Joint Conference of 1396 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

Cutting Connections in Linear Connection Proofs

Bertram Fronhofer

Institut fiir Informatik, TU Miinchen, D — 80290 Miinchen
fronhoef@informatik.tu-muenchen.de

Abstract

The paper contributes to the implementation of
plan generation systems based on the Linear Connec-
tion Method. Analysing a previously published algo-
rithm, we detected as one of the reasons for the explo-
sion of its search space certain “cyclic rules”—Horn
clause like expressions where the head literal reoccurs
in the tail—which resulted from the way we trans-
formed action specifications. We will present here
an improved algorithm, which instead of using these
cyclic rules, solves subgoals via insertion of actions
into an already partially constructed plan. This im-
proved algorithm also outperformed the old one when
we ran it on some benchmarks.

1 Introduction

Goal-oriented plan generation is one of the classical
topics of Al research. In its essence, a plan genera-
tion problem is given by a triple (I,A,G): A set
of actions A together with a description of a state
of the world—the initial situation I—and a (maybe
partial) description of a desired future situation—
the goal G. A solution to such a plan generation
problem—a plan—is a sequence of actions from A,
which when applied to the initial situation I, gener-
ates a new situation in which the goal G is satisfied.

The task of plan generation can be viewed as an
inference problem in the following way: We have to
prove for a given plan generation problem (I,A,G)
a derived specification theorem which is roughly of
the form: ‘I and A imply G’. The exact form of the
specification theorem will depend on the chosen logic
and on the style of specifying or modelling actions
and situations in this logic. The interest in generat-
ing plans automatically gives rise to the question of
a suitable logic allowing for efficient automated proof
search. '

The first concrete proposal how to generate plans
via theorem proving was made on the choice of clas-

. sical first-order logic and resulted in the so-called
Situation Calculus (see [11]), which immediately fell

109

into disrepute due to bad practical performance in at-
tempts to prove the respective specification theorems
by use of automated theorem provers (see [8]). This
failure of theorem proving was commonly attributed
to what was called the Frame Problem: Lots of so-
called Frame Axioms had to be specified, which in-
creased tremendously the already inevitable exponen-
tial explosion of the search space. Since this prob-
lem is also inherent in other logics (e.g. modal logics)
known in those days, the nonsuccess of Situation Cal-
culus discredited the use of logic for plan generation
in general, and henceforth planning systems were con-
ceived without reference to a particular kind of logic!.
This negative judgement about the suitability of
logic for plan generation was challenged considerably
in 1986 when W. Bibel proposed the Linear Connec-
tion Method—which produces so-called Linear Con-
nection Proofs—as a new approach to plan generation
(see [1] and Section 2). Since this approach worked
without Frame Axioms it promised to overcome the
shortcomings of the logic-oriented approaches to plan
generation which were known till then. We also pre-
sented in [5] and [2] a proof search algorithm for Lin-
ear Connection Proofs, the so-called Lénear Backward
Chaining (LBC)-algorithm (see Section 2 for details),
which performed quite competitively when compared
with a real planning system (see [5] for details).
However, a closer analysis of the LBC-algorithm
revealed the following unpleasant behaviour, which
stems from the requirement to rermention in the conse-
quent of our action/implications those preconditions
of the action which survive the action’s application
unaffectedly (see Section 2). This peculiarity of the
way to specify actions with the Linear Connection
Method is disastrous if we consider simple backward
proof search algorithms. As we will show in Exam-

1Let us shortly mention that the rupture between logic and
planning was mainly on deductive grounds, since for many plan-
ning systems efforts were made to define precise declarative se-
mantics. A good example in this respect is the STRIPS approach
for which semantics were given in {10], but STRIPS’s connectives
and a proof theory were never worked out.

Proceedings of International Conference
on Artificial Intelligence

ple 3 later, we are obliged to enter action/implications
in extension steps at such rementioned literals, thus
giving rise, at least theoretically, to an additional
search space explosion due to looping over these re-
mentioned literals.

With the LBC-algorithm this becomes more appar-
ent, because we transform action/implications into a
set of so-called rules, which are special Horn clauses,
and in case of a rementioned literal L we obtain a
“cyclic rule”, i.e. we get a Horn clause with head lit-
eral L, where L is also among the tail literals (see
Example 2).

The attempt to avoid this additional growth
of the search space led to another proof search
algorithm—the so-called Linear Insertion Planning
(L1p)-algorithm—which works without these cyclic
rules. Experimental evaluation also showed that
the LIP-algorithm generally outperforms the LBC-
algorithm.

The plan of the paper is as follows:

In Section 2 we review the Linear Connection
Method and its use for plan generation. We also re-
capitulate the LBC-algorithm.

In Section 3 we present the cyclic rules and show
the role played by them with the LBC-algorithm by
means the well-known Sussman anomaly.

In Section 4 we present the Linear Insertion
Planning (L1P)-algorithm—an extension of the LBC-
algorithm—works without these cyclic rules. In Sec-
tion 5 we show the runtime behaviour of the LIP-
algorithm with respect to the LBC-algorithm by means
of some benchmark examples.

2 Linear connection proofs

As with Situation Calculus, a basic principle of the
Linear Connection Method is to view plan generation
as the task of proving that a goal situation can be
deduced from an initial situation and from the for-
mulae describing the actions. However, in contrast
to Situation Calculus, where ‘situation information’
is encoded (as an additional argument) in-every el-
ementary proposition (literal) which may vary over
time, with the Linear Connection Method elementary
propositions are void of such ‘situation information’.

Example 1 In order to present this approach, let us
look at the following example of a plan generating
proof, taken from [1], where a block b is moved from
the top of a block a down on the table. It is specified
in the following way: The initial situation will be
given by the formula

Sit(s) AT(a) AO(b,a) AC(b) A E (I)

110

which means, that we are in a situation s, denoted
by Sit(s), where a is on the table: T(a), block b
is on top of a : O(b,a), the top of b is clear: C(b)
and the robot’s hand is empty: E.

Our action system A; is composed of two actions
A;; and A, which lift a block and put a block down
respectively, and which are specified by the following
formulae:

Yw,z,y :
Sit(w) AO(z,y) N\C(z) NE
— Sit(l(w,z,y)) N\H(z) AC(y) (An)
Yuw'v :

Sit(w') A H(v)

— Sit(p(w',v)) A\C(W) ATW)A E (Ag,)

(A11) says: For any situation w, where a block
z ison a block y : O(z,y), the top of z is clear:
C(z) and the robot’s hand is empty : E , there exists
a situation [(w,x,y) in which the robot holds block
z in hishand: H(z) and the top of block y is clear:
Cly).

(A12) says: For any situation w' where the
robot holds block v : H(v), there exists a situation
p(w',v) in which v is on the table: T'(v), nothing
is on top of v: C(v) and the robot’s hand is empty :
E.

The goal is stated by the formula

dz:Sit(z) AT(O)AT(a) NE (G1)

which says that we are asking for a situation z
in which the blocks a and b are both on the table
and the robot’s hand is empty. With our approach, a
plan which brings about the desired situation will be
extracted from a proof of the goal formula from the
given situation and the known actions, i.e. we must
prove the specification theorem Taya,c):= LA
Au A A12 — G1 .

A proof by means of the Connection Method is
given by the matrix in Figure 1. The set of arcs repre-
sents the spanning set of connections which makes the
matrix complementary. (The reader may consult [1]
for a detailed presentation of the proof of this exam-
ple.)

The horizontal row of literals on the left denotes
the initial situation, the two towers in the middle de-
note the two applied actions—the left one picks up
the block b and the right one puts the block b down
on the table—and finally, the column of literals on the
right describes the goal situation. (Note that a matrix
resembles a set of clauses which are displayed verti-
cally, i.e. we get a row of columns. Note as well that
we used an affirmative translation of formulae, ie. a
clause/column represents a conjunction, and the en-
tire matrix must be understood as a disjunction of

Sit(w)

/“ O@,y).

-Sit(s) =T'(a) -O(b,a) —~C(b) =E

E
~——

Sit(l(w, z,y)) ~H(z) ~C(y)

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

Sit(z)

Sit(w') T®)

H() T(a)

~— " FE
=Sit(p(w’,v)) ~C(v) =T(v) -E

S~

(Fig. 1): A Linear Connection Proof

clauses/columns. Moreover, we made use of matrices
in non-normal form, i.e. a clause/column may have
further matrices/sets of clauses as its elements. This
is essential: A conversion of the matrix into normal
form would destroy its ‘linearity’.) In this proof the
value of the variable z represents the plan we were
looking for in form of the term p(I(s,b,a),b)), which
must be read: first lift block b from top of block a
and then put block b down on the table. a

Of course, we cannot expect every (classical) proof
to yield a correct plan—since, unlike to Situation Cal-
culus, our literals are not explicitly time-dependent,
they can be reused again and again, although they
should no longer be ‘valid’ after the execution of cer-
tain actions—but a notable feature of the proof above
is that every instance of a literal is used at most once,
i.e. it is involved in at most one connection. Proofs
of that kind are called Linear Connection Proofs and
it is claimed in [1] that this kind of ‘linearity’ is the
necessary restriction to be imposed on proofs in order
to generate correct plans. Obviously, sets of connec-
tions where each literal is involved in at most one
connection were called linear sets of connections, and
a complementary matrix with a linear set of connec-
tions was called a linear matriz. (The Linear Connec-
tion Method has immediately prompted the question
about the underlying logic, a question which has stim-
ulated a lot of research work. See [6] for a survey of
publications on this topic.) Let us point out that plan

generation with the Linear Connection Method works
only if it goes hand in hand with a suitable specifi-
cation philosophy of plan generation problems. The
formal/syntactic requirements are that a well-posed
plan generation problem (I, A, G) must be given as
follows:

o I is a finite set {F},...,F,} of ground facts.

e A is a finite set {Ry,..., R} of actions where
each R; is a universally closed formula of the
form

111

‘o AilA'--AAig —Ciu A...ACj,
with facts Ai,...,44,Ci,...,Cin. Due to
the resemblance.to Horn clauses (with multiple
or conjunctive heads) such implications are also
called Horn bundles. (Note that in classical logic
this Horn bundle would be equivalent to a set of
Horn clauses with heads Cj,..., Cy respectively
and identical tails A; A...A A, . For the reader
familiar with the Connection Method it is easy
to see—e.g. in Figure 1—that simply replacing
a Horn bundle by a set of Horn clauses would
destroy the ‘linearity’ of the matrix.)

¢ G is afinite set {G1,...,Gn} of ground facts.

The plan generation problem (I, A, G) is solvable
iff there is a Linear Connection Proof for the speci-
fication theorem T(1a,g) (In contrast to Example 1
we dropped here the Sit-literals, because their main
purpose is to record the generated plan, a job which
can be achieved more conveniently otherwise in a con-
crete implementation.):

AN ANFuAR A...ANRpy — G1A...ANGp,
A matrix obtained from a specification theorem
will be called Horn bundle matriz.

In addition, we have to meet the following non-
formal/semantic requirements about the . intended
meaning of the implications which specify the actions:
The antecedent shall comprise all facts of the existing
situation which are involved in the actionh—either as
being necessary conditions for the action’s application
or as being facts which shall no longer be valid after
the action has been carried out. The consequent shall
comprise all facts which are either newly created by
the action or which were involved in the action as
preconditions, but are not affected by it.

This convention about the specification of actions
entails that all those facts of a situation, which are not
included in the antecedent shall survive the applica-
tion of the action; a property which harmonizes per-
fectly with the working of Linear Connection Proofs.

Proceedings of International Conference
on Artificial Intelligence

This harmony between specification philosophy and
formal proof concept is the ultimate reason why no
Frame Axioms need to be (explicitly) given with this
approach.

In [5] and [2]—to which we refer for details—we
presented a proof search algorithm for Linear Connec-
tion Proofs which we called Linear Backward Chain-
ing (LBC). This algorithm virtually constructs Lin-
ear Connection Proofs by backward search from the
goal (clause). It is a kind of tableau calculus which
searches for a Linear Connection Proof of a specifica-
tion theorem T(y.A,g) being derived from a plan gen-
eration problem (I,A,G) which meets the require-
ments listed above. This proof search algorithm has
much resemblance to a Horn clause interpreter. The
main difference is that we have to assure that no lit-
eral/fact is connected twice, for which reason instead
of the usual set of unit clauses we have to maintain a
pool $POOL of currently unconnected literals, which
is initialized by the facts from I.

Moreover, we transform every Horn bundle from A
(of the form A1 A...ANAy;— C1 A...ACp).into h
rules which we write down in a PROLOG-like notation:

Ci = As,...,Ag,NF(Ca),...,NF(Ch).
'02 - Al,....,Ag,NF(Cl),NF(Cg),...,NF(Ch).
Ch-1 - Ai,... ,Ag,»NF(C1), <« .y NF(Ch—2), NF(Ch).

Ch = Ala'--'aAéaNF(Cl)w--)NF(Ch—I)'

The evaluation of a literal NF(C) adds C to the
$pooL. (The NF-predicate implements a kind of
lemma. generation facility: If one of the head literals
of a Horn bundle satisfies a subgoal, then unit lem-
mata are generated from all the other head literals.
Of course, in contrast to classical logic, these lemmata
cannot be used again and again and we also disallow
renaming of variables. i.e. we keep track of a global
substitution. See [5] for implementation details.). The
facts from G yield a goal clause, from which we start
an ordinary backward chaining process, the only dif-
ference to Horn clause reasoning is that a literal/fact
A is removed from the $POOL when it unifies with a
subgoal A in a tableau extension step. (See Exam-
ple 3 for a presentation of the working of the LBC-
algorithm.) ‘

We recall the following theorem from [5] and [2]:

Theorem 1 The LBC-algorithm is a correct and com-
plete proof procedure for generating Linear Connec-
tion Proofs. . , '
The simulation of the LBC-algorithm on top of
a tableau-like theorem prover, for which we chose

112

SETHEO?, is obviously fairly straightforward and we
refer to [5] for a detailed description.

3 The role of cyclic rules

As we mentioned already in the introduction, with
the transformation of action/implications into rules
some cyclic ones may show up®. The most simple
case is the following:

Examplé 2 For an action A specified by the Horn
bundle AA B — A A D our transformation yields
the two rules
A — A B,NF(D). (1)
D - A,B,NF(4). (Im)]
Here rule (I) is cyclic in the literal A. When work-
ing with classical logic such a rule would be a tau-
tology and could be discarded without- loosing com-
pleteness. However, it cannot be discarded with the
LBC-algorithm as we will show with the well-known

Sussman Anomaly. (This example also illustrates the
working of the LBC-algorithm.) -

Example 3 The so-called Sussman Anomaly is the
following small example of blocks world planning: In
a world consisting of three blocks a, b and ¢, the ini-
tial situation is given by the facts O(a, table), C(a),
O(c, table) , O(b,c) and C(b) and the goal consists
of the two facts O(c,a) and O(a,b) :

c
Ny
a b

A single action which moves a block = from the
top of a block y onto the top of a block z will do,
i.e. the Horn bundle:

Vz,y,z: O(z,y) A C(z) AC(2)
— O(z,2) ANC(y) AC(x)
(Since it is assumed that there is always enough
room on the table to put down a block, i.e. C/(table)

is always true, we exempted this literal from the lin-
earity restriction.)

2SETHEO is a theorem prover for classical full 1-order
logic, based on connection tableau (model -elimination).
It can be obtained via ftp. For further information
see [7] or [9] and http://wwwjessen.informatik.tu-muen-
chen.de/forschung/reasoning/setheo.html .

3In the following we will deal exclusively with the influence
of these cyclic rules on the search space. That these cyclic
rules also show some resemblance to Frame Axioms has been
discussed at length in [4].

(0)

O(a, table) O(c,‘table) C(a) O(b,c) C(b)

C(b) O(b, table) C(c)

f\'

C(table)

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

(2)
O(b,¢)

1)
O(c, table)

c(b) C(c)

O(c,a)
C(a) / O(a,b)

C(c) C(table) O(c,a)

(Fig. 2): Sussman Example

As well known, each of the two goal literals can
easily be achieved separately, but none of the respec-
tive shortest and also most straightforward plans for
achieving one of the goal literals can be extended to
a shortest plan which achieves both goal literals al-
together. (The shortest plan for both requ.res an in-
terlacing. of actions from the respective plans for the
separate goal literals; see [12] for a detailed presen-
" tation of this example.) With LBC we run into this
problem as well, because we solve one goal literal after
the other. However, the cyclic rule

0(3}) - 0(z,y), O(x)i C(z)’ NF(C(y))> NF(O(:L’,Z')).
saves us in the end.

Assume we want to prove the literals O(c,a) and
O(a,b) in this order. We may first select (the follow-
ing instance of) the rule

O(c,a) = O(c, table),C(c), C(a),

NF(C(table)), NF(C(c)). (1)

e where O{c, table) is a fact of the initial situation,
‘e C(c) is solved with the rule

C(e) = O(b,¢),C(b),C(table),

NF(O(b, table)), NF(C(B)). (2)

whose subgoals O(b,c), C(b) and C(table) are

in the initial situation
e and C(a) is also in the initial situation.
This means that we moved ¢ on'top of a with two
actions: ‘moving b from top of ¢ down on the table’

followed by ‘moving ¢ from the table on top of a’ (see

Figure 2). (For reasons of space and for convenience
we will sometimes denote negative literals by overlin-
ing instead of prefixing them with —.) But now we
are stuck! To move a on b—in order to solve the sec-
ond goal literal O(a,b), for which we would choose
the rule
O(a, b) - 0(0'7 y)a C(a')v C(b),
NF(C(y)),NF(C(a)) .

—we would have to remove ¢ from top of a first—
i.e. to solve the subgoal C(a) —in order to be able to
move a. But LBC has no means to destroy O(c, a).
The only way out is backtracking: We now solve C(a)
with the cyclic rule

C(a) = O(a, table), C(a), C(b),
NF(C(table)), NF(O(a, b)).
which keeps a clear and moves as a side effect a

on top of b, thus yielding already our second goal
literal O(a, b) m

4 The LIP proof search procedﬁfe |

The idea of how to get rid of these cychc rules can
be seen as follows with the Sussman example: Instead
of backtracking at the position where we are stuck, we
enter the needed action O(a, table) AC'(a) AC(B) —»
C(a) A C(table) A O(a,b) at the literal O(a b), i.e.
we choose the non-cyclic rule

O(a,b) == O(a, table), C'(q.),_C’(b),

NF(C(table)),NF(C(a)). 3)
and solve its subgoal C(a)® via cutting the con-
nection (C(a)Z,C(a)!) between the rules (1) and (2),
which means that we replace this connection by the
two connections (C(a)?,C(a)®) and (C(a)3,C(a)').
(We sometimes use upper indices to refer to (the num-
ber of) the action in which a literal occurs. The num-
ber O refers to the initial situation.) . .

More generally, if we come across a subgoal K*
in the antecedent of action k., which is rementioned
in this action’s consequent, then instead of solving
it via an extension step, we may look in the matrix
constructed so far for a connection (K, K7) which we
cut, i.e. we replace it by the two connections (F, K*)
and (K*,K7) asis shown in Figure 3.

Of course, we are not completely free in our choice
of connections -to. cut as will be seen with the Lip-
algorithm below and its correctness proof.

113

Proceedings of International Conference
on Attificial Intelligence

(Fig. 3): Cutting a connection

The vLIp-algorithm is obtained from the LBC-
algorithm through adding the possibility to insert ac-
tions in a plan by cutting connections. This means
that apart of SOLVEBYACTION we get a second sub-
procedure SOLVEBYCUTTING. Cutting connection
(K%, K7) —see Figure 3— means that we insert action
k somewhere between the action ¢ and j. In the im-
plementation this insertion will be simulated. To as-
sure correctness, this entails that cutting connection
(ﬁ, K7Y) requires that, while solving the subgoals of
action k, we have to exclude all facts which are gener-
ated by actions which depend on (the facts generated
by) action j: If such facts are in the $PoOL, we are
not permitted to use them in extension steps and if
they are already connected we may not use them via
cutting these connections.

The Lip-algorithm is described in Figure 4 in a non-
deterministic way and by use of an Algol-like notation:
We have the two self explaining non-deterministic
choice constructs

‘choose begin
< alternative; >
[<alternatives>

] <adlternative,> end’
and '

‘select (member € set) begin ... end’

and the construct FAIL which signals non-success
of our choice.

We have two assignment statements :=,44 and

=rem Which add resp. remove an element to
resp. from a set (cf. the arlthmetlc ~assignments =+
_and =— in C).

The algorithm uses the following global variables:
$PoOL: the set of all unconnected facts, $CONN’S:
the set of all made connections, $MATRIX : the set of
all used rules together with their number of introduc-
tion, $ACTION : the number of already introduced ac-
tions/rules, $EXCLUDED : the set of all actions/rules
whose generated facts are currently disallowed.

114

We annotate facts F' by an upper index which
refers to the number of the action which generated F'
(F° means that F belongs to the initial situation).
In case of a subgoal F' we write an upper index as well
to indicate the number of the action which requires it
(F*° means that F' belongs to the goal). We notate
by Flfremstol that there is a connection from a tail
literal F' of action from to a head literal F of ac-
tion to (the initial situation is considered an action
without tail (and number 0) while the goal clause is
considered an action without head (and number oo)

For simplifying the specification of .the LIP-
algorithm, we assume to work with ground instances
of formulae, thus avoiding to care about unifiers.

For a proof of the correctness and completeness of
this algorithm we refer to [3].

5 Experimental evaluation

To get a feeling for the comparative performance
of the LIP- and the LBC-algorithm, we ran both on
a set of benchmark problems from the blocks world.
These examples were generated by a random genera-
tor which is delivered with the ucPoP* planning sys-
tem, and a comparison of runtimes between ucpoP
and the LBC-algorithm is found in [5]. The problems
are enumerated in the order of their random genera-
tion, and the number in the middle of the problems’
names indicates how many blocks are involved in the
problem: E.g. RBW-6-5 refers to the 5! generated
problem with 6 blocks. The runtimes—for LBC and
LiP—are displayed in Figure 5. Both algorithms were
implemented on top of the SETHEO theorem prover
(version 3.2 extended by some special built-ins) and
were run on a HP 735/99.

4ucpop is a partial order planner developed at the Univer-
sity of Washington, Seattle (see [13]). It is available via anony-
mous ftp from “ftp/pub/ai/ at cs.washington.edu. In [5] we
showed that the LBG-algorithm performs quite well with respect
to UCPOP.

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

proc MAIN; .
$POOL := $MATRIX := $CONN'S := $EXCLUDED := §; $ACTION :=0;
‘read a plan generation problem (I, A,G)’
for each fact F € I begin $POOL :=y4¢ F end;
for each fact F € G begin SOLVESUBGOAL(F*,0) end;

‘extract plan from (I, G,$MATRIX, $CONN'S) and output it’;

endproc MAIN

proc SOLVESUBGOAL(FX, NewFacts) ;
/* solves subgoal ‘F' in the tail of action-implication K
(NewFacts are the new facts produced by the chosen rule) */

choose begin
if (FN € $pooL A N ¢ $EXCLUDED) then
$POOL :=pem FV ;
fi;
| SoLvEBYACTION (FK); return (estension);
[| if F € NewFacts then SOLVEBYCUTTING (FK) ; return (cutting);

end
endproc SOLVESUBGOAL

proc SOLVEBYAcTION(FX);
'/ * solves subgoal F with a new action-implication (of number N) */

:= $ACTION :=+ 1;
select a ground rule ‘F'—Tazl NewFacts.’ derived from an action in A’
EzAct := $EXCLUDED ;

SolvedByCutting := 0 ;
for each subgoal G € Tail begin;
Type := SOLVESUBGOAL(GY, NewFacts) ;
if Type # extension then SolvedByCutting :=qqq G fi;
end; '
$EXCLUDED := EzAct;
for each fact G € NewFacts begin
if (G¢ SolvedByCuttmg) then $rooL —addG’ fi;

end;
$MATRIX :=oqq (N, F-Tail,NewFacts.’); $CONN'S =444 FUISNI;

endproc SOLVEBYACTION

proc SOLVEBYCUTTING(FK);

$CONN'S :=,4q FIEN] return (extension);

fi;

/* solves a surviving subgoal F' in the tail of action K by cutting an admissible connection FIB.E] %/

select FIB:El ¢ $cONN'S begin
if E € $EXCLUDED then FAIL fi;

$CONN'S :=pem FIBEl: $CONN'S :=44g FIB-K]; $CONN'S :=,4q44 FISEL,
CLOSURE(K) ;
if K € $EXCLUDED then FAIL fi;

end; :

endproc SOLVEBYCUTTING

proc CLOSURE(B) ;
" $EXCLUDED :=,44 all action numbers which are reflexive-transitively reachable

from B in the relation between actions given by $CONN'S;
endproc CLOSURE

(Fig. 4): The LIP algorithm

118

Proceedings of International Conference
on Artificial Intelligence

Problem LBC LIP
RBW-6-1 13.66 {108] 1.90 [366] +
RBW-6-2 8.84 [104] 4.87 [363] +
RBW-6-3 0.15 [76] 0.04 [218] +
RBW-6-4 087 [83] 0.11 [252] +
RBW-6-5 0.08 [85] 0.07 [255] +
RBW-6-6 3.01 [109] 1.54 [321] +
RBW-6-7 473 [103] 257 [361] +
RBW-6-8 16.60 [108] 2.60 [364] +
RBW-6-9 2.00 [108] 1.84 [374] +
RBW-6-10 095 [88] 0.10 [252] +
RBW-6-11 3.41 [119] 3.90 [428] —
RBW-6-12 025 [95] 0.26 [311] —
Problem LBC LIP
RBW-7-1 124.18 [141] 119.74 [517] +
RBW-7-2 2.01 [108] 1.93 [374] +
RBW-7-3 91.88 [117] 9.22 [376] +
RBW-7-4 11.46 [126] 6.46 [382] +
RBW-7-5 19550.99 [128] 10205.84 [590] +
RBW-7-6 0.02 [100] 0.03 [244] -
RBW-7-7 1976.05 [120] 22429 [440] +
RBW-7-8 0.21 [105] 0.19 [282] +
RBW-7-9 - 159.33 [134] 134.91 [510] +
RBW-7-10 8.72 [120] 8.73 [442] —

(Fig. 5): Problems with 6 and 7 blocks (runtimes,
proof sizes and speed up)

Let us mention finally that both implementations
are simulations, and going from the LBC to the LIP-
algorithm we get quite some overhead due to the ad-
ditional explicit storage of connections. (We added
in brackets the proof size, i.e. the size of the simula-
tion and not of the Linear Connection Proof, to give
an further idea of the increase of effort, although lots
of connections stem from the plan extraction routine
which is more complicated with LIP than with LBC.)
Further speed ups by linear factors can certainly be
achieved through better data organisation.

6 Concluding remarks

We presented an improvement of plan/proof search
for the Linear Connection Method. The new LIP-
algorithm compared to the LBC-algorithm is a step
from total order planning to partial order planning.
A question to be investigated in the future is how
the LIP-algorithm compares to already known partial
order planning algorithms with respect to the search
space.

Acknowledgements: We want to thank Jo-
hann Schumann for providing some useful built-ins in
SETHEO which helped to speed up the LiP-algorithm.

116

References

[1] W. Bibel. A Deductive Solution for Plan Generation.
New Generation Computing, 6:115-132, 1986.

B. Fronhdfer. The Action-as-Implication Paradigm:
Formal Systems and Application, volume 1 of Com-
puter Science Monographs. CSpress, Miinchen, Ger-
many, 1996. (revised version of Habilitationsschrift,
TU Miinchen 1994).

B. Fronhdfer. Cutting Connections in Linear .Con-
nection Proofs. Technical Report AR-96-01, Tech-
nische Universitit Minchen, 1996. available from
ftp://ftp.informatik.tu-muenchen.de/local/lehr-
stuhl/jessen/ Automated_Reasomng/ Reports/AR-
96-01.ps.gz.

B. Fronhéfer. Cyclic Rules in Linear Connection
Proofs. In G. Gérz and S. Hélldobler, editors, KI-
96: Advances in Artificial Intelligence, pages 67-70,
Dresden, Germany, 1996. Springer, LNAI 1137.

B. Fronhofer. Situational Calculus, Linear Connec-
tion Proofs and STRIPS-like Planning: An Exper-
imental Comparison. In P. Miglioli, U. Moscato,
D. Mundici, and M. Ornaghi, editors, 5% Work-
shop on Theorem Proving with Analytic Tableauz and
Related Methods, pages 193-209, Terrasini, Palermo
1996. Springer, LNAI 1071.

B. Fronhéfer. Plan Generation with the Linear
Connection Method. INFORMATICA, Lithuanian
Academy of Sciences, 1997. (to appear). -

Ch. Goller, R. Letz, K. Mayr, and J. Schumann.
Setheo V3.2: Recent Developments. In Alan Bundy,
editor, CADE’94, pages 778-782, 1994.

[8] C. Green. Application of Theorem Proving to Prob-
lem Solving. In IJCAI-1, pages 219-239, 1967.

[9] R. Letz, J. Schumann, S. Bayerl, and W. Bibel.
SETHEO: A High-Performance Theorem Prover.
JAR, 8(2):183-212, 1992.

V. Lifshitz. On the Semantics of STRIPS. In M.P.
Georgeff and A.L. Lansky, editors, Workshop on Rea-
soning about Actions and Plans, pages 1-8. Morgan
Kaufmann, 1986.

J. McCarthy and P. Hayes. Some Philosophical Prob-
lems from the Standpoint of Artificial Intelligence. In
B. Meltzer and D. Michie, editors, Machine Intelli-
gence 4, pages 463-502. Edinburgh University Press,
1969.

[12] N. J. Nilsson.
Springer, 1982.

[13] J.S. Penberthy and D. Weld. UCPOP: a sound, com-
plete, partial order planner for ADL. In KR-92, pages
103-114, October 1992.

2

3]

4

(5]

(6]

7]

[10]

(11]

Principles of Artificial Intelligence.

