Joint Conference of 1996 International Computer Symposium

December 19~21, Kaohsiung, Taiwan, R.0.C.

Improved Algorithms for Reasoning about Qualitative Temporal
' Constraint Problems

Hsien-Cheng Linl-2 and Ching-Chi Hsul

1 Department of Computer Science and Information Engineering
National Taiwan University
Taipei, Taiwan 10617, R.O.C
CCHsu@csie.ntu.edu.tw
Fax:886-2-3628167 Tel:886-2-3917406

2 Institute for Information Industry
Taipei, Taiwan 10617, R.O.C.
cclin@adc.iii.org.tw
Fax:886-2-5453950 Tel:886-2-7189123

Abstract

Representing and reasoning about incomplete
and indefinite qualitative temporal information
is an essential part of many artificial
intelligence tasks. An Interval Algebra (IA) has
been proposed by Allen as a model for
representing qualitative temporal information
about the relationships between pairs of
intervals. In this paper, we present some
algorithms to improve the tasks of reasoning
with IA. First, we have improved Allen's path
consistency algorithm by eliminating duplicate
computations and by applying tightest
constraint first heuristic that leads to faster
convergence. Second, for finding a consistent
scenario, we. show that a backtrack algorithm
with - backward checking — and simple
backjumping techniques, yields better
performance than old one. By computational
experiments, we test the performance of our
algorithms on a set of randomly generated
consistent networks. The results show that the
overall average execution times are better in
our method.

1. Introduction

Representing and reasoning about incomplete
and indefinite qualitative temporal information
is an -essential part of many artificial
intelligence tasks. An interval algebra proposed
by Allen [1] has been used as a model for
representing qualitative temporal information
about the relationships between pairs of
intervals. It has been applied to solve many Al
problems including planning [2,3], plan
recognition [4], story understanding [5,6], and
scheduling{7]. In this framework, the
representation of temporal information can be
viewed as binary constraint network
[10,11,12,19,20,21] and constraint satisfaction
techniques [13,14,15,16,18] can be used to
reason about the information. Given possibly

77

indefinite and incomplete knowledge of the
relations between some intervals, the
fundamental reasoning tasks are: (1) find a
scenario that is consistent with the information
provided, and (2) find the feasible relations
between all pairs of intervals.- However, the
reasoning tasks have been shown to be NP-
complete {8,9].

The reasoning tasks above are often solved by
path consistency and backtracking algorithms
[1,17]. In this paper, we present some improved
algorithms for reasoning with Allen‘s Interval
Algebra. First, we have improved Allen‘s path
consistency algorithim by eliminating duplicate
computations and by applying tightest constraint
first heuristic that leads to faster convergence.
Second, for finding a consistent scenario, we
show that a backtrack algorithm that search
through basic relations and prunes the search
space with backward checking and simple
backjumping techniques, = yields better
performance than old one. By computational
experiments, the performance of the proposed
algorithms are evaluated on a set of randomly
generated consistent networks.

2. Background

Allen's interval algebra (IA) uses intervals as
temporal objects. Each interval represents a
period over which an event occurs. An interval,
1, is an ordered pair of a beginning point and an
ending point, [I,I],where I'.I" belong to real
number. There are 13 basic relations (see Figure
1) specifying all possible relationships between
any two intervals. To be able to represent
indefinite information over pairs of intervals,
the algebra allows disjunctions of these basic
relations. There are 8192 (2'%) relations
definable from the 13 basic relations. The empty
set (containing no basic relation) denotes
inconsistency. Universal set (containing all 13
basic relations) means no constraint over the

Proceedings of International Conference
on Artificial Intelligence

two corresponding intervals. IA is the algebra
with the underlying 8192 sets, unary operator
inverse, and binary operators union (U),
intersection(~), and composition(®).
The binary operators, union and intersection,
are defined as normal set operators. Let R;; =
{ry,....I .} be a set of basic relations constraining
over two intervals, X; to X;. The inverse
operation can be defined as, Ry = {n”,...5" },
where 1! is the inverse relation of r, . The
composition of Ry and Ry denoted Ry © Ry
admits only basic relations for which there
exists p € Ry and q € Ry; such that when the
intervals X; and Xy are related by the basic
relation p, and the intervals Xi and X; are
related by the basic relation q, then it is possible
that Xi and Xj can be related by r. Allen defined
the composition operator between two basic
relations by using a composition table.
Therefore, Ry, © Ry;can be defined as follows:
{p°dqlpeRi.qeRy}
An TA network is a binary constraint
satisfaction problem where the variables
represent intervals. A binary relation between
interval X; and X; is defined by a disjunction of
the basic relations, R;. An IA network, R, can
also be represented by a labeled directed graph
-where nodes represent intervals, and an arc i->j
is labeled by the relation R Each relation, Ry,
implies an inverse relation R;;. Only one of them
is shown in the labeled graph. An IA network, R,
of n nodes, can be defined by its ¢ = n(n-1)/2
labeled arcs. If we assign arc numbers to these
arcs such that the arc number k corresponds to
the directed arc (i,j), the IA network, R, can be
presented as a tuple, (Ry,....R.).
A scenario is a tuple S = (13,...,1.), where 1, € Ry,
1 <k < e. A consistent scenario,S, is a scenario
such that all basic relation in S hold. The IA
network is consistent if at least one consistent
scenario exists.

3. An improved path consistency algorithm

Since IA networks are node consistent and arc
consistent, path consistency is the lowest order
of consistency with acceptable order of
complexity O(n®). Path consistency algorithm
can also be applied prior to a backtrack
algorithm to prune the search space.

3.1 Design
algorithm

concepts of the improved

Allen‘s [1] path consistency algorithm uses a
first-in first-out queue. Initially all arcs of
constrained labels are placed into the queue.
The propagation of relations is initiated by

78

removing an arc, say (i,j) from the queue, then
the label Rij is used to constrain other labels in
the network. When any label is updated, its
corresponding arc is placed into the queue, since
this label might further constrain other labels.
The propagation continues in this fashion until
the queue is empty, indicating that a fixed point
has been reached.

We propose two improvements to Allen‘s path
consistency algorithm. The first improvement is
based on the observation that the arcs on the
queue should not be duplicated. The repeated
propagation of the same relation costs the
unnecessary amount of work. We can replace
the “queue” by maintaining a “set” of arcs using
a n x n matrix instead. The entry (i,j) in this
matrix has the value NULL if it is not in the set.
Each time we want to place an arc (i,j) in the set,
we check whether the entry (i,j) of the matrix
has the value NULL or not. Only if it is NULL
is it necessary to place that arc (i,j) in the set.
Each time we get an arc, say (i,j), from the set,
we need to reset the entry (i,j) of the matrix to
NULL.

The second improvement is done by applying
tightest constraint first strategy when selecting a
tuple from the set to process. We observe that it
make the algorithm converge faster. This
strategy can be easily implemented by using an
array of linked list. To arrange the arcs in an

.ascending order of the number of basic relations

on the labels, we can maintain 12 doubly-linked

Tlists. Each designated by the number of basic

relations (from 1 to 12). It is unnecessary to
keep label of universal relation because it has no
effect in constraining other labels. If a tuple (i.j)
is in a list, the entry (i,j) of the matrix above
contains a pointer pointing to the element in the
list. To get an entry (i,j) from the lists, we get it
from the least-number nonempty list and set the
entry (i,j) on the matrix to NULL. To add an
entry (i,j) , we first computes the number of
basic relations on the label, then the entry (i,j) is
added on the corresponding list indexed by the
number of basic relations. We check if the entry
(i,)) on the matrix is not NULL; this means it
points to an element on a list. We then use this
pointer to delete the pointed element from the
list (to avoid duplication), and set the entry on
the matrix with a pointer pointing to the new
element we insert previously. ‘
After making the two improvements, the space
complexity of this algorithm is O(n® and its
worst-case time complexity is still the same as
Allen‘s one, O(n’); However, its execution time
is improved as shown empirically in next
section.

3.2 Empirical results

We generate random interval = constraint
networks with the following properties:
® Each basic relation within an arc occurs
with the same probability.

® - Each arc within the network occurs with -

the same probability.

We generate 100 networks of sizes 5 to 100.
Figure 3 shows the percentage of networks of
each size that are path-consistent. The graph
shows a sharp jump from networks of size 14 to
networks of size 25. We found that all general
networks that we randomly generatcd with more
than 25 variables are path inconsistent

With the random gencration method we did not
obtain any large path-consistent random
networks of size n > 30. This is because in the
larger networks, more label compositions are
intersected, which reduces the number of
possible relations between two intervals. Hence,
the probability of two relations being path-
consistent is low. Since we do not know of any
method to generate truly random large path-
consistent networks, we gencrated consistent
networks in the following way: Pick a number
of intervals lying on a metric scale Tpp,... Tmax
of discrete time instances and compute the
relations that hold between each interval pair.
This gives a sct of initial relations that, taken
together, form an initial solution. Then produce
a final network by taking the sum of the initial

relations and some other randomly chosen labels.

The generated networks are consistent with at
least one solution: the initial solution. The
larger the time scale, the less likely it is for two
intervals to have one point in common. The
basic relations occur with different probabilities.
Now, some empirical results are given to show
the performance of the proposed path
consistency algorithm compared to Allen‘s
original algorithm. We compare their total
execution time to count the overhead of the
algorithms. We will present results of some
computational experiments on three path
consistency algorithms: Allen’s original
algorithm (denoted by Allen’s PC), the
algorithm that avoids the duplicated pairs
(denoted by Duplicates removed), and algorithm
that adopts both avoiding duplication and the
tightest constraint first strategy (denoted by
Tightest first).

The algorithms are tested on two sets of
networks using Intel Pentium 75. In the first set,
networks are randomly generated. In the second
set, networks are generated and forced
consistent as described above. For each network
size, 100 networks are generated and tested. In

79

Joint Conference of 1996 International Computer Symposiu

December 19~21, Kaohsiung, Taiwan, R.O.C.

the first set,-we compute average execution time
for path consistent networks and for path
inconsistent networks separately. The
experimental results are shown in Tablé 1. The
three path consistent algorithms detect path
inconsistent networks very quickly especially for
tightest first one. The experimental results for
the second set are shown in Figure 4. We found
that the tightest first algorithm always gave the
results faster than the other two algorithms, and
that duplicates removed one is faster than
Allen‘s PC.

4. An improved backtrack _algorithm'(NEW)

A straightforwafd way of solving an IA network

" is to decompose it into several scenarios, and

solve each of them separately. The i:onsistency
of each scenario can be checked in O(n?), where

n is the number of intervals. The original

network is consistent if and only if there is at
least one consistent scenario. And if we combine
all consistent scenarios together, the minimal

labeling network is obtained. The complexity of

solving a general IA network by generating all
the scenarios and checking for their
consistencies independently is O(n*13°%).

This brute-force enumeration process can be
pruned significantly by running a backtrack
search algorithm. Backtrack assigns a basic
relation to an arc incrementally, as long as the
partial assignment is consistent; otherwise, the
algorithm backtracks. Allen proposed to use
such backtrack algorithm (denoted as OLD) in
which a consistent scenario is incrementally
constructed through basic relation assignment.
The best case complexity of the backtrack
algorithm is O(n®*, which occurs when no
backtrack takes place on any of O(n?) arcs; each
arc is assigned a label and the O(n®) consistency
checking algorithin is executed. However, the

worst-case complexity - of the backtrack
algorithm is O(n*13°).
When used with backward ~ checking,

backjumping can enhance the performance of a
backtrack algorithm. Backjumping is the idea of
going back several levels in a backtrack
situation, ‘rather than going back to the
chronologically most recent decision.

4.1 Design concepts

Our proposed algorithm (denoted as NEW)
assigns a basic relation to each arc, and
traverses the arcs in a predetermined order. We
assume the order of the arcs in an incrementally
constructive fashion, namely, starting with a
complete graph of m nodes and at each step

Proceedings of International Conference
on Artificial Inteiligence

forming the complete graph of m+1 nodes by
adding m arcs, one at a time. The 'xlgontlun
assigns consistent basnc relations . to a
subsequence (ri,...,1e) of labels aud attempts to
append to it a new qssngnment of r. The
algorithm backtracks to .the most recent arc (in
case of normal backtrack), or backtracks directly
to the source of conflict (in case of
backjumping), then changes its assignment and
continues from. there. Our NEW algorithm for
finding one. consistent scenario is given in
Figure 5.
The algorithm assumes an input A network
R=QR;.....R;), and = a current assignment
S=(r,....,r). The algorithm runs a path
consistency algorithm as a preprocessing step to
" reduce the search space before a backtrack
 algorithm starts, sets the Boolean variable found
to FALSE, and then calling Backtrack with k =
0. The function Backward_Check(r,... JTuRi)
selects all basic relations of the label Ry that
_are . consistent with .the current '15511,11111ent
 (1,...,r). This is the backward checking step
~where we use the assignment of previous. labels
to filter and keep only the possible basic
relations for the next arc. Each basic relation in
the result of Backward_Check is guaranteed to
be consistent with the previous assignments.
The subnetwork is incrementally built toward a
complete graph. To filter the relations for the
~ (k+1)th arc, we can consider only m-2 trxangles
since the first k arcs are labeled with basic
~ relations, and they are already consistent with
each other.
Suppose that the IA network R, has nodes
_(1,...,n); then we assume-that the order of arcs, k,
is related to its corresponding pair of nodes (i,j)
as follows:
k <=> (j- 1)(]-2)/2+1 l<1<)<n }
The function Backward_Check does the
backward checking step for pruning and uses a
simple backjumping for 1denufymg the first and
farthest source (arc) of conﬂlct as an index for
backjumping when inconsistency occurs. We
can consider only all triangles such that the arc
Rk+. is one of their sides. If the subnetwork built
so far has m nodes, then there are only m - 2
triangles to be checked. The relations on these
m -2 triangles prune all the inconsistent basic
relations in Ry by the way of backward
checkixfg. Either Ry becomes empty, indicating
inconsistency, or Ry, gets smaller containing
only those consistent with the previous
assignments. Assume that k and (i,j) are related
according to equation -(1). Given (i,j), we can
consider all triangles (i,j,p) where p = i, p # j,
and 1 <p<j..
The time complexity of Backward_Check is

80

O(@m) (for loops run at most m-2 times), where
m is the number of nodes in the subnetwork that
consists of the arc 1,..,k+1. Each level

‘averagely takes n/2 composition operations and

there are n(n-1)/2 levels, so in the best case (no
backtracking), the time complexity is om).

4.2 Empirical results

We compare the performance of our backtrack

algorithm, NEW, to that of the OLD on a set of
randomly generated consistent IA networks. For
each " network of size n, we generate 25
consistent IA network. The times reported are in
seconds for Intel Pentium 75. The experimental

~results are shown in Table 2 The numbers in

parentheses of Table 2show the number of cases

. (out of 25 tests cases) when the algorithms did

not find solutions within 25 minutes of CPU
time. No timing information is reported for
these cases; hence they are not included in the
average execution time. We conducted two set
of test cases: In Table 2(a), the tightness of the
generated consistent networks is set to 0.1, and

~ the connectivity of them is set to 0. 75. In Table
- 2(b), the tightness of the generated consistent

networks is set to 0.5, and the connectivity of
them is set to 0.5. For example, in Table 2(a)
where n = 25, the average execution time for
our algorithm NEW was 127.66 seconds: this is
an a\ier‘)ge for over 15 cases where 10 cases run
out of 25 minutes time bound. The OLD
algorithm gave 6 answers with a 291. 71 seconds
average, and 19 cases were left unanswered. The
average time run for path consistency
preprocessing was 0.08 seconds, which is
negligible when compared to the time for
backtrack search step. But the effect of path
consistency preprocessing for pruning search
space is significant. The number of out-of- bound
cases is another important factor to measure the

. perform'mce of the algorithms. The lower the

number, the more solutions the qlgorlthm gave
within the limited time bound.

If we take the average over all 300 tested
networks in Table 2(a), the average execution
time of algorithms OLD and NEW became 37.4
and 31.02 seconds, where out-of-bound cases
are 196 and 142, respectively. By using these

'ﬁgures the average execution time of NEW was

an improvement of about 21% over OLD; the
numbers of out-of-bound cases were reduced by
about 28%. These results, however, should be
qualified in at least two ways. First, the statistics
are valid only relative to the parameters of
tightness and connectivity. Note that in Table
2(b), tested cases of size n > 20 were almost
unanswered within the time bound. Second, the

variances of execution times for each problem
size were quite different from their average
times owing to random generation. Although,
the algorithms found solutions very quickly
(within 5 minutes), they did not solve the
problems at all within the 25-minute bound in
most cases, respectively, 65% (OLD) and 47%

(NEW) of the total.
5. Conclusions

In this paper, we present some improved
algorithms for reasoning with Allen‘s interval
algebra. We have improved Allen's path
consistency algorithin by eliminating duplicate
computations and by applying tightest constraint
first heuristic that reduces the total number of
computations. We also propose a new backtrack
algorithm that search through basic relations
and prunes the search space with backward
checking and simple backjumping techniques,
yields better performance than old one.

References

[1] J.F. Allen, “Maintaining knowledge about
temporal intervals”, Comm. ACM, 26,
1983, pp.832-843.

[2] J.F. Allen, J.A. Koomen, “Planning using a
temporal world model”, IJCAI-83,
pp.741-747.

[3] J.F. Allen, “Planning as temporal reasoning
», 2nd Int. Conf. Principles of knowledge
representation and Reasoning, 1991, pp.3-
14,

[4] F. Song, R. Cohen, “Temporal reasoning
during plan recognition”, Proc. 9th NCAI,
1991, pp.247-252.

[5] JF. Allen, “Towards a general theory of
action and time”, J. of Al, 26(2), 1984,
pp.123-154.

[6] F. Song, R. Cohen, “The interpretation of
temporal relations in narrative”, Proc. 7th
NCAI, 1988, pp.745-750.

[71 A.C. Meng, B.A. Raja, “Logos-tes: An
expert system for operation management
based on temporal constraint satisfication”,
Proc. 6th Coonf. Artif. Intell. Appl., 1990,
pp.215-221.

[8] M. Vilain, H.A. Kautz, “Constraint
propagation algorithms for temporal
reasoning”, AAAI-86, 1986, pp.377-382.

[9] M. Vilain, HA. Kautz, P.van Beek, ©
Constraint propagation algorithms for

temporal reasoning”, revised
version of AAAI-86, pp.377-382, 1986,

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

from Readings on Qualitative Reasoning
about Physnca] Systems (1990) pp.373-
381. -

[10] R. Dechtef L. Meiri, J. Pearl; “Temporal

" constraint networks”, J. of Al, 49, 1991
pp.61-95.

[11] A.K. Mackworth, “Consistency in networks

of relations”, J. of Al 8, 1977, pp.99=118.

[12] E.C. Freuder, “Synthesizing constraint

expressions”, Comm. ACM, 21, 1978,
pp-958-966. o

[13] AK. Mackworth, E.C. Freudér, “The

complexity of some polynomial network
consistency algorithms for constraint
satisfication”, J. of Al 41, 1989, pp.89-95. .

[14] B.A. Nadel, “Tree search "and ' arc -

consistency in constraint satlsﬁcatlon
algorithms”,

Search in Artificial Intelligence, edited by '
L. Kanal and V. Kumar, Spnnger-Verlag, ‘
1988, pp.287-342. - -

[15] RM. Haralick,: G.L. Elliott, “Increasmg

tree search efficiency for constraint -
satisfication problem”, J. of Al, 14, 1980,
pp.263-313.

[16] R. Dechter, “Enhancement schemes for

constraint processing: backjumping,
learning, and cutset decomposition”, J. of
Al 41, 1989, pp. 273-312.

[17] A. Reinefeld and P.B. Ladkin, “Fast

solution of large interval constraint
networks”, Proc, Ninth Biennnial Conf. of
the Canadian Society for Computational
Studies of Intelligence, Vancouver, BC
(1992).

[18] R. Dechter, J. Pearl, “Network-based

heuristics for constraint satisfication
problems”, J. of Al, 34, 1988, pp.1-38,
and also in Search in Artificial
- Intelligence, edited by L. Kanal and V.
Kumar, Springer-Verlag, 1988,
pp.370-425. ’

[19] P.B. Ladkin, R. Maddux, “On binary

constraint networks”, Technique Report
KES.U.88.8, Kestrel Institute, Palo
Alto, Calif., 1988.

[20] I. Meiri, “Combining qualitative and

quantitative constraints in . ‘temporal
reasoning, ” in Proc. Ninth Natl. Conf.
Artif. Intell., 1991, pp.260-267.

[21] H. Kautz and P.B. Ladkin, “Integrating

metric and qualitative temporal reasoning,
” in Proc. Ninth Natl. Conf. Artif. Intell.,
1991, pp.239-246.

Proceedings of International Conference
on Artificial Intelligence

Relation Hlustration Symbol Inverse
X before y X|o=e] -y b bi
X meets y x| m mi
-y
X duringy x|~ d di
frememeeeeee Iy
x overlapsy X|----- 0 oi
e
X starts y %|----| s si
I ly
x finishes y xj--- f fi
f=eeerly
equalsy X|---| eq eq
Y-
Figure 1. Basic relations between
two intervals .

function Revise(ik.j)
{ Z<-Ryjn Ry ° Ryy);
if (Z == @) {report inconsistent network; exit; }

else { R; <- Z; R;; <- Z'; return TRUE;}
1
3

procedure Path_Consistency() ,
{ Q<-{(ij)] 1 <i<j<n}; //1is the number of
// basic relations of (i,j)
while Q is not empty
{ select and delete a (i.j) with tightest constraint
from Q;
fork<-1lton do
if(k<>iand k <>j)
{ if Revise(i,j,k) Q, <- Qv (i.k);
if Revise(k,i,j) Q <- Q;u (kj);
3
})
}
Figure 2. Improved path cousistency algoritham
for interval algebra.

Figure 3.

Consistent network distribution pattern

23 25 27 29 35 45 55 65 75 85 95

network size

82

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

Table 1. Average execution time of path consistent algorithms for the randomly
generated networks (first test case). .
for path consistent networks for path inconsistent networks
st sfe sk o sfe ol sfesfe e dle s sl e sk ke s e sk ool e sk ok sfesfese sl e sk sfeskslesfesle sl e sfesle e sk slesfeseosfe ekl sk
node ratio tightest duplicate Allen's tightest duplicate Allen‘s
size first removed PC first removed PC
100.99 0.000 0.000 0.000 0.000 0.000 0.000
- 15089 0.055 0.055 0.055 0.000 0.000 0.000
200.54 0.165 0.165 0.220 0.000 0.110 0.165
250.04 0329 0.384 0.495 0.000 0.165 0.165
30 0 NA 0.000 0.165 0.165
40 0 NA 0.000 0.220 0.220
5 0 N/A ©0.000 0.275 0.275
60 0 N/A 0.000 0.330 0.330
70 0 N/A 0.000 0.440 0.440
80 0 N/A 0.000 0.440 0.440
9 0 N/A 0.000 0.604 0.604
100 0 N/A 0.000 0.704 0.704

—6— Allen's PC
—&— Duplicates removed
—a— Tightest-first

o3 O O o »n

vi O n T~ o~ W QY W
— = N N O < v

Wy
[».s}
Node size

Figure 4. Path consistency processing time for the forced consistent
networks (second test case) (Tightness=0.5,Connectivity=0.5,100
consistent networks for each node size).

83

Proceedings of International Conference
on Artificial Intelligence

procedure NEW()
{ run path consistency algorithm as in Figure 2.;
found <- FALSE; '
Backtrack(0);
}
procedure Backtrack(k)
{
if (k==n(n-1)/2)
{found <- TRUE;
exit with current assignment;
}
Tin <- Backward_Check(ry,...,I,Ri1);
while ((not found) and (Ty., is not empty)) do
{1 <- select a basic relation in Ty.,;
remove Iy from Ty,
Backtrack(k+1);
if (not found). backjumping to the designated
k;
}
}
function Backward_Check(r,,...,1,Ry)
{ ,
(i,j) <- changing the arc number k+1 into
its corresponding pair of nodes by equation (1);
forp<-i+ltoj-1do
{jo <- Rij e (I'ip o Rpj);
if (R;j ==) *
{(i,p) gives the index k (the arc number)
~ to jump back;
return &; '
H
{3
forp<-1ltoi-l do
{Rj <-Rjn (rp 0 1)
if (R; == 2)
{(p.j) gives the index k (the arc number)
to jump back;
return &,
}
}
return Ry;

}

Figure 5. NEW backtrack algorithm for finding a
consistent scenario.

Table 2 Average execution times (in seconds)
of two backtrack algorithms,
(Run on Intel Pentium 75, 25 cases for
each size, limited time 25 mins)

(a) (for Connectivity=0.1, Tightness=0.7)

node time for path timefor time for
size consistency OLD NEW

5 0.00 0.00(0) 0.00(0)

10 0.00 0.55(1) 0.05(0)

15 0.02 0.85(6) 0.21(1)

20 0.05 100.72(10) 0.13(3)

25 0.08 291.71(19) 27.66(10)
30 0.13 9.73(20) 1.45(11)

35 0.20 60.35(19) 96.45(12)

40 0.28 21.25(22) 111.61(15)

45 0.76 124.79(24) 42.23(18)
50 0.99 N/A 134.53(23)

55 1.43 N/A 23.37(24)

60 1.98 N/A N/A

(b) (for Connectivity=0.5, Tightness=0.5)

node time forpath timefor time for
size consistency OLD NEW

5 0.00 0.0000) 0.00(0)
10 0.03 16.63(1) 1.58(1)
15 0.12 231.25(19) 229.36(16)
20 034 10.6124) 8.76(22)
25 0.67 N/A 45.41(24)
30 1.12 N/A N/A

84

