a permutation graph G[r] defined by
a permutation 7 =-[r(1),7(2),...,m(n)]. For
each vertex %, define:

UR(i) = max({i} U {k|(;, k) € E}),
UL(i) = min({i} U {K|(;, k) € E}),
LR(i) = m(max({r"' (i)} U {z~' (k)| (i, k) € E})),
LL(3) = w(min({r (i)} U {=~ (k)| (i, k) € E})).

For our example in Figure 1, if ¢ = 10, we have
UR(10) = 12 and UL(10) = 7 and LR(10) =9
and LL(10) = 12. In other words, on the per-
mutation diagram, for a vertex 4, U R(z) (resp.
LR(i)) is the upper (resp. lower) rightmost ver-
tex among the vertices adjacent to vertex 1, in-
cluding i itself. Similarly, UL(%) (resp. LL(%)) is
the upper (resp. lower) leftmost vertex among
the vertices adjacent to vertex i, including i it-
self.

Lemma 1 Let G[r] be a permutation graph with
n vertices. The following equations hold for all

-133-

1998 International Computer Symposium
Workshop on Algorithms
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

5, 1<1<n.

UR(:) = max({m(1),7(2),..., (7" (i))})
UL(3) = min({x{x~1(3)),...,7(n -1), w(n)})
LR(i) = m(max({z~1(1),771(2),..., 77 (i)}))
LL(3) = n(min({zx~1(3),..., 771 (n)}))

Proof. We prove the first equa-
tion only. The proofs of the other three
equations are similar and omitted. Let
max({r(1),7(2),...,m(x"}(i))}) be j. Since

UR(:) is at least i, for any UR(i) = k # 1, k > i.
By the definition of UR(i), (i,k) € E. Hence
7~1(k) < m~1(3). We have 7"} (UR(3)) < 7~1(:)
and then, by the definition of j, UR(%) < j. Con-
sider any vertex [, where 1 < n71(l) < n71(s). If
(¢,1) € E, we have | < UR(i) by the definition
of UR(:). If (i,1) ¢ E, we have | < i < UR(5).
Hence, we have [= n(n~1(l)) < UR(é). Thus,
UR(G) = | = max({x(1),7(2),...,7(x"1(©))}).
O

Note that UR(3) > i and 7~ }(UR(3)) < 77 1(2)
for any i in G[r]. Since UR(i) > i, we have
UR(UR() > UR(i). Since 7 Y (UR()) <
n~1(i), we have UR(UR(i)) < UR(:) by
Lemma 1. Hence, for any i, UR(UR(i)) =
UR(i). Similarly, LR(LR(i)) = LR(i). Define a
vertex i to be an UR-type (resp. LR-type) vertex
if UR(3) = i (resp. LR(:) = 4). It is obvious that
vertex UR(4) is of UR-type and vertex LR(i) is
of LR-type. Thus we have the following lemma:

Lemma 2 Given a permutation graph G[r], for
each i, UR(3) and LL(i) are UR-type vertices
and LR(i) and UL(i) are of LR-type.

For example, consider the permutation graph in
Figure 1. All of the LR-type vertices are bold-
faced line segments and its corresponding per-
mutation diagram is shown in Figure 2.

If i is an LR(resp. UR)-type vertex, define
SUC(i) to be UR(i)(resp. LR(3)).

For any function F : [1.n] — [1..n], and any
integer I, | > 0, define

F(FE-1y ifl>1,
FO@G) ={ F@) ifl=1,
i if | = 0.

1 23456 7 8 9101112131415 16 17

5 218 3 612 41014 7 917151113 16

Figure 2: The LR-type vertices in a permutation
graph.

For any two vertices s and ¢ in a permuta-
tion graph,- where s < t
and (s,t) ¢ E, let UR_path(s,t) be the vertex
path (s, SUCO(UR(s)),...,SUCHO(UR(s)), 1),
where [is the smallest nonnegative integer such
that (¢, SUC®W(UR(s))) € E. Similarly, let
LR_path(s,t) be
(s, SUCO(LR(s)),...,SUCWD(LR(s)),1),
where [is the smallest nonnegative integer such
that (¢, SUC®(LR(s))) € E.

Lemma 3 (Ibarra and Zheng [6]) Let s and
t be any two vertices in a permutation graph
G[r], where s < t and (s,t) ¢ E, the shorter
one between UR_path(s,t) and LR_path(s,t) is
the shortest path connecting s and t. O

Define d(s,t) to be the length of the shortest
path between s and ¢. If (s,t) € E, d(s,t) = 1.
Otherwise, by Lemma 3, d(s,t) is equal to the
length of the shorter path between UR_path(s,t)
and LR_path(s,t). In the cases of d(s,t) < 2, we
can find d(s,t) by simply checking whether s or
UR(s) or LR(s) is adjacent to ¢t. Hence, in the
following, we consider the cases of d(s,t) > 3.

According to Lemma 3, we are interested in
the distance between UR(s) and t and the dis-
tance between LR(s) and . We first note that
instead of finding the distance between UR(s)
and t, we can find the distance between UR(s)
and UL(t) and the distance between UR(s) and
LL(t). Suppose we further prove that instead of
finding the distance between UR(s) and UL(t),
we may find the distance between LR(UR(s))
and UL(t), then there is one advantage that
we can utilize. This advantage is that both
LR(UR(s)) and UL(t) are of LR-type. In the
following, we shall finally prove that we only have

~134-

to find the distances of four shortest paths which

start and end with LR-type vertices. If we can
answer a shortest length query between any two
LR-type vertices in O(1) time, we can answer a
shortest length query between any two vertices
still in O(1) time.

Theorem 1 For any two vertices s and t, s <1
and d(s,t) > 3, in a permutation graph G[xl,

d(s,t) = min({d(UR(s), UL(t)), d(UR(s), LL(2)),

d(LR(s), UL(t)), d(LR(s), LL(£))}) + 2.

Proof. Let s’ denote UR(s). Without losing
generality, suppose UR_path(s, t) is the shortest
path from

s to t. Furthermore, suppose UR_path(s,t) =
(s, SUCON(s",...,SUCD(s),t) and SucW(s"
is of LR-type. It is clear that d(s,t) = [+2. We
claim that the vertex path obtained by replac-
ing SUCW(s') with UL(t) from UR.path(s,1),
is still a shortest path connecting s and t.
It is obvious that (UL(t),t) € E. We only
need to prove that (SUCU-Y(s"),UL(t)) €
E. Since SUC®(s") is LR-type, suct-1(s")
is of UR-type. Note that such(s) <
SUCH1(s") and (SUCW(s'),t) € E. By the
definition of UL(t), UL(t) < SUCWH(s) <
SUCU-D(s). Since (SUCU-Y(s'),t) ¢ E
and 7~} (SUCHV(s")) < =~'(t), we have
Y UL({) > = () > Y SUCH1(s").
Therefore, (SUCHY(s'),UL(t)) € E and the
path (s, SUCON(s"),...,SUCH(s"),UL(t),1)
is still a shortest path connecting s and
t. Furthermore, note that the subpath
(SUCO(s",...,SUCHV(s"),UL(t)) is also a
shortest path connecting UR(s) = SUCO(s')
and UL(t). Hence, d(UR(s),UL(t)) = . We
therefore have d(UR(s), UL(t))+2 = d(s,t). Itis
impossible that d(UR(s), UL(t)) is greater than
anyone of d(UR(s), LL(t)), d(LR(s), UL(t)) and
d(LR(s), LL(t)). Otherwise, it is directly con-
tradictory to the fact that d(s,t) is the shortest
length between s and £. By the above discussion,
the equality holds for the supposed case.

The proofs for the remained cases are similar and
omitted here. a

1998 International Computer Symposium
Workshop on Algorithms

December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.O.C.

Lemma 4 For any two vertices s and t, s <1
and d(s,t) > 1, in a permutation graph G[rl, if
s is of UR-type, d(s,t) = d(LR(s),t) + 1.

Proof. Since s is UR-type, UR(s) = s. Hence,
LR_path(s,t) is shorter than UR.path(s,t). By
Lemma 3, it is obvious that LR._path(s,t) is
the shortest path connecting s and t. Hence,
d(s,t) = d(LR(s),t) + 1. m!

Lemma 5 For any two vertices s and t, s <1
and d(s,t) > 1, in a permutation graph Ginl, if
t is of UR-type, d(s,t) = d(s, UL(t)) + 1.

Proof. Without losing generality, sup-
pose UR_path(s, t) is shorter than LR _path(s,t).
Let s = UR(s) and UR_path(s,t) =
(s,SUCON(s"),...,SUCW(s"),t). Since t is of
UR-type, SUC®(s") must be of LR-type. The
remaining proof is similar to that in Theorem 1
and omitted. a

Theorem 2 For any two vertices s and t, s <t
and d(s,t) > 3, in a permutation graph G[r],

d(s,t) = min({d(LRUR(s)),UL(#)) +3,
d(LR(UR(s)), UL(LL(t))) + 4,
d(LR(s), UL(t)) + 2,
d(LR(s), UL(LL(t)) + 3)}).

Proof. Note that UR(4) and LL(:) are of UR-
type for any vertex i in a permutation graph
G[r]. Apply Lemmas 4 and 5 to Theorem 1.
The proof is complete. a

Since both LR(i) and UL(3) are of LR-type
for any vertex 7 in a permutation graph G[r], ac-
cording to Theorem 2, if we can answer a shortest
length query between any two LR-type vertices
in O(1) time, we can answer a shortest length
query between any two vertices in O(1) time.

-135-

1998 International Computer Symposium
Workshop on Algorithms
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

3 The Shortest Length Query
between Two LR-type Ver-
tices '

Given a permutation graph G[r], define SS(i) =
SUC(SUC(3)) for each vertex 1.

Lemma 6 For any two LR-type vertices s and
t in G[n], if s < t and k is the smallest integer
such that SS¥)(s) > t, then d(s,t) = 2k.

Proof. Since s is of LR-type, UR(s) =
SUC(s) and UR_path(s,t) is the shortest
path connecting s and t. Furthermore, let
UR_path(s,t) = (S,SUC(S),...,SUG(Z)(S),t),
where [is the smallest nonnegative integer such
that (¢,SUCW(s)) € E. We have that all
SUCU(s)ys, 0 < j < [, are smaller than
t. Since k is the smallest integer such that
SS*)(s) > t, we have 2k > I. Since t is of
LR-type and (SUCW(s),t) € E, SUCY(s) is of
U R-type, | is an odd number and SUC®)(s) > t.
We claim that SUCH(s) = §5(+D/2) >
t. If SUCU+)(s) = ¢, the proof is com-
plete. If SUCH(s) # ¢, since SUCW(s)
is of UR-type, SUCU(s) = LR(SUCH(s)).
Hence, n~}(SUCW*D(s)) > =x~l(t). Since
(SUCU(s),t) ¢ E, we have SUCU+V(s) =
S§5(U+1)/2) > ¢, Therefore, we have (I+1)/2 > k.
Since ! is an odd number and 2k > ! and
(1+1)/2 > k, we have 2k = [+ 1. Then,
d(s,t) = I +1 = 2k. The proof is completed.
0

Let the number of all LR-type vertices in
G[r] be g. We can find all LR-type vertices
out and organize them into an array A from
small to large. Let A = [A(1), A(2),...,A(q)]
be the array of all LR-type vertices in G[x]
such that A(z) < A(j) for any i and j, where
1 € i < j £ q. The LR-type vertices of our
example in Figure 1 are 1,3,4,7,9,11,13 and
16. The array A is shown in Figure 3. For any
LR-type vertex A(i), SUC(A(1)) is a UR-type
vertex and then SS(A(i)) = SUC(SUC(A(7)))
is an LR-type vertex. Define an array P =

[P(1), P(2),...,P(g)] such that P(i) = j if

A(j) = SS(A(3)) for any 4, 1 <i < gq.

Index: 1 2 3 4 5 6 7 8

A: 1 3 4 7 9 11 | 13 | 16

Figure 3: The compacted array A of all LR-type
vertices.

As shown in [3], a rooted tree, denoted as Ty,
is defined by arrays A and P such that T4 is
rooted at A(q), where P(A(q)) = A(g), and the
parent of A(7), 1 <1 < g, is A(P(7)). The array
P and the tree T4 of our example in Figure 1 are
shown in Figure 4.

Index: 1 2 3 4 5 6 7 8
P: 3 4 6 7 7 8 8 8

Figure 4: The tree T4.

Lemma 7 (Chao el al. [3]) P(i) < P(j), for
eachiand j,1<i<j<q.

By Lemma 7, it is easy to see that the children
of each internal node in T4 occupy consecutive
ranges in array A. Hence we can decide whether
a given node is the leftmost child of its parent
node. We now try to find the ranks among sib-
lings for each node in T4, except the root. The
rank of node A(%) among its siblings will be equal
to one plus its index 7 minus the index of its
leftmost sibling. Let Q be an array such that
Qi) = i if A(3) is the leftmost child of its par-
ent, and Qi) = 0, if otherwise, except the root
node. Perform a prefix maxima computation on
the array @ and let the resulting array be array
PrefizMaz@. Construct an array Rank such

-136-

that Rank(i) = 1 +1 — PrefizMazQ(i). Then
Rank(i) is the rank of A(i) among its siblings.
Figure 5 shows these arrays for our example.

Index: 1 2 3 4 5 6 7 8
Q: 1 2 3 4 0 6 0
PrefixMaxQ: 1 2 3 4 4 6 6
Rank: 1 1 1 1 2 1 2 -

Figure 5: The computation of the array Rank.

With arrays P and Rank, the ”parent-of’ re-
lation and the explicit ordering of children of
vertices in T4 are made clear. Let PreOrder (i)
denote the pre-order number of A(i) when one
traverse T4. Let L(i) denote the level of A7)
in tree T4. With arrays P and Rank, we
can compute PreOrder(i) and L(i) for all ¢ in
O(log n) time using O(n/ log n) processors under
the EREW PRAM model by utilizing the Euler
tour technique [1]. In our example, the pre-order
traversal of T4 would be 16,11,4,1,13,7,3,9,
PreOrder =
3,3,2,2,2,1,1,0].

Theorem 3 For any LR-type vertices A(i) and

A(7), 1<, ’
2(L(j) = L(E) + 1)

d(A(3), A(4)) = 2(L(j) - L(i))

if otherwise.

Proof. It is easy to see that for nodes
A(k) and A(l), A(k) < A(l), at the same
level in tree T4, we have PreOrder(k) <
PreOrder(l). Since i < j, we have L(i) <
L(j). Hence , A(k) = SS(E(G)-L(E)) is the ances-
tor of A(¢) with the same level of A(j). Note
that in a pre-order traversal, every node has
larger pre-order number than that of its an-
cestors. If PreOrder(i) < PreOrder(j), then
PreOrder(k) < PreOrder(i) < PreOrder(j).
Since A(k) and A(j) are at the same level
in tree T4 and PreOrder(k) < PreOrder(j),
we have A(k) < A(j) and SS(A(k)) =

[4,7,3,6,8,2,5,1] and L =

1998 International Computer Symposium
Workshop on Algorithms

December 17-19, 1998, N.C.K.U,, Tainan, Taiwan, R.O.C.

SSELU)-LEN+L(AGF)) > A(j). According
to Lemma 6, d(A(4),A(5)) = 2(L(5) —
L(i) + 1). If PreOrder(i) > PreOrder(j),
PreOrder(k) > PreOrder(j). According to
Lemma 6, d(A(3), A(§)) = 2(L(j) — L(7))- The
proof is complete. a

Directly from Theorem 3, we have the follow-
ing corollary:

Corollary 1 Given the arrays PreOrder and L
of the tree T of a permutation graph G[r], the
shortest length query between any two LR-type
vertices can be answered in O(1) time.

4 The Preprocessing and
Querying Algorithms.
Given a permutation © = [r(1),7(2),...,n(n)]

of a permutation G[r] with n vertices, our pre-
processing algorithm constructs the following ar-
rays for further use:

1. UR = [UR(1),UR(2),...,UR(n)], where
UR(i) = max({x(1),...,m(x"1(@)})-

2. UL [UL(1),UL(2),...,UL(n)], where
UL(3) = min({r(7~1(3)),...,m(n)})

3. LR = [LR(1),LR(2),...,LR(n)], where
LR(3) = n(max({z~1(1),..., 7 1 (E)}))-

4. LL = [LL(Q1),LL(2),...,LL(n)], where
LL() = w(min({w~1(3),..., 7"} (n)}))-

5. IndezA[l..n] : IndezA(1) = j, if A(j) =13,
and IndezA(:) = 0, if otherwise.

6. PreOrder{l..q) : PreOrder(i) is the pre-
order number of A(i) in tree T4 for 1 <1 <
g, where q is the number of LR-type vertices
in G[r].

7. L{l..q] : L(i) is the level of A(i) in tree T4 for
1 < i < g, where ¢ is the number of LR-type
vertices in G{x].

fl

if PreOrder(i) < PreOrder(j),

Theorem 4 All of the arrays listed above can
be computed in O(logn) time using O(n/logn)
processors under the EREW PRAM model.

-137-

1998 International Computer Symposium
Workshop on Algorithms
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

Proof. The first four arrays can be computed
by utilizing the parallel prefix or suffix computa-
tions [1]. The array A[l..q] and tree T4 (i.e., the
arrays P[l..q] and Order[l..q]) can be computed
by using the algorithms in Chao el al. [3]. The
computation of array IndezA[l..n] is very sim-
ple while array A has been computed. The ar-
rays PreOrder(l..q] and L{1..q] can be computed
by utilizing the Euler tour technique [1] and the
parallel prefix computations. All of the above
computations can be computed in O(log n) time
using O(n/logn) processors under the EREW
PRAM model. s

According to Theorem 3, LRSP(s,t) correctly
finds d(s, t) of two LR-type vertices s and ¢. Ac-
cording to Theorem 2, ShortestLength(s,t) cor-

rectly finds d(s,t) for any two vertices s and ¢ in

Glr].
FUNCTIONLRSP(s,t) : d(s,)
ifs<t
then i « IndezA(s) and j + IndezA(t)
else i « InderA(t) and j + IndezA(s);
if PreOrder(:) < PreOrder(j)
then return (2(L(j) — L(i) + 1))
else return (2(L(7) — L(3)));

FUNCTION ShortestLength(s, t) : d(s,t)
if (s,t) € E
then return 1;
if (LR(s),t) € E or (UR(s),t) € E
then return 2;

d « min{LRSP(LR(UR(s)),UL(t)) + 3,
U

(
LRSP(LR(UR(s)), L(LL(N) +4,
LRSP(LR(s),UL(t)) +
LRSP(LR(s), L(LL(t)) +3)}

return d;

Corollary 2 Given the permutation w =
[r(1),7(2),...,7(n)] of a permutation graph G
with n vertices, our preprocessing algorithm runs
in O(n) time sequentially and in O(logn) time
using O(n/logn) processors under the EREW
PRAM model. Using an O(n) space data struc-
ture in a preprocessing algorithm, any shortest
length query between two wvertices can be an-
swered in O(1) time using one processor.

References

[1] S. G. AKl. Parallel computation: models and -
methods. Prentice Hall, Upper Saddle River,
New Jersey, 1997.

[2] O. Berkman and U. Vishkin. Finding level-
ancestors in trees. Journal of Computer and
System Sciences, 48:214-230, 1994.

[3] H. S. Chao, F. R. Hsu, and R. C. T. Lee. An
optimal EREW parallel algorithm for com-
puting breadth-first search trees on permuta-
tion graphs. Information Processing Letiers,
pages 311-316, 1997.

D. Z. Chen and D. T. Lee. Solving the all-
pair shortest path problem on interval and
circular-arc graphs. In IPPS’94: 8th Interna-
tional Parallel Processing Symposium, pages
224-228, 1994.

[5] M. C. Golumbic. Algorithmic Graph Theory
and Perfect Graphs. Academic Press, New
York, 1980.

[6] O.H.Ibarra and Q. Zbeng. An optimal short-
est path parallel algorithm for permutation
graphs. Journal of Parallel and Distributed
Computing, 24:94-99, 1995.

R. Ravi, M. V. Marathe, and C. Pandu Ran-
gan. An optimal algorithm to solve the
all-pair shortest path problem on interval
graphs. Networks, 22:21-35, 1992.

[8] R. Seidel. On the all-pair-shortest-path prob-
lem. Journal of Computer and System Sci-
ences, 51:400-403, 1995.

-138-

	
	132
	133
	134
	135
	136
	137
	138

