Joint Conference of 1996 lnternational'Computef Symposium
December 19~21, Kaohsiung, Taiwan, R.O.C.

TWIib — a Library for Distributed Search Applications®

Jorg Denzinger and Jiirgen Lind

Department of Computer Science, University of Kaiserslautern
Postfach 3049, 67653 Kaiserslautern
E-mail: {denzinge, lind }@informatik.uni-kl.de

Abstract

We present TWIb, a library to support the
knowledge-based distribution concept teamwork, that
is intended for such search processes that use a set of
facts as representation of the state and addition and
removal of facts as transition between states. Team-
work has proven to be quite successful in dijferent
applications by generating synergetic effects. Team-
work employs four types of components, Experts and
specialists work independently on solving the search
problem. Cooperation is achieved by periodically judg-
ing the new generated facts by referees and generat-
ing a new start state out of the best facts. A super-
visor controls the whole system and can adapt it to
the given problem by exchanging bad experts and spe-
cialists. TWIib provides communication functions (in-
cluding a secure broadcast) and control skeletons for
the teamwork specific flow of control.

1 Introduction :
Knowledge-based search is the basic method em-
ployed in many AI systems. Planning systems, learn-
ing systems or deduction systems, all have to deal with
very large search spaces and use knowledge to find
good paths through these spaces. But even the use of
this additional knowledge is sometimes not enough to
meet the efficiency requirements of these systems.

One obvious way to speed- up search is to do it

in parallel. Unfortunately, knowledge-based search re-
quires the ability to react quickly to new possibilities
that are the result of the last search step done. There-
fore parallelization methods that only try to achieve
a higher number of search steps per time unit do very
often not combine well with the quick evaluation of
and reaction to evolving possibilities. As a result, the
parallel system may even be less efficient than the
knowledge-based sequential one.

Approaches to combine knowledge-based systems.

*This work was supported by the Schwerpunktprogramm
Deduktion of the DFG

101

with the possibilities of distributed computation are
one of the main foci of distributed AI. But unfortu-
nately, the efficiency of the developed systems is not
the main concern of many researchers. Since the de-
velopment of an efficient system in an application do-
main requires experiences in operating systems, DAI
and the problem solving methods needed for the ap-
plication, often compromises are made. Such a com-
promise very often is to neglect the operating system
part by using either easy (and not very efficient) solu-
tions to problems of this level or by employing devel-
opment (see, for example, ARCHON [9]) and testbed
(see, for example, DRESUN [2] or MACE [7]) systems
for DAI applications. Although these systems offer
much comfort for implementing various multi-agent
systems, they have to support often quite different
concepts. This results in not very efficient realizations
of these concepts, again.

Researchers in the field operating/distributed sys-
tems have encountered this efficiency problem also.
Their solution is to propose operating systems with
only a small fixed kernel and various (specialized and
efficient) extensions that serve different needs of the
users of the system (see [10]). A user then chooses
those extensions that optimally suit his requirements.
No compromises are made.

For DAL this concept means not building a testbed
for all or many multi-agent concepts a user might
be interested in, but building small libraries that
optimally support one (or a few very related) con-
cept(s). In this paper we present such a library, called
TWlb, for the teamwork method (see [3]), a distri-
bution method for a certain knowledge-based search
process we call search by extension and focus.

Search by extension and focus can be characterized
as follows. The search state is represented by a set of
so-called facts. Adding or changing facts are the ez-
tensions that produce new states. Since there are typ-
ically many extensions, the search is focused on parts
of them by the use of guiding heuristics. Examples

Proceedings of International Conference
on Artificial Intelligence

for search problems using this process are automated
theorem proving and optimization problems.

It is no trivial task to find the appropriate focus
heuristic to an instance of a problem. Our teamwork
method takes care of this problem by employing sev-
eral guiding heuristics independently in parallel on
different computers. In order to achieve a cooperation
between these heuristics, the search states on each
computer are periodically evaluated by so-called refer-
ees. These referees also select outstanding facts of the
computers. A supervisor generates then a new start
search state, using the reports of the referees, which
is transmitted to all computers to start a new round.

Teamwork has proven to be quite successful for
search by extension and focus in different applications
(see [4], [3]). The cooperation of the different heuris-
tics results in synergetic effects. But implementing a
teamwork based search system requires a complicated
communication and control structure in order to be
efficient. Qur TWIlib, written in C++, provides the
necessary. procedures and procedure skeletons to al-
low a potential user of teamwork to concentrate on
the specific questions of the search problem, for ex-
ample what heuristics to use, how to build referees
and a supervisor. So there is no need to deal with
implementing communication and control primitives.

2 Search by extension and focus

In literature search processes are described by
states and transition rules between states. A useful
classification of search processes is based on the rep-
resentation of states. There are two groups of search
processes. Members of the first one need explicit infor-
mation about the history of the process while mem-
bers of the second one do not need to represent this
information explicitly.

Search processes of the first group are often based
on such principles as dividing a problem into sub-
problems and therefore use trees or directed graphs as
representations of the search state. Search processes
of the second group use sets of results as representa-
tions of the state. Note that there may be processes of
both groups that can be used to solve a given search
problem. Our TWIib is aimed at distributing search
processes of the second group. Therefore we will give
in the following a formal definition of these processes.

Definition 2.1 (Search by extension and focus)
Search by extension and focus is described by a 4-tuple
(B,Q,Z,Sp). The set of possible facts B defines the pos-
sible states S of the search by S € 2B. Q is a predicate
defined on B and used to describe a legal state S of
the search by Q(s) is true for all s € S. T is a set of
extension rules A — B, A,B € 2B. S, is called the

102

start state of the search and has to be a legal state.
We write St1 S’ for states S and S’, if there is a rule
A—Bel, suchthatAgSandS’—(S/A)UB.A
sequence (So,51,...,5,) with S;—1 bz S; for i=1,...,n,
is called a search derivation.

Typically, doing search means applying a search
process to an instance of the search problem. In our
formal definition the search process is represented by
B and Z, while the actual instance determines Sy and
2 and also provides the goal of the search.

Definition 2.2 (Goal of a search)

Let (B,),Z,Sy) be a search by extension-and focus and
g € B with Q(g) = true the goal of the search. A
state containing g is called a goal state. The goal is
reachable, if there is a search derivation (Sp,S1,...,5,)
such that S, is a goal state.

So, the main problem of a search is to find a (short)
search derivation to a state that includes the goal.
Since there may be many possible extensions to a
given state, there has to be a function that determines
which extension should be chosen next, i.e. a function
providing a focus. Typically, such a focus function as-
sociates with each pair (state, extension rule) a weight
that rates the extension step.

Definition 2.3 (Focus function)

Let (B,Q,Z,50) be a search by extension and focus and
g its goal. An injective function f:28 x T — Z is called
a focus function and the derivation (So,51 ,...,5,...) is
produced by f, if for the extension A; — B; that pro-
duced state S; we have f(S;_ 1,A = B;) < f(Si—1,A =
B) forall A— B e T.

If one wants to allow only legal states in a search se-
quence, then the focus function only has to rate pairs
(Si—1,A — B) that produce a legal state. In practise,
often the condition injective” function is dropped
and the decision between extension steps with equal f-
value is made employing the FIFO-strategy. This way
there are many focus functions that can be used, of-
ten too many to allow an automated decision which
one to choose for a given problem instance. Another
problem is that very often none of the implemented
focus functions are good enough to solve a given prob-
lem instance in an acceptable time. These problems
are solved by our teamwork method.

3 The teamwork method

The teamwork method is our approach to dis-
tribute search by extension and focus. A system based
on teamwork has four types of components: experts,
specialists, referees and a supervisor. The interaction

between these components is organized as a cycle with
three phases. In the competition phase, also called

working phase, experts and specialists work indepen- -

dently on their tasks. In the judgement phase, the
first part of a team -meeting, referees judge the work
of the experts and specialists and select outstanding
results and in the cooperation phase, the second
part of a team meeting, the supervisor generates a
new start state for the further search.

Ezperts work on solving the given problem instance
by using search by extension and focus. Each expert
uses a different focus function, thus generating differ-
ent search sequences.

Definition 3.1 (Expert)

An expert X is characterized by a focus function fx':
2B x T — Z. An expert starts cycle i with start state
Si. During cycle i an ezpert may be active, i.e. run-
ning on a processor, or not. By Exp we denote the set
of all experts.

Specialists can also work on solving the problem
instance, without being limited to using search by
extension and focus, or they can generate data that
helps controlling the search or they can combme these
two tasks.

Definition 3.2 (Specialist)

A specialist Sp is a function fs,: 28 — 28 x message-
set. It starts cycle i with the set S; of facts and returns
a set Ressy, of facts with Q(s) = true for all s € Resg,
and it can also return a message out of a set of mes-
sages for the supervisor. During a cycle a specialist
may be active or not. By Spec we denote the set of all
specialists.

Note that a specialist can produce its set Resgp
by any correct means. The set of possible messages
message-set has to be defined by the user. Each mes-
sage of message-set has to be interpreted by the su-
pervisor.

Referees have two tasks: computing a measure of
success for experts and some specialists and selecting
outstanding results of experts and specialists. The re-
sults of both tasks are passed on to the supervisor. A
referee of a specialist also reports the message of the
specialist (if there is any).

Definition 3.3 (Referee)
A referee R consists of two functions

measg: (28)* = Z and

selresp: 28 — Bk,
where (28)* is a sequence of states and k the mazimal
number of results that may be selected by the referee.
By Ref we denote the set of all referees.

103

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

If a referee judges the success of an expert then
it uses the whole search sequence produced by it as
basis for its judgement. Since specialists can use to-
tally different representations for their search states,
the referee can only use the set Resg,. This is also the-
set selresgp chooses from, while a referee of an expert
uses its last search state as input for selresg.

The supervisor achieves the cooperation of experts
and specialists by generating a new start state for the
next cycle out of their results. But it also compares
the success of the experts and specialists and selects
the members of the team of the next cycle using the
measures of success of the experts and specialists in
prior cycles and further information provided by a
long-term memory (see [5]). Also the messages of the
specialists are used. As third task the supervisor de-
termines the length of the next cycle usmg the same
information.

Definition 3.4 (Supervisor)
The supervisor computes after a cycle i the following
three functions: '

Comp:(28 x B x)™ — 28

Sel;:(ExpU Spec) x Ref — {0,1}

Time;: 28 x ((ExpU Spec) x Ref)® =+ N
where n is the number of available processors.

While the function Comp that computes the new
start state remains the same throughout a whole dis-
tributed search run —it simply uses the state produced
by the expert with the best measure of success and
adds the selected results of the other experts and the
specialists to generate the start state— the functions
Sel and Time change from cycle to cycle, indicated
by index i, because they have to take the results of
the prior cycles and the messages of the specialists
into account. Since there are only n processors avail-
able, we demand 7, cco0i5p0c S€li(T,) = n, so that
only n experts and specialists (with their referees) are
active in each cycle.

Implementing the control cycle and the communi-
cation between the components requires more than
knowledge about the search problem one wants to
solve. It is possible to avoid some interprocessor com-
munication by allowing components of different type
to share a processor. Since an expert or specialist, a
referee or the supervisor never are active during the
same time, one can implement them as one process
having different modi (or an agent having different
roles).

So, at the beginning of a-distributed run, the pro-
Cess on one processor is in supervisor mode, receiving
the problem instance. After generating a search state,
the process sends this state to all other processors

Proceedings of International Conference
on Artificial Intelligence

whose processes are in expert or specialist mode. Un-
til the next team meeting the work of the supervisor
is done and this process changes to expert mode.

When the end of a working phase is reached, each
processor changes into referee mode. This way the ref-
erees can access all data of their experts/specialists
without expensive communication. After the judge-
ment phase the process that was in-supervisor mode
at the end of the last meeting changes back into su-
pervisor mode and receives the measures of success
of all experts and specialists (function meas,). Af-
ter the best expert is determined, its process changes
to supervisor mode. This new supervisor receives the
full reports of the referees. The selected results of the
other experts and the specialists can be integrated di-
rectly into the actual search state of the process in
supervisor mode. After determining the members of
the team in the next cycle the new start state is trans-
mitted to the other processes and a new cycle begins.

By carefully choosing point-to-point connections
between processors or broadcasting to all processors
(the later when transmitting the new start state), one
is able to achieve communication and control without
much overhead. Then the following synergetic effects
occur, that allow a team to be much more effective
than single experts that employ only one focus func-
tion.

e A good but not quite good enough expert can
receive missing results from other experts. This
effect is based on the cooperation aspect of team-
work.

e An expert may be able to generate a good search
state, but then can not continue towards the
goal. Another expert can, starting with this good
search state, continue towards the goal. This
change of focus functions produces search se-
quences that are much better than all sequences
produced by one expert alone and it is based on
the competition aspect of teamwork.

While a potential user of teamwork still has to
write procedures for the components that allow for
synergetic effects, our TWIlib provides the necessary
communication and control primitives and also skele-
tons (with respect to these primitives) for the compo-
nents. Please note that the communication structure
of teamwork has requirements on the system software
level that are typically neither directly provided by
operating systems nor by development packages for
distributed systems as for example PVM (see [8]).
Such a requirement is, for example, a secure broad-
cast.

104

4 The TWIib

In order to allow potential users of teamwork to
get rid of the system software part of an implemen-
tation of a teamwork based system we developed a
C++ class library called TWI1ib. This library offers a
set of classes with associated methods, some of which
are only skeletons that have to be extended according
to the search problem that has to be solved. We have
chosen C++ in order to provide an object-oriented
view without much loss of efficiency and also to use a
widely known programming language. The first ver-
sion of TWIib is based on UNIX (Sun OS 4.1.4) and
the TCP/IP protocol suite for interprocess communi-
cation.

In the following we will begin our presentation of
TWIib with some remarks about the class hierarchy
and dependencies. Then we will characterize the tasks
an implementer using TWIib has to do which also
characterizes the tasks TWlib takes care of. Then we
take a deeper look at the main class of T'WIib, class
teamworkApplication.

4.1 The class hierarchy and dependencies
of TWlib

The main purpose of TWIlib is to support the nec-
essary communication between the objects involved
in a teamwork application and their internal schedul-
ing tasks. These objects can be located on different
computers and therefore, object communication in-
cludes network communication as well. In addition,
the teamwork specific data and control flow is pro-
vided by skeletons of methods which have to be ex-
panded by the user. Error handling and logging of
events are also supported. These tasks together lead
to the class hierarchy and dependencies that are de-

~ picted in Figure 1.

An implementer employing TWlib will only have to
deal with classes Xpert, Specialist, Referee and team-
workApplication which form the application layer of
TWlib.

The other classes form the core layer and the sys-
tem layer which encapsulates the underlying operat-
ing system. Class processGroup is an administrative
class holding information about the environment (e.g.
the other processes) of a process. Another adminis-
trative class is the class CEPSet which controls all
the connections between a process and the other pro-
cesses. These connections are used to transmit asyn-
chronous events, point-to-point messages like referee
reports and broadcast messages like the new start
state of the search. Please note that we implemented
a secure broadcast (no simulation) that uses point-to-
point messages only for acknowledgments and missing
information. All this functionality is provided by the

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

A
\

Specialist i

A
/

| teamworkApplication]

U U

|
|
|
I
|
P
userHandler |

}CEPSet)

l localProcess |

core layer

' [Pairse?”

I gmupu

system layer

l remoteProcess I

- — — —

fatalHook

‘Figure 1: Figure 1: class hierarchy and depehdencies of TWlib -

classes CEP (communication end point) and broad-
castBuffer. '

Classes group and Pairset provide data structures
that are used for process control and finally class er-
rorHandler contains TWlib’s error I/O and a hook for
a user function to be called on a fatal error.

4.2 Tasks of an implementer using TWlib

Since TWIib is intended as basis for many very
different applications, all functions and program seg-
ments that deal directly with the application or its
data structures have to be provided by the imple-
menter. More precisely, an implementer has the fol-
lowing tasks:

e Providing code for the components and the data
structures they use.

¢ Providing initial data about the computers to use
and announcing all components that can be used
to the system in a predefined format.

o Implementing send and receive functions for ref-
eree reports and search states. The library offers
transfer routines for character streams, so that
converting application data formats into charac-
ter streams (and backwards) is sufficient.

105

o Providing the function that chooses the new su-
pervisor during a team meeting.

¢ Providing the supervisor functions Comp, Sel;
and Time;. The resulting schedule f01/“ the next
working phase must be given to the system in a
predefined format.

The TWIib takes care of all other tasks. The most
important of these tasks are:

¢ providing administrative data structures for ex-
perts, specialists and referees

e process management
o efficient communication via

— secure broadcast
— simulated broadcast (short messages only)

' — point-to-point connections

In addition, the classes of the application level include
skeletons that simply can be completed for:

o initializing the whole system

e experts, specialists and referees

Proceedings of International Conference
on Artificial Intelligence

¢ the main loop of a process including the course
of events of a team meeting

e error handling and normal and abnormal pro-
gram termination

4.3 Class teamworkApplication)

The classes of the application level of TWlib map
the theoretical concepts of section 3 ‘to an actual
implementation. The flow of control in a teamwork-
based system consists of an Initialization phase and
a Work/ Meeting loop. The loop can only be left by
calling an exception (an asynchronous event). If no
error occurs, the exception causes the Fnd sequence
to be executed.

The whole flow of control is implemented in class
teamworkApplication. An implementer using TWIlib
should derive his own classes (e. g. UserXpert, UserSpe-
cialist, UserReferee and UserteamworkApplication) from
the respective base classes of TWIib and override the
methods which deal with the specific application area.
In the following we will describe the class teamworkAp-
plication by tracing the execution of the method main
of this class. An éxcerpt of this method is depicted in
Figure 2. When the teamwork root process is started,
a (User)teamworkApplication object should be created
and control should be passed to the new object’s main
method instantly.

void teamworkApplication::main(int argc, char** argv) {

if (!thisProcess->isInitial(argc, argv)){
// we .are not the teamwork root process...
role = XP;
initXpert(argc, argv);
initUserCode();
receiveInitialSystem();
while(true){
work();
meeting();
}
}
elseq
// we are the teamwork root process...
role = SV;
initSupervisor(argc, argv, conf_files);
initUserCode();
sendInitialSystem();
while(true){
work();
meeting();

}

Figure 2: Extract of method main

Note that this method is used by all processes on
the different computers which means, that each pro-
cess has exactly one object of class teamworkApplica-
tion. Since this class contains the code for all different
roles (experts, referees, supervisor, etc.) some distinc-
tion which portion of the code should be executed in
a particular situation must be made in method main
and subsequent methods.

106

4.3.1 The Initialization

The initialization usually begins by reading informa-
tion about the configuration of the system from so-
called configuration files. This is normally the first
action of method initSupervisor of the supervisor
process (see Figure 2). Please note, that the startup
sequence for the remote processes has some user hooks
to customize the start parameters for every single
host. For more information we refer to the documen-
tation that is included in the distribution package of
TWIib. Using the read in information, the expert pro-
cesses are started on the remote machines and the
communication network between all processes of a
teamwork application is set up.

After the initialization, method initUserCode,
which should be overridden by the implementer, al-
lows to transfer information about the components
into the internal database of the teamwork Application
object of each process. The source of this information
can be the configuration files read in during the sys-
tem initialization. Since a teamworkApplication object
includes the administration of all experts, specialists
and referees, these components have to be announced
to the object. The class teamworkApplication provides
methods announceX (where X stands for Xpert, Spe-
cialist or Referee) for this task. The result of these
methods is always a unique id which is used by the
teamworkApplication object to refer to this compo-
nent. The announcements should be made to each
teamworkApplication object on the different host com-
puters in the same order to guarantee that each com-
ponent has the same id in all processes.

In order to compose a starting team (for a working
phase) an initial schedule (i. e. an Xpert/Specialist
and a referee assignment to each process), must be
composed. An individual assignment is made by call-
ing method assignX with the id of the component and
the id of the process it should be assigned. Before a
working phase only one referee and either an expert or
a specialist may be assigned to a process. The objects
associated with the respective ids will be called when
the work or assess methods of the teamworkApplica-
tion objects are invoked. Since typically the next team
is formed by the supervisor TWlib provides methods,
called sendAssignment and receiveAssignment, to
inform the other processes about their next schedule.

Finally, the description of the actual search
problem to solve has to be sent to all re-
mote processes (methods sendInitialSystem, resp.
receivelnitialSystem). This problem is also read
from a configuration file. In order to demonstrate the
methods for communication provided by the classes
of the system level, we included the code of these two

methods from an example user application class sam-
pleApp in Figure 3. The object pg is of class process-
Group.

void sampledpp::sendInitialSystem(void) {

//
// ALL = virtual broadcast for short messages
// BROADCAST = physical broadcast for lots of data
//

pg->write(ALL, (void*)&goal, sizeof(unsigned long));
pg->write(ALL, (void*)&eps_env, sizeof(unsigned long));
pg->write(ALL, (void*)&maxIndex, sizeof(int));
for(int i = 0; i < maxIndex; i++){

if (pg->write(BROADCAST, (void*)&(data[il),

sizeof (unsigned long)) < 0){
ERR.fatalLog(__FILE__, "write error, exiting...");

}
}
pg->flush();

void sampledpp::receivelnitialSystem(void) {

pg->read(supervisor, (void*)&goal, sizeof(unsigned long));
pg->read(supervisor, (void*)&env, sizeof(unsigned long));
pg->read(supervisor, (void*)&size, sizeof(int));

for(int i = 0; i < size; i++){

if (pg->read(BROADCAST, (voidx)&(datal[il),
sizeof (unsigned long)) < 0){
ERR.fatalLog(__FILE "read error, exiting...");

S

Figure 3: Examples for methods sendInitialSystem and
receiveIlnitialSystem

4.3.2 The mainrloop

In the loop of method main one can observe the two
main phases of a teamwork application : the working
phase and the team meeting. As already stated, in-
voking method work calls the expert/specialist that
is assigned to a process for the actual working phase.
Only the actual supervisor has to invoke an additional
method: setWorkingParams. This method installs a
timer object which interrupts all processes after the
time given by the supervisor (see Figure 4).

void teamworkApplication::work(void) {
if(role == sv){
setWorkingParams () ;
};
Xperts->getByFirst (xp)->work();

¥ Figure 4: Method work

Then method meeting is invoked (see Figure
5). Method assess calls the referee that is as-
signed to a process. The following methods form
a skeleton that has to be expanded by overrid-
ing. the respective methods according to the in-
tended application. The methods sendShortReport
and receiveShortReport transmit the results of the
measg-function of the referees. Note that both meth-
ods have no arguments. Instead the implementer has
to put the results of the referee-functions into mem-
ory areas which are read by these methods. Figure 6
shows the code for these two methods.

107

Joint Conference of 1996 international Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

void teamworkApplication::meeting(void) {
assess();
if(rolé == sv){
receiveShortReports();
newSupervisor = chooseNewSupervisor();

}

else{
sendShortReport(); -
newSupervisor = getNewSupervisor();

}

if (newSupervisor == thisId){
receiveFullReports();
integrateResults();
changeTeamSetup() ;
sendNewSysten() ;

}

else{
sendFullReport();
changeTeamSetup () ;
receiveNewSystem();

}

} Figure 5: Method meeting

void sampleApp::sendShortReport(void)y A{
pg->write(supervisor,.(void*)&rep->assess, sizeof (double));

void sampleApp::receiveShortReports(void) {
for(int i = 0; i < mem.groupSize(); i++){
pg->read(&mem, &from, (void*)&assess, sizeof(double));
report = new Report;
report->from = from;
report->assessment = assessment;
Reports->append(report);

} Figure 6: Examples for methods sendShortReport and
receiveShortReports

The method chooseNewSupervisor has to se-
lect the best -expert and its processor and has
to transfer this information to all other processes
(getNewSupervisor) Then the referees of the ex-
perts/specialists send their full reports, i.e. the re-
sults of their selresg-function, (sendFullReport) to
the new supervisor (receiveFullReports) that inte-
grates these results (integrateResults realizes the

function Comp). The method changeTeamSetup is re-

sponsible for selecting the next team (function Sel;)
and assigning .an expert/specialist and referee to
each processor. Then the supervisor transmits the
new start state (sendNewSystem) to all other ex-
perts/specialists (receiveNewSystem).

4.3.3 The End Sequence

The last phase of a teamwork application is entered
when an expert or specialist has found the goal of
the search. This expert/specialist invokes the method
goalReached which issues an asynchronous event
GOAL_REACHED causing all processes to call method
cleanup of their teamworkApplication object. That
method can use the predicate reachedGoal to test
whether the local process has found the goal. An im-
plementer can add the necessary presentation func-
tions for the user of his system to method cleanup.
The last operation of cleanup is to terminate its host
process.

Proceedings of International Conference
on Artificial Intelligence

5 The TWIib in use

The main goal of the TWIib is to take the sys-
tem software part away from an implementer using
the teamwork paradigm. The implementer gets some
guidance how to structure his system and where to
make his application dependent extensions through
the method skeletons provided by TWIlib. This should
lead to a substantial gain with respect to thé time
needed for developing and implementing a teamwork
based system.

Since there are many search problems that can be
solved using search by extension and focus, we can not
provide experiences for all possible applications here;
but we can compare our experiments in implementing
teamwork based systems before we had TWIib and af-
ter. We have developed and implemented three team-
work based systems, so far: the DISCOUNT system
([1]), the DOTT system for solving the traveling sales-
man problem ([3]) and the DiCoDe system, a theorem
prover based on Condensed Detachment.

For implementing the first version of DISCOUNT
we needed 1.5 man years starting with an already im-
plemented unfailing completion procedure This first
version did not include broadcasting abilities. Adding
these abilities took another 0.5 man years.

" For implementing DOTT we needed 1.5 man years,
again. But in this case we did not have the code for ex-
perts already available. Although we could reuse large
parts of the code for broadcasting from DISCOUNT
the stated 1.5 man years resulted in a system with
only one type of referees and a very crude implemen-
tation of the supervisor.

The implementation of DiCoDe, based on an al-
ready implemented sequential system CoDe (see [6])
and using the TWIlib, took only 0.5 man years (with a
new implementer). In fact, in DiCoDe also two small
variations of the teamwork method can be used that
were obtained by simply altering the method meeting
of the TWIib. Although one might argue that DiCoDe
as a theorem prover can profit much more from the
experiences with DISCOUNT than DOTT, neverthe-
less the 0.5 man years development time led to a sys-
tem that already includes more referees and a bet-
ter supervisor than the first version of DISCOUNT.
Obviously, the TWIib significantly reduced the imple-
mentation time. '

We are currently using the TWIb in a re-
implementation of DISCOUNT and for teamwork
based distributed systems employing genetic algo-
rithms (and trying to achieve cooperation with more
conventional search paradigms).

Although the TWIib is already successfully used in
a system we still see our current version as only a first

108

beta version. Therefore we have chosen to distribute
TWIib by request (e-mail to one of the authors) and
not via an anonymous ftp-side. The distribution pack-
age of TWIib contains the library, documentation in
form of a postscript-file and as a directory of html-
pages, and a dummy application. The problem solved
by this dummy application is quite silly, but the ap-
plication demonstrates all necessary steps an imple-

menter using TWIib has to do.

6 Conclusion and Future Work

With TWIib we presented a library to support dis-
tributed search applications that are based on the
tedmwork method. TWIlib provides communication
functions and control skeletons in order to allow an
implementer to concentrate on the specific problems
of the intended application. Also some data structures
for administrative purposes are included in TWlib.

A high priority on our future schedule has the port-
ing of the TWIib on other UNIX-like operating sys-
tems in order to use workstation clusters with hetero-
geneous operating systems. Future conceptual work
centers on extending the TWiib to also include a
graphical user interface. Such an interface has proven
to be very useful in developing more and better com-

~ponents for our DISCOUNT system.

Finally, we want to use our experiences with the
TWIib to provide similar libraries for other distribu-
tion concepts for search processes. Again, the main
goal has to be to provide both an optimal efficiency
and an easy use by implementers.

References :

[1] Avenhaus, J. ; Denzinger, J. ; Fuchs, M.: DISCOUNT:
A system for distributed equational deduction, Proc. 6th
RTA, Kaiserslautern, 1995, pp. 397-402.

[2] Carver, N. ; Lesser, V.R. ; Long, Q.: Resolving global in-
consistency in distributed sensor interpretation: Modelling
agent interpretations in dresun, Proc. 12th Intern. WS on
DAI, Hidden Valley, 1993, pp. 19-33.

[3] Denzinger, J.: Knowledge-Based Distributed Search Us-
ing Teamwork, Proc. ICMAS-95, San Francisco, AAAI-Press,
1995, pp. 81-88.

[4] Denzinger, J. ; Fuchs, M.: Goal oriented equational theo-
rem proving using teamwork, Proc. 18th KI1-94, Saarbriicken,
LNAI 861, 1994, pp. 343-354. _

[5] Denzinger, J. ; Kronenburg, M.: Planning for distributed
theorem proving: The team work approach, Proc. KI-96,
Dresden, LNAI 1137, 1996, pp. 43-56.

[6] Fuchs, M.: Ezperiments in the Heuristic Use of Past Proof
Ezperience, Proc. CADE-13, New Brunswick, LNAI 1104,
1996, pp. 523-537.

{7] Gasser, L. ; Braganza, C. ; Herman, N.: Implementing
distributed ai systems using mace, in Bond, Gasser (eds.):
Readings in DAI, Morgan Kaufmann, 1988, pp. 445-450.

[8] Geist, A. ; Beguelin, A. ; Dongarra, J. ; Jiang, W. ;
Manchek, R. ; Sunderam, V.: PVM 3 user’s Guide and
Reference Manual, Oak Ridge National Laboratory, 1993.

[9] Jennings, N.R. ; Wittig, T.: ARCHON: theory and prac-
tice, in Avouris, Gasser (eds.): DAIL: Theory and Praxis,
Kluwer Academic, 1992, pp. 179-195.

[10] Nehmer, J. ; Sturm, P.: Generating dedicated runtime
platforms for distributed applications - a generic approach,
Proc. 5th IEEE WS FTDCS, Cheju Island, Korea, 1995, pp.
50-55.

