Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.O.C.

A Neural Network Chip for Color Correction

Jen-Hwa Kao*, Jar-Shone Ker** and Yau-Hwang Kuo*

Institute of Information Engineering*
Department of Electrical Engineering**
National Cheng Kung University
1, University Road, Tainan
Taiwan, R.O.C.
kuoyh@cad.iie.ncku.edu.tw

Abstract

Color correction is a complex nonlinear function
approximation problem. In this paper, we employ the
inverse plant control model and CMAC neural network
paradigm to solve this problem. Experimental results
have revealed excellent effect and fast speed on color
correction by using CMAC-based approach. To support
real-time applications, a digital higher-order CMAC
chip is developed. This chip adopts systolic structure to
realize the weight address generator, based on a novel
weight address calculation formula which can sharply
reduce the required weight memory size. Besides, a fast
B-spline receptive field evaluation method is proposed to
compute the receptive field values for a recursive
Jormula. To provide the function of dynamic weight
adjustment, an on-chip learning module is also
embedded into the CMAC chip. An FPGA-based add-on
card has exhibited a performance faster than software
approach about twenty-five times.

1. Introduction

With the rapid progress of electronic color
scanning and printing technologies, considerable
excitement has been caused by the generation of
documents containing color material for individual users.
The color content in documents can range from colored
texts to full-color pictorial images. This widening use of
color has given rise to consideration of how color can be
faithfully represented in the output of various printers. In
other words, a color digital image printing system
attempts to reproduce on output accurately those colors
presented in the original image.

Considering an original image C and the
corresponding printed image C’, the difference between
them is called distortion, which is not what we desire. A
color correction mechanism H is then added between
scanner and printer to eliminate the mismatch between C

and C’. This paper intends to develop a real-time
hardware system for the purpose of color correction.

: color

input T .

inI:E e Q szzi?ler correction Cgi::;r L (i)rl:ltgu;
& mechanisn? p S

© @) (H) (@,)

Fig. 1. Color reclluction syste

As shown in Fig. 1, let ¢, and ¢, be the invertible
mappings which characterize the scanner and printer
respectively. ¢, converts the original color image C to
output data of scanner. ¢, acts as an inverse operator of
¢, which produces the final output color image from the
output data of H. The overall process of color
reproduction can be characterized by the following
equation [1-2]: A .
C = ¢°-H- ¢-C (1
where - denotes functional composition operator.

In order to achieve the faithful reproduction of
color images, the color correction mapping, H, should be
chosen such that the appearance of any output color
image C’ is identical to the appearance of its
corresponding original color image C, ie., C’ = C.
Therefore, Eq. 1 becomes

C = ¢°H- ¢ -C @
that is, -
H= ‘t’p‘l ° ¢s-l = (¢s ° ¢p)‘1 (3)

Obviously, H would be a complex nonlinear
function. Since the higher-order CMAC model is quite
suitable in nonlinear function approximation, we employ
it to serve as the generalized inverse mapping H.

2. Hardware architecture of higher-order
CMAC

A CMAC neural network [3-7] is a perceptron-like

191

Proceedings of International Conference
on Artificial Intelligence

association memory, which is capable of multi-
dimensional nonlinear function approximation, with
overlapping receptive fields. Representation of a non-
linear function, y = f(x), by a CMAC model is
accomplished by using two primary mappings, § : X —4
and P : 4 — Y, where X is a continuous M-dimensional
input space, 4 is an N ,-dimensional association cell

space, and Y is a one dimensional output space. The
function S is usually fixed and maps each point in the
input space X onto an association vector o. € A that has
N non-zero elements. These N non-zero elements are
called the active association cells which will affect the
value of output. The N, x 1 association cell vector is
defined as-o = S(x).

The function P(o)) computes a scalar output, y, by
projecting the association vector determined by S(x) on a
N, = 1 vector, w, whose components are attached to

their corresponding association cells, that is,

Na
y=pla=a’w=y w, S(x)
i=l

The mapping S(x) can be characterized by the
following three sub-mappings:

RX—-T

O:X—L

E:LT—4 -

where R is a receptive field function, Q is a quantization
function, and E is an embedding function. 7T is a matrix
of receptive field activation values, and L is an array
containing column vectors for identifying the locations
of maximally activate receptive fields along each input
dimension.

For a standard CMAC neural network, the
receptive field activation value of each component 7,
teT, is equal to either 0 or 1. Thus, R maps the input x
to a binary-stated activation matrix T. -Both the
quantization and embedding functions are used to assign
T to its expected association cell vector. Generally, the
receptive field functions are not limited to be the
rectangular functions whose value is either 0 or 1. The
receptive field functions in terms of high-order
polynomials, i.e., cubic B-spline, may be considered in
the CMAC-based function approximation. By
formulating CMAC neural networks with B-spline
receptive field functions, Lane had developed the
higher-order CMAC neural network model to learn both
functions and function derivatives [8].

Given N partitions of the real interval x e[a,8], 2
nth order spline function £ (x) of the form

N+in-1

Vi (x) = Hx)= Z, w,-B,; (x) C))

can be constructed to approximate f{x) by using linear

combinations of B-splines B .(x)’s weighted by
coefficients w; ’s. The sequence of normalized B-splines,
B"‘l(x.): B"‘z(x)y RRES)
set { Ay, As..r Ay} forms a basis set for all polynomial

spline of order n on N partions of the interval x € [a,b].
The B, ;(x) can be obtained from the recurrence

(%), constructed on a knot

relation.

B"J(x): {%—:/EL]B"—W-I(JC){Z{JV—;‘—}B n—n.j(x))

"j-1 "j-n J j-n+!
1 forx e[di-1,%)

where g (x)= {

0 otherwise
The B-spline index j is associated with the region
of local support 7, = x <7, Once the partition

number of the active interval [,1,._‘,/1,_) has been

determined for B-splines of order n = 1, the recurrence
relation of Eq. 5 can be used to generate all nonzero B-
spline of higher order. The multi-dimensional receptive
field functions can be obtained by multiplying the one-
dimensional receptive functions contained in each tensor
product, that is, R(x) = R'(x,) ® R(x,) ®... @ RM(xy),
where ® denotes the tensor product, x; is the input
component of x, and R'(x,) denotes the B-spline
receptive field function of scalar variable x;.

A generic hardware architecture of higher-order
CMAC neural networks is shown in Fig. 2. Basically, it
is composed of four processing units: multi-dimensional
receptive fields evaluation module, weight cell
addressing module, output generation module and
learning module.

e : i Actual
: " : > e
Generation | : Output
Input Space

Fig. 2. Architecture of higher-order CMAC neural
networks.

2.3. Fast B-spline
methodology

receptive field evaluation

192

The feature of incorporating B-spline receptive
field function with CMAC model coniributes to well
approximation capability on nonlinear continuous
control functions., Obviously, it is a recurrence
formulation for the evaluation of B, ;(x)- The value of

B,;(x) can be computed when the two values,
Bn—l,j—l(x) and B

(%), are available. Therefore, the
computation flow is equivalent to traverse a binary tree

for the evaluation of the value, B,,j(x), of root node.

Since the input space is quantized in uniform resolution,
i.e., the width, D, between two adjacent knots are all the
same, instead of maintaining the coordinates of knots for
the evaluation of B, (x) we just need to maintain the

value of resolution D on each input dimension. The
recurrence formulation can be simplified into the
following form

(x=(j-n) D) Ba-1i-1(x)+ (j-D = %)-Ba-1,4%)

Builx) = (n-1)-D

= f(g(x,Ba-1i-1(x)),h(x,Ba - 1.i(x)))
_ x+y

S

g(xy) = (x-(j-n)-D)-,

h(x,y) = (j~D-x)»y, and

1 forx e[4-1,4)

0 otherwise

where f] (x)

Buj(x) = {

A spline operator, S, is defined to evaluate the
corresponding B-spline value of each node in the
computation hierarchy. The S operator evaluates the
value of f{g(x,y),h(x,z)), which is defined in above. The
recurrence computation hierarchy, as shown in Fig. 3(a),
is un-suitable for hardware implementation because a
stack data structure has to be maintained. For such a
binary tree computation hierarchy, there are 2°'-1 S
operations. We have derived an equivalent lattice
computation hierarchy, as shown in Fig. 3(b), to
efficiently evaluate the value of a B-spline function
B, (x)- Only n(n-1)/2 S operations are needed.

Obviously, the lattice computation hierarchy not only
reduces the number of S operations, but also can be
implemented with a rather simple computation unit,
which is shown in Fig. 4.

To evaluate the value of B, (%) with the S

operator and a set of data storages, we just need to
arrange the data storages into a set of bi-directional shift
registers and properly shift them right or left to prepare
the desired operands for the S operator. As shown in Fig,

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

3(b), each evaluation of Bj, Jj(¥) takes only n(n-1)/2
computation cycles. '

B
Aoperation s=9 +9 + +97 et

g .. : 2 =2 -1

=

B
— B e
g L e {B, 2

nd B4 —

B1
-2
— By —|:
A e B'J"
B1
. 42
e

B i)

33 -
Bipa
R
B(J

() Original recurrence computation hierarchy.

#operations =1+2+ + (1) Bujont

n(a-1)
Wi

2

- p=

L

(ETE] B, e

(b) Optimized lattice computation hierarchy.

Fig. 3. Simplification of B-spline evaluation.

L/R

Fig. 4. Spline computation unit and data storages for
evaluating- B, .(x)-

Because of the heavily demands on the evaluation
of B, .(x), the higher-order CMAC chip is designed

with two operation phase (warm-up phase and stand-by
phase) to speed up the overall performance. A B-spline
receptive field table is dynamically built during the
warm-up phase. Due to the superiority feature of finite
support for a B-spline function, we only have to record
the nonzero values between two adjacent knots. Hence,

193

Proceedings of International Conference
on Artificial Intelligence

the table has D * G eniries, where D is the width
between two adjacent knots and G is the number of non-
zero B-splines activated in the interval [A;.7,2;). To get
the non-zero B-spline values for a given input vector, we
just need to retrieve G pre-evaluated values from the B-
spline table instead of spending computation time in
unnecessary evaluations. Such a methodology
contributes to the promotion in overall performance.
After the table is constructed, the operation mode will be
automatically switched into the stand-by phase for the
processing of input streams.

2.2, Weight cell address generation

The extended formula [9] for weight cell address is
shown in the following form:

M-\ M Q-J,; q;-J;; VY
P': 1 7 1] 7 1,1 +]
(e

forj=1..N. 6)

where J is a M X N addressing matrix which is used to
specify the desired addressing scheme, M is the number
of input dimensions, and N is equal to the number of
specific non-zero terms in the hyper-cube which is

determined by the location of input vector and the value

of G. Each entry J, ; refers to the relative coordinate of

the corresponding hyper-cube on dimension 7 of the j-th
non-zero term. Those specific non-zero terms constitute
the addressing scheme for determining how many
weight cells contribute to the response of an input vector
and evaluating where they are. By changing the contents
in the addressing matrix, any desired addressing scheme
can be realized without modifying the hardware.
Therefore, it results in a highly flexible weight
addressing mechanism.

2.3. Systolic structure for weight cell address
gseneration

To efficiently implement the address generation
unit, the operations performed in Eq. 6 are rearranged
into the following equivalent recurrence form:

R(0) =0

. O-J ij i gJ, ij
Rj(l):{l —{——G_D x Rj(z—l)-{ G -‘

fori=1..M, and PN; = R,(M))]

A systolic-array architecture is then derived to
implement the extended direct addressing mechanism.
The corresponding systolic schedule is illustrated in Fig.
5. In Fig. 5, the PEs in the same row, i, evaluate the

corresponding component R,(i) in column j, for j =1 to
N, according to the values of @, ¢,, J, ., and the

Ly

component R,(i-1) which is generated by its precedent

PE. The PEs in the same row can be operated
concurrently or in any sequential order. However, for the
PEs in the same column j there exists data dependency
between adjacent PEs, so that the PEs has to operated
sequentially in the ascendant order of i.

H PN, PN, PN PNy, PNy
M-
M1
b
fys
e
{] !) | P
] 2 j N-1 N j
Fig. 5. Systolic schedule for direct addressing
mechanism.
Q.99 (Q,.9) @9 Qg (Orrgs)

Jl.l JLI
Jl.i J24i~l JI 1
JIJ\H JZ.M-Z i Ji.M«i JM-LI
JIAM JLM«!) Ji,M-Hrl ° JM—Il JM.l
Jlj Jl,j-l Ji,i~i+l N JM~l M2 JM.i-MH
‘]LN JZAN-I N JiAN-i+I JM-I.N-M*»Z JM.N~M+I

JI.N Ji.N-i+2 JM~LNvM+3 JMN—M+2

Ji.M»iﬁ N JM»lJH JM.j
JM— 1N JMAN» §

Fig. 6. Linear systolic array mapping.

The PEs in the same partition (in Fig. 5, each
partition is identified by the dotted lines) can operate

194

simultaneously. Therefore, to reduce the overall
hardware cost, a linear systolic array architecture is
employed as shown in Fig. 6. The detailed configuration
of each processing element (PE), illustrated in Fig. 7,
will be described in the following subsection.

As shown in Fig. 6, the proposed linear systolic
array has M PEs. Each PE evaluates the value of
(1+SDUR(Q;,J;;)) * R(-1) + SDUR(g,,J; ;) and then
delivers the computation result forward to the adjacent
PE. After M latency delay cycles elapsed, the systolic
array will produce one weight address per cycle at the
last PE. Therefore, the throughput rate is equal to one
weight address per cycle.

For a typical case, the value of N is usually much
greater than the value of M. N PEs will take 2xN SDUR
computation modules and N multipliers. For example, in
the RGB color calibration application, there are three
input variables (i.e., M = 3). Let the generalization value
G is set to 4, then we will get 64 non-zero terms for the
fully connected addressing scheme, ie., N = 64. Only
three PEs are needed for the realization of linear systolic
array architecture regardless of what kind of addressing
scheme is to be employed.

Jy By, SDUR(g,/,)
(b) configuration of an SDUR.
Fig. 7. Detailed configuration of PE.

(a) configuration of a PE.

The SDUR operation can be carried out by one
integer division % and one increment or decrement
’ g —J; <
operators. Let sprir(q., Ji)= [__a_L] and 0 =g, <
G , we can claim that the result of SDUR(yq;,J,,)
operation, for J; = 0,1, ..., G-1, is equal to either the
quotient [%] if the remainder R of % is not greater than

J,jor [%]+1 if the remainder R is greater than J; ;.
The SDUR operation can be carried out by one

integer division % and one increment operators. After
analyzing the data sequence fed to a PE in Fig. 6, we

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

find that the value of Q; and g, are constants during the
evaluation session of PNj's for a certain input vector X,

and only the value of J, o
Therefore, by referring to the discussion of the above
corollary, the operation of SDUR can be further
accelerated and simplified by extracting the division
operation from SDUR operator .to -shorten the
computation time. ,

For each processing element PE, the coiresponding
division operation just needs to be activated once, and
then the values u; and v;, which are corresponding to the

for j = I to N, is varied.

quotient and remainder part respectively, are to be
latched in the PE. Therefore, the operation performed in
a SDUR operator not only becomes rather simple, but
also takes less computation time. As shown in Fig. 7(b),
the value of SDUR(g;,J;;) can be easily determined,

which equals to u;, or u;+1, by comparing the values of
v; and J; ;: the value of SDUR is equal to either u; when

v; <J; o

With the [inear.systolic array architecture, a cost-
effective hardware implementation [10] of higher-order
CMAC model is developed. Only M PEs are needed to
compute all the weight cell addresses. The operations of
a PE are rather simple: one multiplication, two SDUR
operations, and one addition. The latency to generate the
first address is equal to M operation cycles. After the
first address is generated, there are N successive
operation cycles for generating all the required weight
cell addresses. In other words, the latency time for the
first output vector is equal to (M+N) operation cycles.
The overall throughput of the linear systolic array is
equal to 1/(N*T¢y,) for generating successive output
vectors. The required resources on data path and
performance for these two mappings are surnmarized in

[11].

or u;+1 when v;>J; .

2.4. On-chip learning module

The difference of learning scheme between CMAC
and back-propagation neural network [12-14] is the use
of local approximation technique in CMAC rather than
global approximation in back-propagation neural
network. Since only a small subset of weights are
updated during a training cycle, local approximation
technique has the advantages of faster learning speed .

The learning of CMAC model denotes the
procedure of modifying the value of wveights; the
association vector is not adjusted in the learning process.
In CMAC model, alt weights are initialized to zero. The
M.S.E. is adopted as the energy- function during learning
process, and the maximum gradient method [12-15] is

195

Proceedings of International Conference
on Artificial Intelligence

used to calculate the adjustment amount of each weight.

Fig. 8 shows the operation flow of CMAC learning;
the learning module accepts the addresses, weights, and
corresponding receptive field function values as inputs
in each cycle. The learning rule is list as follows:

Address

Attress — ¥y => g 4 Brror
@—> ~(O)—p & 7
Ratio
Rad '
S , R

(a) Operation flow of phase 1. (b) Operation flow of phase 2.

Fig. 8. Operation flow of learning for CMAC model.
(Yu-Y)- MB,

N

>,

=

where w, means the jth weight, MB; means the jth

receptive field function value (ie. the coefficient of
corresponding weight), 1, is the desired output,

®

W=t

N

Y= zwi - MB, - and N denotes the number of non-zero
~ . |

terms a training pattern excites (N = 64 in our design).

64
Let &= (Y, ~Y¥)/) MB,; since the value of
j=1

R,, is always a constant during a certain training pattern
is rained, we just need to compute the value of R, once
in the learning period of a certain pattern. For simplicity,
the learning module is divided into two phases.

In the first phase, we compute the value of R ,.
Because a division operation will be performed in the
first phase, three extra clock cycles are needed for the
division operation after 64 clock cycles since the first set
of input data is received. Thus, it spends 67 clock cycles
in first phase. In the second phase, each weight w, will

be added with the value of g, * MB;. During this

phase, 64 clock cycles are needed.

Totally, the learning module spends 131 clock
cycles to train a certain training pattern. In our
simulation, 455 training patiérns are given, and each
training pattern is trained in 200 iterations, so about 2.38
seconds (200 * 455 * 131 * 100 * 2 ns) is needed for the
whole training process if no exira delay between two
adjacent training patterns is inserted. However, the

training process by software simulation will take 60
seconds in SPARC 10.

3. Synthesis result of higher-order CMAC

To implement the hardware architecture of higher-
order CMAC neural network model, we adopt the high-
level synthesis methodology to design the circuits. All
the modules are described in VHDL hardware
description language and then synthesized by the
Viewlogic EDA tool. The processing speed of
synthesized chip is about 46 ns. The critical delay comes
from the propagation latency of a combinational divider.
Table 1 summaries the hardware costs and its
performance.

Table 1. Synthesis report of higher-order CMAC chip.

Cell |Gate Count];\gzy]I;i ?;y
ACC_GEN 1470 4325 6.3 46
ADR_GEN 1842 4500 4.5 36
OPT_GEN 1050 2575 3.1 21
LRN_GEN- 440 6150 0.0 20
PROTOTYPE | 4802 16550 0.0 46

4. Experimental results

In color correction experiment, we set B-spline
function order, n, to 4 since it generates smoother result.
Besides, the learning rate, 8, is set to 1.0, the
quantization level, Q, is set to 8, and 455 training
patterns are given to train three CMACs for correcting R,
G, and B. In our simulation, the scanner used is the
Umax uc300 color scanner, and the printer used is the
FARGO PrimeraPro thermal color printer.

250
(I
200¢ Q=8 MB=6
(
_ : — Max
e t R
e O
,_;_), 150 :‘ s
2 e B
2 100»:
< \
\
500 \
e
0

0 50 100 150 200 250
Number of leration

Fig. 9. Absolute error of R, G, and B with respect to
different MB.

There are two factors which will affect the results.
One is how many bits we represent the fraction in
physical hardware, another is how many bits are afford
to represent the value of weight cells. Fig. 9 illustrates

196

Joint Conference of 1996 International Computer Symposium
Neacember 19~21, Kaohsiung, Taiwan, R.0.C.

0.5¢

-1 L L
-100 0 100 200 300 400
(a) Weight distributions of CMAC_R

(a) origal benchmark image.
0.5}

-200 0 200 400 600
(b) Weight distributions of CMAC_G

0.5

reproduced without calibration.

®)

300 0 200 400 600
(c) Weight distributions of CMAC_B
Fig. 10. Weight distributions of color correction.

the error eurves for adopting 6-bit receptive field values
(MB=6). We observed that the differences among the
corrected images for different MB values (MB=6~11) is
tiny. Therefore, we adopt 6-bit fraction for less circuit
cost.

As to the effect of the second factor, it shows that

for getting good results, 9-bit weight memory (with one (c)alibrated with a 4%-order CMAC.

sign bit) is required at least. The weight distributions in Fig. 11. Calibration effect of the developed color
color correction, illustrated in Fig. 10, show that many

values of weight cells exceed 255. In our design, weights
are represented in a 10-bit integer with one sign bit.

- reproduction prototype chip.

The source image is shown in Fig. 11(a). Fig. 11(b)
is the corresponding image printed without color
correction. Obviously, color distortion phenomena is

197

Praceedings of International Conference
on Artificial Intelligence

very serioﬁs. ‘The reproduced picture, as shown in Fig.
H1(c), presents rich and vivid colors for better visual
effects. On the other hand, the picture in Fig. 11(b),

which is reproduced without applying any color -

calibration scheme, exhibits poor and drab colors.
S. Conclusion

According to experimental results, higher-order
CMAC model exactly exhibits excellent performance on
color correction. In fact, besides color correction, it can
be employed in other fields such as adaptive filier,
estimation, and control, where it is desired to learn not
only a function, but also the function derivatives.

We also developed a cost-effective hardware
architecture to realize higher-order CMAC model. A
linear systolic array architecture is derived so that we
can efficiently generate all required weight cell
addresses in a related hyper-cube window. Only M
(number . of input dimensions) PEs are needed for the
computations of N weight cell addresses. The throughput
of such a systolic architecture is equal to 1/(N*T,.), i.e.,
it takes N computation cycles to generate two adJacent
output vector.

In addition to the wexght cell address generation
mechanism, a fast computation unit for the evaluation of

B-spline receptive fields.is also constructed. The lattice
computation- hlerarchy reduces the amount of operations
to n(n-1)/2, where n is the order of B- -spline function. No
stack storage mechanism is required to complete the
evaluation of B-spline recurrence formulation. The
learning module is added such that higher-order CMAC
model can ‘work faster than software does. In our
application, it spends 2.38 seconds to perform a
complete training by hardware approach. However, it
spends 60 seconds. to perform the same _process by
software approach in SPARC 10.

References

[1] C. W. Chang and P. R. Chang, “Neural plant
inverse control approach to color error reduction
for scanner and printer,” 1993 Int’] Conf. on
Neural Networks, San Francisco, CA, March 28 -
April 1, 1993,

[21 P.R. Chang, “Color correction for scanner and
printer based on B-Spline CMAC neural network,”
Technical Report, National Chiao Tung University,
1993.

[3] J.5. Albus, “A theory of cerebellar function,”
Mathematical Biosciences, Vol. 10, pp. 25-61,
1971.

[4] J.S. Albus, “Mechanisms of planning and problem
solving in the brain,” Mathematical Biosciences.
Vol. 45, pp. 247-293, 1979.

[51 J.S. Albus, “A new approach to manipulator
control: The Cerebellar Model Articulation
Coniroller (CMAC),” Journal of Dynamic
Systems, Measurement, and Conirol, Vol. 97, pp.
220-227, 1975.

[6] J.S. Albus, “Data storage in the CMAC,” Journal
of Dynamic Systems, Measurement, and
Control, Vol.97, pp. 228-233, 1975.

[71 J.8. Albus, Theoretical and Experimental Aspects
of Cerebellar Model, Ph. D. Dissertation, Dep.
Biomed. Eng., Univ. Maryland, Dec. 1972.

[8] S.H. Lane, D.A. Handelman, and J.J. Gelfand,
“Theory and development of higher-order CMAC
neural networks,” IEEE control systems, pp. 22-30,
1992.

{91 J.S. Ker, et. al,, “Enhancement of the weight cell
utilization for CMAC neural networks: Archi-
tecture Design and Hardware Implementation,”
Proc. Of MICRO-NEURO’94, Torino, Italy.

[10] J.S. Ker, “Design and implementation of higher-
order CMAC neural network chip for color
correction,” Technical Report,” National Cheng
Kung University, 1995.

[11] Jar-Shone Ker, Yau-Hwang Kuo, and Bin-Da Liu,
“Hardware Realization of Higher-Order CMAC
Model for Color Calibration,” Proc. of IEEE 1995
Intl. Conf. on Neural Networks (ICNN’95),
pp.1656-1661, Nov. 1995.

[12] J.A. Freeman, D.M. Skapura, Neural Networks
Algorithms , Application, and Programming
Techniques. 1991.

[13] JM. Zurada, Artifical Neural System, West
Publishing Company, 1992.

[14] Simmon Haykin, Neural Networks, MACMILLAN,
New York, 1994.

[15] T. Kohonen, Self-Organization and Associative
Memory. New York: Springer-Verlag, 1988.

198

