Proceedings of International Conference
on Artificial Intelligence

Linear Backward Chaining with Knowledge Objects

Xiaoya Lin and Xindong Wu

Department of Software Development, Monash University
900 Dandenong Road, Melbourne, VIC 3145, Australia

Email: {1in,xindong}@insect.sd.monash.edu.au

Abstract

Rule based production systems are one of the
most widely used models of knowledge represen-
tation in artificial intelligence. However, there
are a number of inherent problems with exist-
ing rule based systems and tools. Most no-
tably, they are inefficient in structural represen-
tation, and rules in general lack of software en-
gineering devices to make them a viable choice
for large programs. By applying knowledge ob-
Ject techniques [Wu et al. 95], this paper designs
a factor-centered representation language, Fac-
tor++, which models the rule based paradigm into
object-oriented (0-O) programming. Based on
Factor++, a linear backward chaining algorithm,
LBA, is designed to overcome the large computa-
tional requirements in rule based reasoning.

1 Introduction

Production systems are the most common
form of architecture used in expert and other
types of knowledge based systems. They are an
important type of pattern-directed inference sys-
tem. A production system consists of [Frost 86]:
(1) a set of production rules or a rule base, (2) a
database or working memory, and (3) a rule in-
terpreter or inference engine. The working mem-
ory is used to store data about the problem in
hand. It is the main data structure of produc-
tion systems. A production rule in the rule base
has a condition part called left hand side and an
action or conclusion part called right hand side.
The left hand side is responsible for comparing
patterns associated with the left hand side with
elements in the working memory. If the left hand
side is satisfied by the working memory, the rule

232

will become applicable and subject to being fired
by the inference engine. Each rule represents a
small chunk of knowledge relating to the given
domain of expertise.

The inference engine in a production system
selects and applies rules. It repeatedly applies
rules to the working memory until certain stop-
ping criteria are met. There are two basic infer-
ence methods, top-down inference or backward-
chaining and bottom-up inference or forward-
chaining [Bratko 90]. In the forward-chaining
paradigm, rules are applicable if their condition
part is satisfied by the working memory. In the
backward-chaining methods, the system focuses
its attention by only considering rules that are
relevant to the problem in hand. There is also
a third method-mixed method; forward-chaining
and backward-chaining can be combined in vari-
ous ways.

Production systems or rule based program-
ming in general has many advantages, such as:

Modularity and modifiability Rules are eas-
ily coded and added to a production system.
They may be added to the rule base without
changing other rules.

Naturalness and simplicity The “If - - - Then
-+ " format of production rules is a natural
and appropriate method for many kinds of
human expertise. It provides an attractive
simplicity for the representation of knowl-
edge.

Knowledge intensive An expert system may
be adapted for use in another problem do-
main by simply changing the rule base.

In the meanwhile, there are also several signif-
icant disadvantages:

Low efficiency A significant disadvantage of
rule based systems is the large computa-
tional requirements to performing match-
ing [Wu 93]. For naive production sys-
tem algorithms, all but the smallest
systems are computationally intractable.
Even with Rete-like algorithms [Forgy 82,
Miranker 87, Lee & Marshall 92], the non-
polynomial complexity problem remains.

Non-structural representation
Encapsulation of all relevant information of

a single entity is hard with rule based pro-

gramming.

Lack of software engineering devices Most
rule based systems do not support models,
information hiding, inheritance, and reuse to
make them a viable choice for large programs
[Wu et al. 95].

To avoid the second and third engineering
" problems, many researchers have started to in-
tegrate the rule based paradigm with object-
oriented programming, a powerful technology
from software engineering and the database com-
munity. Good examples are CLIPS [Donnell 94},
L&O [McCabe 92] and Prolog++ [Moss 94].
This paper starts with the knowledge objects de-
fined in [Wu et al. 95]; it models rule based pro-
gramming into a factor-centered, object-oriented
representation language Factor++, and designs
a linear backward chaining algorithm LBA over
Factor+4+.

2 Integration of rules and objects
Programming often involves breaking down
complex problems into simpler constituents. De-
composing a problem using object-oriented pro-
gramming [Booch 94, Meyer 88], or OOP, assists
in the design of software, and makes the resul-
tant software more maintainable, adaptable and
recyclable. The basic idea behind OOP is the
notion of classes of objects interacting with each
other to accomplish some set of tasks [Meyer 88].
The objects have well-defined, self-contained be-
haviours. They interact with each other through

233

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

the use of messages. When a task needs to be
performed, an object sends off a message which
specifies the task requirements. The receiving ob-
ject then takes appropriate action in response to
the message and responds by returning a message
to the sender.

An OOP language offers at least the following
facilities:

Data abstraction Abstraction extracts essen-
tial properties of a concept. It consists of
data abstraction and procedural abstraction
in OOP.

Inheritance The most common view of inheri-
tance within the OOP field is that the sub-
class inherits all the properties and oper-
ations defined for the superclass and will
probably add more [Snyder 86].

Encapsulation (or information hiding)
Encapsulation combines data structures and
functionality into objects. It also hides in-
ternal aspects of objects from its users and
declares which features of an object are ac-
cessible.

Polymorphism Polymorphism is the concept of
sending a message from one object to other
objects. It means that the sending object
does not need to know the receiving objects’
classes.

Given the respective features of OOP and rule
based programming, it is hard to say whether
rule based programming or O-O languages are su-
perior in computational strength [Wu 96]. Rule
based programming expresses relationships be-
tween objects very explicitly. However, they
don’t express updates clearly. O-O programming
is weak in inference power due to its procedural
origin, but updates are defined clearly by assign-
ments. It has the central ideas of encapsulation
and reuse which encourage modular program de-
velopment.

On one hand, while the O-O paradigm pro-
vides efficient facilities for encapsulation and
reuse, it does not support inference engines for
symbolic and heuristic computation. A clear ad-
vantage of rule based programming is that recur-

Proceedings of International Conference
on Artificial Intelligence

sion can be easily defined within rules while dif-
ficult in objects. On the other hand, rule based
programming is very limited in structural rep-
resentation and for large systems. Therefore, it
would be very useful if we can integrate both of
them in a seamless and natural way in order to
exploit their synergism. It seems as if objects and
rules are made for each other. Objects are the
best way to simulate or model a problem domain.
Rules can be designed to capture and encode hu-
man expertise that is applied to a problem do-
main. A natural way seems to be use objects
for modeling the domain and rules to represent
decision-making applied to the domain.

The two paradigms are both self-important
and it is not appropriate to say that one should be
the master and the other the slave in general, but
depending on the application domains, choosing
one of them as the basis and building the other
on the top are necessary given that a seamless
integration is not yet available and constructing
one may well be very time consuming.

2.1 Incorporating rules into objects

It is argued in [Wong 90] that it is undesir-
able to implement objects within rule based pro-
gramming, since rule based programming is not
as portable as O-O programming. One way
to get round this is to implement rules within
objects. In Prolog++ [Moss 94], for example,
an object layer is designed as an emcompass-
ing layer for Prolog rules. In this paradigm, ob-
jects can call Prolog rules without any special
annotation, and if a Prolog predicate is redefined
within the Prolog++ class hierarchy, the defini-
tion will be taken by default. Rules can be used
to make an object’s semantics explicit and visi-
ble [Graham 93, Zhao 94]. They can also provide
heuristic procedural attachment in methods. Ac-
tually methods within objects can always be im-
plemented in the form of rules.

Rules can be defined in an independent rule
base so that the methods in objects can call
the corresponding predicates (rule heads), in the
" form of, e.g., obey statements in [Wong 90]. We
can of course implement a set of rules with the
same rule head in the form of objects, although
some of the O-O advantages like inheritance, can-

234

not be found from such objects.

Rules within objects can be divided into two
categories [Odell 93]: constraint rules and deriva-
tion rules. The former define restrictions of
object structure and behavior, such as consis-
tency and constraints, and the latter are used
to infer new data from existing data. In
[Kwok & Norrie 94], for example, an object has
four protocol parts: attributes, class methods, in-
stance methods and rules. Rules can be activated
by messages as methods.

2.2 Embedding objects into rules

In a rule based system, data in the working
memory (or database) represents the state of the
system and is used to fire rules. In an O-O sys-
tem, the state is characterised by the the data
items in objects. Therefore, a natural integration
of objects and rules is to use objects as storage for
the working memory in a rule based system, and
rules execute actions depending on the values of
objects in the working memory. A number of Al
tools such as CLIPS [Donnell 94] have provided
such facilities to embed objects in rules.

An alternative way is use O-O languages as
the basis and implement rules which describe re-
lationships of objects on the top of thern. Domain
expertise always relates to inter-relationships be-
tween objects, therefore a declarative query lan-
guage for expressing these inter-relationships is
very useful in integrated systems. This is the ap-
proach we will adopt in Section 3.

When heuristic rules are embedded within an
object, the object can infer on these rules to
provide heuristic answers when receiving queries
from other objects. Such an object is called a
knowledge object [Wu et al. 95]. Knowledge ob-
jects seem to fall into the category of incorporat-
ing rules into objects.

A knowledge object consists of at least three
parts: data items, inheritance hierarchy, and
rules. Methods can be implemented in forms of
rules, or as a fourth component. Both rules and
methods can be specified as public to allow global
access or as private to prevent externmal visiting
and modification.

3 Factor++4: O-O modelling of rule
based programming

Factor++ is new representation language
based on knowledge object techniques. It mod-
els rule based programming into O-O program-
ming, and provides facilities to represent all the
information that can be represented in the rule
schema 4 rule body language [Wu 94].
3.1 Rule schema + rule body

Rule schema + rule body [Wu 94] is an alter-
native representation language to rule based pro-
duction systems based on an integration of rule
based and numeric computations. Rule schemata
in the language are used to describe the hierar-
chy among factors or nodes in domain reason-
ing networks while rule bodies, which comprise
computing rules as well as inference rules, are
used to express specific evaluation methods for
the factors and/or the certainty factors of the
factors in their corresponding rule schemata. By
representing explicitly numeric computation and
inexact calculus as well as inference rules, the
language supports a flexible way to process pro-
cedural knowledge and uncertainty.

The rule base in rule schema + rule body con-
sists a number of rule sets, each consisting of a
rule schema with its corresponding rule body. A
rule schema has a rule-like structure with the gen-
eral form of: If Fy, Es,..., E, then A, where all
of By, Es,...,E, and A are factors. A factor in
rule schema -+ rule body a name involved in a
domain expertise. It can be a logical assertion,
a discrete set variable or a continuous, numeric
variable.

3.2 Factor+4+: a factor-centered knowl-
edge representation

A domain expertise always comprises a set
of variables and the relationships between these
variables. In rule schema 4 rule body, the vari-
ables are referred to as factors and the relation-
ships are divided into two levels: rule schemata
and rule bodies. In an object-oriented system,
every entity is encapsulated into an object, a data
structure combining the data properties of the
entity and the procedures on the data. The data
capture the attributes of the object, and the pro-
cedures capture the object’s behaviours.

235

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

To integrate rules into objects by applying the
knowledge objects introduced in Section 2.2. we
define a factor in Factor++ by three characteris-
tics: (a) the name of the factor (the factor iden-
tifier), (b) the names of variables and their value
types that are relevant to the definition of the fac-
tor, and (c) the relationships between the factor
and the relevant variables. Each of the relevant
variables here is also a factor in the problem do-
main. The second characteristic relates to the
rule schemata in rule schema + rule body, and
the rule bodies in rule schema + rule body can
be represented in the third characteristic. Inheri-
tance is certainly an advantage of O-O modelling
over rule based computation, but since the main
topic of this paper is to model rules into objects,
we will not address inheritance in particular.

Definition 1. A factor in Factor++ is a
knowledge object. It combines a wvariable in a
domain expertise, its data items, other relevant
variables in the domain expertise that are used
to define this variable, and the relationships be-
tween this variable and other variables. A factor
has seven components: (a) the name of the fac-
tor, (b) the type of the factor (see Definitions 2
and 3), (c) data items of the factor, (d) a list of
premiselinks (see Definition 4) which specifies rel-
evant premise factors, (e) a set of procedures (see
Definition 5) which defines the evaluation of the
factor based on the the premise factors, (f) the
inference status which will be described in Sec-
tion 4, and (g) the certainty factor of the factor’s
value.

Definition 2. A terminal factoris an evidence
factor, whose possible value is supposed to be
given by the user.

Definition 3. A goal factor is not a terminal
factor. Some procedures in the domain expertise
are required to evaluate each goal factor.

Definition 4. A premiselink in a factor is or-
ganized as a list structure for a collection of vari-
ables. All the variables in the premiselink form
a logical AND relation, and when values of these
variables are all available, the factor can be eval-
uated. '

Definition 5. A procedure in a factor con-
tains the domain expertise to evaluate the value

Proceedings of International Conference
on Artificial Intelligence

of the factor and/or the certainty factor of the
value/factor. In each procedure, there may be
one or more inference rules similar to those in
production systems. The inputs to the procedure
must be declared in a corresponding premiselink
of the factor. .

A procedure in Factor++ corresponds to a rule
body in rule schema + rule body. There is no pro-
cedure in terminal factors; however, there may
be more than one procedure in a goal factor to
“define the evaluation of the factor and/or its un-
certainty factor.

Rules in a traditional rule base have been di-
vided into groups in Factor++, in a similar way
as in rule schema + rule body, and have been
embedded into factors. A knowledge base in Fac-
tor+- is a set of factor definitions, each of which
is an independent knowledge unit.

3.2.1 Converting a rule base into Fac-

tor+-+

The following procedure converts a normal rule
base into the Factor++ representation.

Step 1 Create terminal factors.

Step 2 If a rule contains two or more conclu-
sion factors, split this rule into two or more,
simpler rules so that each has only one con-
clusion factor.

Step 3 Group the rules that have the same con-
clusion factor into one rule set. Each rule
set formed this way corresponds to a factor
in Factor+--.)

Step 4 Set up factors by filling out their com-
ponents.

3.3 Comparison between Factor4+ and
rule schema 4 rule body

A premise link in a factor by Definition 4 cor-
responds to a rule schema with the factor as the
conclusion factor in rule schema + rule body
[Wu 94]. A procedure by Definition 5 corre-
sponds a rule body. Therefore, all information
in rule schema 4 rule body can be represented in
Factor+-+.

236

In rule schema + rule body, there may be
more than one rule schema with the same con-
clusion factor; in Factor++-, these rule schemata
and their associated rule bodies are encapsulated
into one knowledge object, which is the conclu-
sion factor.

A factor in Factor++ is an object, and there-
fore the O-O features mentioned in Section 2 can
be easily explored in Factor++.

4 LBA: Linear backward chaining on
Factor++-

In naive production system algorithms, the in-
ference engine runs in 3-phase “match - con-
flict resolution - act” cycles. It first matches
the rule base against the data in the working
memory to find out a rule set, called conflict set,
which is applicable to the current working mem-
ory, chooses a particular rule from the conflict set
by some conflict resolution strategies, and fires
the selected rule to change the working memory.
Once the working memory is changed, a new cy-
cle starts unless certain stopping criteria are met.
There are two major problems with these naive
algorithms. Firstly, the successful match of a
rule with the working memory does not always
mean the rule’s immediate act. Some rules may
be successful in matching with the working mem-
ory from the very beginning of a problem-solving
process, but always fails to get the priority of
act in each conflict resolution phase. When there
are changes in the working memory, it also needs
to be tested again and again. Secondly, a rule
may fail to match with the working memory in
an overall problem-solving process but it proba-
bly needs to be tested in each 3-phase cycle when
the working memory is changed. These problems
have caused large computational requirements to
performing matching in production_systems.

To avoid the large computational
requirements, the rete-like algorithm
[Forgy 82, Lee & Marshall 92] compile produc-
tion rules in a rule base into a discrimination
network and remember matched elements be-
tween cycles. Rete-like algorithms avoid iterating
over the working memory elements and the rule
base, but the non-exponential problems remain

[Forgy 82, Wu'93]. The LFA algorithm [Wu 93]
runs in 2-phase “match - act” cycles on rule
schema -+ rule body. It sorts the rule schemata in
a rule base into a partial order once a rule base is
established or updated. It matches rule schemata
against the working memory one by one accord-
ing to the partial order, and executes the corre-
sponding rule body immediately if the matching
of a rule schema is successful. The partial order
guarantees that when a rule schema is matched,
the possible values of the premise factors in the
schema have been computed or collected. There-
fore, no explicit conflict resolution is needed after
the sorting.
4.1 Inference status in LBA

LBA is a linear backward chaining algorithm
based on the Factor+-+ language designed in Sec-
tion 3.2. Unlike LFA [Wu 93], LBA does not
sort factors or rules into a partial order. With a
given set of terminal factors, LBA can determine
whether a factor is one of the premise factors of
a goal factor or not when the goal factor is being
visited. If a goal factor is unknown, LBA infers
it immediately.

At each inference stage, a factor is in one of
the following four states in LBA:

1. unknown
2. instantiated
3. failed

4. chaining

The unknown status indicates that the factor
has not been processed. The instantiated status
means that the factor has a value in the work-
ing memory. A factor being failed means that
the factor cannot be evaluated, i.e., there is not
enough evidence in the working memory. The
last status, chaining, indicates that the factor is
being processed. Before LBA processes a factor,
the inference status of the factor is always un-
known. After being processed, the factor is either
instantiated or failed.

4.2 The chaining procedure

When LBA matches the factors on a
premiselink of a goal factor, it checks the in-
ference status of each of the factors on the

237

Joint Conference of 1996 (nternational Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

premiselink. If all these factors are instantiated,
then LBA calls the corresponding procedure of
the premiselink in the goal factor to evaluate the
goal factor. If there is a factor on the premiselink
that is failed, the corresponding procedure is
dropped immediately. If there is a factor on the
Premiselink that is unknown, LBA moves control
to the unknown factor, tries to evaluate it, and
returns after this factor is either instantiated or
failed.

The chaining process of LBA starts with a goal
factor.

Step 1 Call the first Premiselink of the goal fac-
tor. Set the inference status of the goal fac-
tor as ‘chaining’.

Step 2 Call the first factor of the Premiselink.
Step 3 Check the inference status of this factor:

3.1 If the inference status is unknown and
the factor is a terminal factor, then ask
the user to provide possible information
about the terminal factor.

3.2 If the inference status is chaining and
the factor is a goal factor, which in-
dicates that a cycle has formed in the
chaining path, then goto Step 4.

3.3 If the inference status is unknown and
the factor is a goal factor, then move
the control to this goal factor and try
to evaluate it.

3.4 If the factor is instantiated, and if it is
the last factor in the premiselink, then
goto Step 5 else goto Step 3 to call the
next factor on the premiselink. If the
inference status of this factor is failed,
then goto Step 4. ‘

Step 4 Drop the current premiselink. If there
is another untested premiselink, then call it
and goto Step 2, else goto Step 6.

Step 5 Call the procedure corresponding to the
current premiselink in the goal factor. If the
conditions in the left hand side of a rule in
the procedure are satisfied, then apply the

Proceedings of International Conference
on Artificial Intelligence

conclusion part of the rule, and set the in-
ference status of this goal factor as instan-
tiated, else set the inference status of this
goal factor as failed. Return OK.

Step 6 If thereis a cycle, then set the inference
status of the current goal factor as unknown,
and return ERROR, else set the inference
status of the goal factor as failed and return
OK.

An error in Step 6 indicates a dead cycle
[Wu 93] in which no factors involved can be fi-
nally evaluated. For example, if A is a necessary
condition for B, B is also a necessary condition
for A, and there is no other way to determine A
or B independently, we say A and B have formed
a dead cycle. According to [Wu 93], a dead cycle
is an error in a knowledge base. However, a cycle
detected in Step 3.2 can be a live cycle, which
can be resolved by other premiselinks in Step 4.
4.3 Time complexity and advantages

The time complexity of LBA is linear to the
number of factors and the number of rules, if
there is no dead cycle in a knowledge base. Each
factor is processed only once, and LBA always
chains a factor at the first time when it is met.
After a goal factor is evaluated, it is treated as
a terminal factor whether it is instantiated or
failed, because its inference information is kept
in the working memory. A rule within a factor is
matched at most once in LBA. If a premiselink in
a factor fails to match the working memory, the
corresponding procedure will not be called, and
therefore the rules within the procedure will not
be matched and executed.

In addition to the linear time complexity, other
advantages of the LBA algorithm include:

e It is a complete backward chaining algo-
rithm, in which no explicit conflict resolution
is necessary.

e It successfully integrates rules into objects.

e The partial order in LFA is not needed in
LBA.

LBA and Factor++ have been implemented in
C++4. A detailed account of their implementa-
tion with example runs can be found in [Lin 96].

238

5 Conclusions

The efficiency of rule based systems and the
integration of object-oriented and rule based pro-
gramming paradigms are two major research
theme in Al. There have been some achievements
along these lines. CLIPS [Donnell 94] and Pro-
log++ [Moss 94] are two good examples for rule-
object integration. CLIPS is a forward chaining
system based on the rete algorithm [Forgy 82].
Prolog++ has its own notation, but compiles
directly into Prolog. The rete algorithm is a
method for comparing a set of patterns to a set
of objects in order to determine all the possible
matches. It does not iterate over the working
memory and the rule base. LFA [Wu 93] is a lin-
ear forward chaining algorithm based on the rule
schema + rule body representation language. It
sorts the rules in a rule base into a partial order
according to the hierarchy among factors, and
then matchs rules one by one based on the order
of rules. Its time complexity is O(n) where n is
the number of rules in a rule based system.

LBA designed in Section 4 is a linear backward
chaining algorithm. Its knowledge representation
is the Factor++ language designed in Section 3
which models rules into object-oriented program-
ming. The most significant achievements of LBA
are its linear chaining process for rule based sys-
tems and its integration of rules and objects. A
factor in Factor++ and LBA is an object that
holds its data items, inference information, and
all the rules in which this factor is computed.

When a knowledge base gets larger and larger,
inheritance and encapsulation become more and
more important in the design and maintenance
of the knowledge base. For future research, it
is important to maintain LBA’s linear perfor-
mance, but inheritance and encapsulation will be
explored on the Factor++ representation.

BReferences

[Booch 94] G. Booch, Object Oriented Analy-
sis and Design with Applications, Addison-
Wesley, 1994.

[Bratko 90] Ivan Bratko, PROLOG — Program-
ming for Artificial Intelligence, Second Edi-

tion, Addison-Wesley Publishing Company,
1990.

[Donnell 94] Brian L. Donnell, Object Rule In-
tegration in CLIPS, Ezpert Systems, 11(1),
1994.

[Forgy 82] C. L Forgy, A Fast Algorithm for the
Many Pattern/Many Object Pattern Match
Problem, Artificial Intelligence, 1982, 17-27.

[Frost 86] R.A Frost, Introduction to Knowledge
Base Systems, Collins, 1986.

[Graham 93]
I. Graham, Migration Using SOMA: A Se-
mantically Rich Method of Object-Oriented
Analysis, Journal of Object-Oriented Pro-
gramming, 5(1993), 9: 31-42.

[Kwok & Norrie 94] A.D. Kwok and D.H. Nor-
rie, Integrating a Rule-Based Object System
with the Smalltalk Environment, Journal of
Object-Oriented Programming, 6(1994), 9:
48-55. :

[Lee & Marshall 92) Ho Soo Lee and LS.
Marshall, Match Algorithms for Gener-
alised Rete Networks, Artificial Intelligence,
54(1992), 249-274.

[Lin 96] Xiaoya Lin, Linear Backward Chaining
with Knowledge Objects, Master of Com-
puting by Research Thesis, Dept. of Software
Development, Monash University, 1996.

[McCabe 92] F.G. McCabe, Logic and Objects,
Prentice-Hall, 1992.

[Meyer 88] B. Meyer, Object-Oriented Soﬁwaré
Construction, Prentice-hall, 1988.

[Miranker 87] D.P. Miranker, TREAT: A New
and Efficient Match Algorithm for Al Pro-
duction Systems, PhD Thesis, Columbia
University, 1987.

[Moss 94] Chris Moss, Prolog++: The Power
of Object-Oriented and Logic Programming,
Addison-Wesley Publishing Company, 1994.

239

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

[Odell 93] J. Odell,.Specifying Requirements Us-
ing Rules.. Journal of Objeci- Oriented Pro-
gramming, 6(1993), 2: 20-24.

[Snyder 86] A. Snyder Encapsulation and In-
heritance in Object-Oriented Programming
Languages, Proc. of OOPSL'A 86, ACM,
1986.

[Wong 90] Limsoon Wong, Inference Rules in
Object Oriented Programming Systems, De-
ductive and Object-Oriented Databases, W.
Kim, J.-M. Nicolas, and S. Nishio (Eds.),
Elsevier Science Publishers B. V., North-
Holland, 1990.

[Wu 96] Xindong Wu, A Comparison of Objects
with Frames and OODBs, Object Currents,
Volume 1, Issue 1, January 1996.

[Wu 94] Xindong Wu, Rule Schema + Rule
Body: A 2-level Representation Language,
International Journal of Computers and
Their Applications, 1(1994): 49-59.

[Wu 93] Xindong Wu, LFA: A Linear Forward-
Chaining Algorithm for Al Production Sys-
tems, Expert systems: The Int. J. of Knowl-
edge Engineering, 10(1993), 4: 237-242.

[Wu et al. 95] Xindong Wu, Sita Ramakrishnan
and Heinz Schmidt, Knowledge Objects, In-
fomatica, 19(1995), 4: 557-571.

[Zhao 94] Liping Zhao, ROO: Rules and Object-
Orientation, TOOLs Pacific 94 Technology
of Object-Oriented Languages and Systems,
1994, 31-44.

