Proceedings of International Conference
on Artificial Intelligence

Parallel Programming of Rule-Based Systems with Decomposition
Abstraction

Shiow yang Wu

Institute of Computer Sciences and Information Engineering
National Dong Hwa University
Hualien, Taiwan, R.O.C..

Abstract

Decomposition absiraction is the process of organiz-
iy and specifying decomposition strategies for the ez-
ploitation of parallelism available in an application. In
a recent paper [14], we have developed and evaluated
declarative primitives for rule-based programs that ex-
pand opportunities for parallel execution. In this paper,
we discuss the programming of pavallel rule-based sys-
tems using decomposition abstraction promilives. We
propose methodologies for transforming sequential 1ule
programs nto parallel programs and for programming
parvellel systems from scralch. Preliminary implemen-
talion and experimentation resulls demonsitrate scal-
able and broadly available parallelism.

1 Introduction

Production systems have been shown to be a pow-
erful architecture for intelligent systems [4]. Initial
iplementations of production systems suffered from
poor performance which prohibited their use in large
scale applications. Nevertheless, applications of rule-
hased programming have continued to expaud.

Intuition suggests that languages based on the pro-
duction system model admit a high degree of paral-
telism [5]. Efforts to exploit parallel processing to in-
crease production system performance have been on-
going for over a decade {1]. However, the maximum
specdup achieved by actual implementation rarely ex-
ceeds tenfold and has never done so over a general
suite of applications no matter how many processors
are used.

Most of the existing techniques for parallel produc-
tion systems are, from a methodology point of view,
stinilar to the techniques used in the parallelization of
sequential imperative languages (mostly FORTRAN)
[2]. Critical part(s) of the sequential execution is(are)
parallelized, or optimizing compilation and transfor-
mations are applied to automatically transform a se-
quential program into a parallel program. This ap-

248

proach has the obvious benefit of its general applica-
bility to existing sequential programs. However, the
experiences show that these techniques have met with
limmited success, both on imperative languages [2] and
fule languages {5].

In a recent paper [14], we have developed and eval-
uated declarative primitives for rule-based programs
that expand opportunities for parallel execution. In
this paper, we discuss the programming of parallel rule-
based systems using decomposition abstraction prim-
twes. We propose methodologies for transforming
sequential rule programs into parallel programs and
for programnung parallel systems from scratch. Pre-
liminary implementation and experimentation results
demonstrate scalable and broadly available parallelism.

2 Related Work

Early research on parallel production systems fo-
cused almost exclusively on parallel matching [1, 5.
Multiple rule firing systems parallelize not only the
match phase, but also the act phase by firing multiple
rules in parallel [7, 9, 12]. Some systems even fire rules
asynchronously [8]. Compile-time syntactic analysis of
data dependency graph [7] is used to detect possible in-
terference between rules. Instantiations of compatible
rules [9] can be fired in parallel. For dependencies that
can not be resolved at compile-time, run-time analysis

is applied to increase the parallelism.

All techniques above are domain insensitive since
parallelism specific to the application domains is not
exploited. The benefit of firing multiple rules can eas-
ily be overwhelmed by the cost of synchronization and
run-time interference analysis [11]. As a result, only
limited speedup was achieved.

On the other hand, the SPAM/PSM system [6] ex-
ploits task-level parallelism and the PARULEL lan-
guage [13] employs a meta-level rule system to select
rule instantiations for parallel execution. These sys-
tems achieved better results by exploiting application

specific parallelism. However, the techniques employed
tend to be ad hoc or incur excessive overhead.

Our main contributions are to provide abstraction
mechanisms and programming methodologies which ef-
fectively exploit application parallelism without the
high cost of run-time interference detection or instan-
tiation selection.

3 Decomposition Abstraction

Decomposition abstraction(DA) is the process of or-
ganizing and specifying decomposition strategies for
the exploitation of parallelism available in an appli-
cation. 1n this section, we briefly describe a sct of DA
mechanisms, detailed elsewhere [14], {or parallel pro-
gramming of rule-based systems.
3.1 An Object-Based Framework

We have proposed a general obje('.t—ba:sed framework
and an abstract rule notation for the general applica-
bility of our results and for ease of discussion. The
(ramework 1s built on top of a unified ohject model
with objects, methods, and classes of the usual mean-
ings. We briefly surnmarize our framework and the rule
notation to set the stage for discussing the progran-
ming issues.

Definition 1 (Rule) A rule is a condition-aclion
pair. Conditions can be postlive or negative.

e If v is a variable name, C is ¢ class name and

E is a quantifier-free first order expression, then
(v : C 2 E) 5 a positive condition and —(v :
(1 F) is a negative condition.

o A rule is a triple (P,N,M) where P is a non-
emply sct of positive conditions, N is a sel (possi-
bly emply) of negative conditions, and M is a sel
of method invocations.

e A posilive or negalive condition is lermed a con-
dition element. 7The set of all condilion el-
ements is called the antecedent.
method invocations is called the consequent. O

Definition 2 (Instantiation) The state of a rule
system is the set of objects in working memory. Given
a state S, a rule 1s salisfied in S if there exists il lcast
one set of objects such that all positive condilions are
satisfied and none of the negative conditions are satis-
fied. The setl of objects satisfies the positive condilion
elements is called an imstantiation of the rule. O

Definition 3 (Rule Firing) If S is a stale, 7 is a
rule which is satisfied in the state, the result of firing
the rule is a new state S' obtained from S by invoking
the methods in the consequent of v on the sel of objects
which s an tnstantiation of r. O

249

The set of

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

Definition 4 (Parallel Rule Firving) Two instanti-
alions are compatible if their execution do not inter-
fere with each other. A set of instantiations is com-
patible if the instantiations are pair-wise compatible.
The result of parallel firing of compatible instantia-
tions is a new state obtained by invoking all methods
on corresponding objects of the instantzations. O

3.2 Set Selection Conditions

A positive condition element enclosed in square
brackets is a sel selection condition denoting that all
qualified objects should be processed by the consequent
and that they can be processed independently. The
rule below specifies that for a department d, select all
poor employees and raise the salary of each one of them
by 10%. :

rule Raise_ All_ Poor_ Employees {
(d:Dept),

[e:Emp: edept == d.name A
e.salary < 10000]

e.salary = e.salary + e.salary /10 }

3.3 Aggregate Operators

The set of ohjects selected by a set selection con-
dition can also be processed as a whole by aggregate
operators such as count, sum, max, min, and avg.
In a set selection condition [v : C :: £], v denotes
an individual and v+ the whole set of selected objects,
respectively. For example, the following rule computes
the number of poor employees in a department.

rule C'ount_ Poor_Employees {
(d: Dept),
[e:Emp:: edept == d.namc A
e.salary < 10000]

d.poor_emps = Count(ex) }
3.4 ALL Combinators

For complex decomposition involving multiple
classes of objects, the ALL combinator is used to group
together several condition elements into an ALL condi-
tion to denote that any consistent collection of objects
and set objects (for set selection conditions) can be
considered independent, and therefore all of them can
be processed in parallel. The following rule specifies
that the number of poor employees of each departments
can be computed in parallel.

rule Count_ All_Poor_FEmployees {
ANl ((d: Dept),
[e:Emp: edepl == d.name A
e.salary < 10000])

Proceedings of International Conference
on Artificial Intelligence

d.poor_emps = Count(rx) }

3.5 DISJOINT Combinators

The DISJOINT combinator is used to combine sev-
eral condition elements into a DISJOINT condition for
denoting that objects matching the enclosed conditions
are 1o be decomposed in a disjoint pattern. In other
words, for any two instantiations of a rule with DIS-
JOINT combinator, as long as the selected set of ob-
jeets for the enclosed conditions are disjoint, they are
parallel executable. The rule below specifies that all
tearms can be formed at the same time as long as the
selected employees are mutually disjoint.

rule Team_ All_ Employees {

Disjoint (

(el :Emp: clteam == unknown),
(¢2: Emp : ¢2leam == unknown),
(€3 : Emp :: e3.team == unknown))

el.team = new Team(el,e2,ed),

e2.tcam = ed.team = el.team }

3.6 Contexts
A rule of the form

rule » in context T { ... }

denotes that the rule r is designed for context 7. A
context rule of the form

T+ 0. . T,

specifies that context T is causally dependent on
contexts Ty, T, ...,T, which means, to solve T, all
T, 1s,...,7, must be solved first. For example, the
context rule below specifies that before working on
salary adjustinent, we must perform profit evaluation

and salary survey.

Salary.- Adjustment +
Profit_ Evaluation, Salary_Survey

3.7 Semantic Interference Analysis

In a recent paper [14], we proposed a semantic-based
approach for the analysis of rule interference based on
assoclative relationships among data objects. A new
notion of functional dependency was introduced. As
an example, if a team uniquely determines the sel of
players associated with the team, then the functional
dependency

{Team} — {Players}

250

holds for the application. We have shown that func-
tional dependencies can be used to effectively derive
information about whether a rule is self-interfering and
aboul the interference between different rules.

4 From Sequential to Parallel

In this section, we present a set of heuristics to assist
the programmer in converting an existing sequential
program Into a parallel program using the DA mecha-
nisms.
4.1 'Repeatedly Firing Rules

Commonly, rules that fire repeatedly in a sequential
program can actually be fired in parallel. For example,
the following rule calculates the GPA for all students.

rule Calculate_GPA {
(s:Student :: s.GPAdone == NO)
-—>
8.GPA = calculate_GPA(s),
s.GPAdone = YES }

Another case is a set, of rules that explicitly sitnulate
a loop. One rule initializes the loop. One or more rules
constitute the body and the last one detects the end.
For example, the following three rules calculate the
GPAs under a task control.

rule Calculate_GPA_Loop_Init {
(t:Task :: t.task == PREVIOUS)
(s:Student :: s.GPAdone == KO)
-—>
t.task = CALCULATE }

rule Calculate_GPA_Loop_Body {
(t:Task :: t.task == CALCULATE),
(s:Student :: s.GPAdone == NO)
——
8.GPA = calculate_GPA(s),
s.GPAdone = YES }

rule Calculate_ GPA_Loop_End {
(t:Task :: t.task == CALCULATE),
-(g:Student :: s.GPAdone == NO)
-—=>
t.task = NEXT }

Both types of repeated firing rules can be easily
transformed into DA rules using set selection condi-
tion as follows.

rule DA_Calculate_GPA {
[s:Student :: s.GPAdone == NO]
-—>
8.GPA = calculate_GPA(s),
s.GPAdone = YES }

Heurvistic 1 Transform « rule that fires repeatedly
on ¢ class of objects by changing the condition that
matches the class into a set selection condilion.

4.2 Accumulation Rules

There 1s no construct in sequential rule languages
to do aggregate numerical computations such as count-
ing, computing the sum, maximal, minimal, average,
ete. Instead, they are “simulated” by a set of rules
that implement counters and loops as the following ex-
ample.

rule Count_Straight_A_Students_Init {

(t:Task :: t.task == CALCULATE),

~(s:Student :: s.GPAdone == NO)
-—>

t.task = COUNT,

count = 0 }

rule Count_Straight_A_Students_Body {
(t:Task :: t.task == COUNT),
(s:Student :: s.GPA == 4.0
&& s.counted == NO)
-—>
count = count + 1,
s.counted = YES }

rule Count_Straight_A_Students_End {
(t:Task :: t.task == COUNT),
~(s:Student :: s.counted == NO)
-—>
print_count(count),
t.task = NEXT }

This type of rules can be transformed into a single DA
rule using the set selection conditions and aggregate
operators.

rule DA_Count_Straight_A {
[s:Student :: s.GPA == 4.0]
-—>
count = Count(s*),
print_count(count) }

Heuristic 2 Transform a sel of rules for accumula-
tron into a single DA rule by changing the condition
that malches the class of objects to be accumulated into
a sel selection condition, and by using appropriate ag-
gregale operalors on the selected sel in the consequent.

4.3 Nested Rules

Nested rules are often used when objects of several
related classes need to be processed repeatedly. Sup-
pose we wani to count the number of students in all
departments,

251

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

rule Count_Students_Init {
(d:Dept :: d.counted == N¥O)
-—>
d.count = 0 }

rule Count_Students_Body {
(d:Dept :: d.counted =
(s:Student ::

N,
s.dept == d.name &&
s.counted == NO)

__) -
d.count = d.count + 1,
s.counted = YES }

Tule Count_Students_End {
(d:Dept :: d.counted == ND),
-(s:Student':: s.dept == d.name &&
s.counted == NO)
-—>
d.counted = YES }

This is a standard nested loop over two classes of ob-
Jjects. They can be transformed into a single DA rule
using the ALL combinator.

rule DA_Count_Students {
A11((d:Dept :: d.counted == NO),
[s:Student :: s.dept == d.name])
-—>
d.count = Count(s*),
d.counted == YES }

Heuristic 3 Transform nested rules into a single DA
rule using the ALL combinator. Enclosc all conditions
that match the target objects into the combinator.

4.4 Disjointness Rules

In sequential rule languages, rules that fire repeat-
edly on disjoint partitions of data objects must have
the disjointness property explicitly specified. As an
example, the following rule assigns projects to groups
of three students.

rule Assign_Projects {
(p :Project :: p.assigned == NO),
(s1:Student :: sl.assigned == NO),

(s2:Student :: s2.assigned == HNO
&L 82 1= s1),
(83:Student :: s3.assigned == NO

&% 83 '= s1 && 53 t= s2)

p.assigned = YES,

sl.proj = s2.proj = s3.proj = p.name,
sl.assigned = s2.assigned = YES,
s3.assigned = YES }

Proceedings of International Conference
on Artificial Intelligence

"This type of rule is inefficient, hard to read and counter
intuitive. With DISJOINT combinator, the rule above
can be transformed into a much better DA rule.

rule DA_Assign_Projects {
Disjoint(

(p :Project ::

(s1:Student ::

(s2:Student ::

(s3:Student ::

p.assigned == NO),

sl.assigned == NO),
s2.assigned == NO),
s3.assigned == NO))

p-.assigned = YES,

sl.proj = s2.proj = s3.proj = p.name,
si.assigned = s2.assigned = YES,
s3.assigned = YES }

Heuristic 4 Transform rules that fires repeatedly on
disjoint partitions of data objects using DISJOINT
combinator. Enclose all conditions involving the dis-
Jointness test and remove the test.

4.5 Secrete Messages to Explicit Contexts

The use of so-called ”secret-messages” is a common
technique to emulate procedural control. This tech-
nique employs a designated WME (usually called the
goal element) to control the phases of execution. For
example, the following two rules perform the compu-
tation and phase change, respectively.

rule Calculate_GPA {
(g:Goal :: g.task == CALCULATE),
(s:Student :: s.GPAdone == NO)
-
§.GPA = calculate_GPA(s),
s.GPAdone = YES }

rule Calculate_GPA_to_Print_Results {
(g:Goal :: g.task == CALCULATE),
-(s:Student :: s.GPAdone == NO)
—
g.task = PRINT_RESULTS }

This programming style can be easily mapped into DA
context mechanism as follows.

rule DA_Calculate_GPA

in_context CALCULATE_GPA {
[s:Student :: s.GPAdone == NOJ

-—>
s8.GPA = calculate_GPA(s),
s.GPAdone = YES }

PRINT_RESULTS |- CALCULATE_GPA

Heuristic 5 Transform rules that maich goal element
tnto DA rules that use explicit contexts. Replace phase
changing rules with context rules.

252

5 Programming in Parallel

In this section, we discuss issues about programming
parallel rule systems directly using decomposition ab-
straction.
5.1 A Simple Course Scheduling System

We use a course scheduling application as an exam-
ple. The problem is to schedule courses by assigning
instructors, time, and classrooms. Each instructor can
teach a number of courses. An instructor should be
assigned no more than three courses. A student is reg-
istered in a unique department and can take a number
of courses. Each course is two hours long and to be
assiglied to the time slot of 8:00am, 10:00am, 1:00pm,
or 3:00pm during weekdays. Each department build-
ing has a number of classrooms. A classroom has a fix
capacity. Some classrooms have special equipments.
5.2 Identify Application Objects

The very first step is to analyze the problem and
identify apphcation objects. Any object-oriented anal-
ysis and design techniques can be applied. The key is
to think in terms of application instead of implemen-
tation. Any noun that is mentioned more than once in
the problem statement is probably a good candidate.
We identify the following application objects: depart-
ments, courses, instructors, students, time slots,
and classrooms. Each type of objects should be de-
fined by a proper class definition.
5.3 Identify Functional Dependencies

The next thing to do is to identify the relationships

between application objects. We are particularly inter-

ested in the functional dependencies between objects
of different classes. For the sample application, we can
identify the following functional dependencies.

{ Department } --> { Classroom }
{ Department } --> { Course }
{ Department } --> { Student }

5.4 Identify Tasks

This is to figure out a solution plan. A problem can
be solved by identifying the transformations that need
to be applied on the data objects to produce the desired
results. Bach transformation corresponds to a task. A
task can be further decomposed recursively into sub-
tasks until a subtask is manageable. Each task can be
represented by a context which is designed separately.
For the purpose of illustration, we adopt a simple so-
lution plan by identifying the following possible tasks:

¢ Gather information.
¢ Schedule courses that require special equipments.

¢ Schedule courses for senior faculty.

GET_INFD SPECIAL
Vi v
SENIOR POPULAR
N
REGULAR

Figure 1: Partial Order Derived from the Context
Rules of the Course Scheduling Problem

@ Schedule popular courses.
¢ Schedule regular courses.

5.5 Identify Parallelism

The arguably most important step, as performance
1s concerned, is to identify potential parallelism in the
applications. An effective technique is to analyze the
problem alone two dimensions: function decomposition
and data decomposition.

Function Decomposition Function decomposition
involves the partitioning of the solution plan into sub-
tasks as in last section, and the identification of task
structure. Task structure is represented by the causal
dependencies between tasks which can be specified by
context rules. For the example problem, we have:

SENIOR |- SPECIAL

POPULAR |- GET_INFO, SPECIAL

REGULAR |- GET_INFO, SPECIAL, SENIOR,
POPULAR

The set of context rules specifies a partial order which
can be used to identify independent contexts that can
be executed in parallel. Figure 1 shows the partial or-
der derived from the context rules above. Clearly, the
GET_INFO and SPECIAL contexts can be executed
in parallel. Similarly for the SENIOR and POPULAR,

contexts.

Data Decomposition Data decomposition involves
the partitioning of data objects for data-parallel or
SPMD style computation. In rule languages, this is
achieved through pattern matching in the antecedents
and concurrent execution of multiple instantiations. In
particular, we represent the transformations that need
to be applied on data objects as rules. The pattern
matching will dynamically decompose the data into de-
sired partitions for processing in parallel.

5.6 Writing DA Rules

After all the steps in previous sections have been
performed, writing DA rules is more a specification

253

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

process than a design process. There are some guide-
lines to follow though:

1. Write a set of rules for each context.

2. Write a rule for each transformation identified in
the data decomposition process.

3. Within a rule, add a positive condition for each
type of objects to be transformed. Add negative
conditions to specify additional constraints. Spell
out the transformations as actions in the conse-
quent. Use DA mechanisms if the rule corresponds
to a SPMD style transformation.

We present some rules for the sample application.
In the GET_INFO context, we need the number of
registrants for each course. This is done by using a set
selection condition to select all students of a course and
the aggregate operation Count to compute the num-
ber, and finally the ALL combinator to do all courses
in parallel. Note that we use <| instead of € as the set
membership operator for ease of typing.

rule Count_Regs in_context GET_INFO {
A11((c: Course :: c.counted == NO),
[s: Student :: c.name <| s.take*])
-—>
c.registrants = Count(s*),
c.counted = Yes }

The SPECIAL context is special in that some
courses need special equipments that are available only
in certain classrooms.

rule Schedule_Special in_context SPECIAL {
(t:Time),
Disjoint(
(c:Course :: c.scheduled == NO
%&& c.special_equip !'= NULL),
(i:Instructor :: c.name <| i.teach#
&& i.assigned < 3),
(r:Classroom :: t.time <| r.slots*
&& c.special_equip <| r.equip*))

.instructor = i.name,

.classroom = f.number,

.time = t.time, c¢.scheduled = YES,
.assigned = i.assigned + 1,

.slots* = r.slots* - t.time }

H M0 00

For the SENIOR context, we schedule just one
course for whatever a senior instructor wants to teach.

rule Schedule_Senior in_context SENIOR {
(t:Time),

Proceedings of International Conference
on Artificial Intelligence

Disjoint(
(¢c:Conrse :: ¢.scheduled == NO)
(i:Instructor :: i.is_senior == YES
&% c.name <| i.teachx
&% i.assigned < 1),
(r:Classroom :: t.time <| r.slots*))

.instructor = i.name,

.¢lassroom = r.number,

.time = t.time, c¢.scheduled = YES,
.assigned = i.assigned + 1,

.slots* = r.slots* - t.time }

H PO O 0

The POPULAR context schedules courses with
number of registrants exceeding a threshold.

rule Schedule_Popular in_context POPULAR {
(t:Time),
Disjoint(
(c:Course :: c.scheduled == NO
&% c.registrants > THRESHOLD),
(i:Instructor :: i.is_senior == NO
&& c.name <| i.teachx*
&% i.assigned < 3),
(r:Classroom :: t.time <] r.slots*))

.instructor = i.name,

.classroom = r.number,

.time = t.time, c¢.scheduled = YES,
.assigned = i.assigned + 1,

.slots* = r.slots* - t.time }

H B2 0 00

Now rest of the courses can be assigned simply by
pattern matching,.

rule Schedule_Regular in_context REGULAR {
(t:Time),
Disjoint(
(c:Course :: c.scheduled == NO),
(i:Instructor :: i.is_senior == NO
&& c.name <| i.teachx
&% i.assigned < 3),
(r:Classroom :: t.time <| r.slotsx))

.instructor = i.name,

.classroom = r.number,

.time = t.time, c¢.scheduled = YES,
.assigned = i.assigned + 1,

.slots* = r.slots* - t.time }

H =0 00

6 Preliminary Implementation

We have conducted a good variety of experiments
on a preliminary implementation of our decomposi-
tion abstraction mechanisms. The run-time system

254

10

Speedup
[=>}

Number of Processors

Figure 2: MANNERS overall speedup on different

problem size.

was built on top of an object-oriented thread pack-
age called Presto[3] on the Sequent Symmetry shared-
memory multiprocessors. Because of the space limit,
we only presents the set of results on a combinatorial
search program for seat assignment called MANNERS.

6.1 Overall Speedup and Scaling Results

Figure 2 shows the overall speedup results of the
MANNERS program on problem size of 16, 32, 64,
128, and 256 guests. Each point is the mean of at least
10 runs. This set of experiments is a good indication of
the effectiveness and scalability of the DA mechanism.
First of all, the system exhibits good speedup behavior.
We also have the desired behavior of scalable speedup,
both in terms of number of processors and problem
size.

6.2 Parallel vs. Sequential

Our implementation is based on the LEAPS al-
gorithm [10] for searching instantiations. Multiple
LEAPS engines (LEs) work together to search for com-
patible instantiations and fire them as soon as they
were found. Figure 3 demonstrates a comparison of
the number of key operations done by the LEs and
the sequential system. We can see that the extra work
due to parallelism is within a constant factor of the
sequential execution work. The constant does not in-
crease with the problem size either. Also note that
the total number of rule firing of the parallel version is
smaller than the sequential version because of the con-
text mechanism employed which eliminates the context
switching rules.

7 Conclusions and Future Work
Decomposition abstraction and the mechanisms we

proposed raise the level of abstraction from implemen-

tation level to application level. Rules are much easier

Pop —~—
Join ——
Push -=—

4 A Fire +—

Parallel/Sequential

B—e/g\eﬁe

R

0 50 100 150 200 250 300
Problem Size

Figure 3: Parallel vs. sequential execution.

to write since they are closer to application seman-
tics. The number of rules tend to be significantly less
than corresponding sequential program. In writing the
rules, however, it is still the programmer’s responsibil-
ity to ensure the correctness of the specified semantics.

On the other hand, it is possible to detect violation
of specified semantics before the program execution.
One of our primary future research directions is to de-
velop theories and techniques for consistency checking
and correctness validation of DA programs.

Another direction of our future research is to for-

mally compare the programmability, complexity, and.

effectiveness of decomposition abstraction with other
approaches.

References -

(1] José Nelson Amaral and Joydeep Ghosh. Speeding
up production systems: From concurrent match-
ing to parallel rule firing. In L. Kanal, V. Kumar,
H. Kitano, and C. Suttner, editors, Parallel Pro-
cessing for Artificial Intelligence, chapter 1. Else-
vier Science Publishers B.V., 1993.

[2] David F. Bacon, Susan L. Graham, and Oliver J.
Sharp. Compiler transformations for high-
performance computing. ACM Computing Sur-
veys, 26(4):345-420, December 1994,

[3] Brian N. Bershad, Edward D. Lazowska, and
Henry M. Levy. PRESTO: A system for object-
oriented parallel programming. Software - Prac-
tice and Ezperience, 18(8):713-732, August 1988.

[4] B. G. Buchanan and E. H. Shortliffe. Rule-Based
Ezpert Systems. Addison-Wesley, Reading, MA,
1984.

{5] Anoop Gupta, Charles Forgy, and Allen Newell.
High-speed implementation of rule-based systems.

255

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

ACM Trans on Computer Systems, 7(2):119-146,
May 1989.

[6] Wilson Harvey, Dirk Kalp, Milind Tambe, David
McKeown, and Aleen Newell. The effectiveness
of task-level parallelism for production systems.
Journal of Parallel and Distributed Computing,
13(4):395-411, December 1991.

[7] T. Ishida and Salvatore J. Stolfo. Toward the par-
allel execution of rules in production system pro-
grams. In IEEE Intl. Conf. on Parallel Processing,
pages 568-574, 1985.

[8] Chin-Ming Kuo, Daniel P. Miranker, and
James C. Browne. On the performance of the
CREL system. Journal of Parallel and Distributed
Computing, 13(4):424-441, December 1991,

[9] Steve Kuo and Dan Moldovan. Implementation of
multiple rule firing production systems on hyper-
cube. Journal of Parallel and Distributed Com-
puting, 13(4):383-394, December 1991.

[10] Daniel P. Miranker and David A. Brant. An algo-
rithmic basis for integrating production systems
and large databases. In Proc. 6th Intl. Conf on
Data Engineering, pages 353-360, February 1990.
The LEAPS algorithm.

[11] Daniel E. Neiman. Design and Control of Paral-
lel Rule-Firing Production Systems. PhD thesis,
University of Massachusetts at Amherst, Septem-
ber 1992.

[12] James G. Schmolze. Guaranteeing serializable re-
sults in synchronous parallel production systems.
Journal of Parallel and Disiributed Computing,
13(4):348-365, December 1991.

[13] Salvatore J. Stolfo, Ouri Wolfson, Philip K. Chan,
Hasanat M. Dewan, Leland Woodbury, Jason S.
Glazier, and David A. Ohsie. PARULEL: Pas-
allel rule processing using meta-rules for redac-
tion. Journal of Parallel and Distributed Comput-
ing, 13(4):366-382, December 1991.

[14] Shiow-yang Wu, Daniel P. Miranker, and
James C. Browne. Decomposition abstraction in
parallel rule languages. IEEE Trans. on Parallel
and Distributed Systems, 1996. to appear.

