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ABSTRACT

In this paper, we solve the weighted median
problem on a 4-cactus graph. The median
problem has been extensively studied in the last
three decades.
can be solved in O(#*), where n is the number of

On general graphs, the problem

vertices in a graph. For tree graphs, however,
more efficient algorithm can be devised to find
the weighted median in O(n).
study weighfed 4-cactus graphs which provide a
less restrictive network structure than trees and
show that the weighted median problem can be

In this paper, we

solved just as efficiently as on tree graphs.

1. INTRODUCTION

In this paper, we shall propose an optimal
algorithm for finding the weighted medians of a
4-cactus graph. Let G(V, E) be a finite,
connected, undirected simple (i.e., no parallel
edges and no self loops) graph. Let ¥, or V(G),
denote the vertex set of G and E, or E(G), denote
the edge set of G. The cardinality of a finite set
X is denoted |[X]. A weighted graph G is a
graph in which a number wg(e) (respectively,
we(u)) is associated with every edge ecE
(respectively, vertex ue¥). We also use uv to
denote edge e if u and v are the two incident
vertices of e. The weight of e can also be
represented by wg(u, v). The numbers wg(e)
and wg(u) are called the weights of edge e and
vertex u, respectively. A path of G is an

alternating sequence of distinct vertices and
edges, beginning and ending with vertices.
The length of a path is the sum of the weights of
the edges in the path. A path from utovisa
shortest path from u to v if there is no path from
u to v with lower length. The distance from
vertex u to vertex v, denoted d;(u, v), is the
length of a shortest path from u to v. Note that
di(u, u) = 0. The w-distance between vertices
u and v, denoted d;; ,(u, V), is dg(u, v) x wg(»).
The sum of the w-distance from vertex u to
every vertex of G is denoted by D (u). A
vertex u with the minimum Dg(u) is called a
weighted median of G [14].

A subgraph of G(V, E) is a graph whose
vertices and edges are subsets of ¥ and E,
respectively. A maximal connected subgraph
of G is called a component. A cut vertex of G
is a vertex whose removal increases the number
of components. A maximal nonseparable
subgraph is termed a block of G(V, E). A cycle
of G is a connected subgraph in which every
vertex has exactly two distinct edges emanating
fromit. A cycle has exactly k vertices is called
a k-cycle. A cactus graph (or treelike graph) is
a connected graph in which every block with
A 4-

cactus graph, then, is a cactus graph whose

three or more vertices is a cycle [10].

cyclic blocks contain at most four vertices.
Example of treelike graphs exist for

telecommunication networks, interstate highway

systexr{s, and computer communication networks.

It was for telecommunication networks that
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Hakimi originally proposed median and center
objectives for the location of switching'centers
[8. A simple feeder telecommunications
network can be represented by a 3-cactus graph
[12]. |
median and center problems on treelike graphs
[3,7,10].

The one-median problem has been

There are similar developments for the

extensively studied in the literature and well
documented in books by Francis et al. [5],
-Handler and Mirchandani [9], Minieka [16], and
Mirchandani and Francis [17] and Korach et al.
[11] and in the survey paper by Tansel et al. [19].
On tree networks, more efficient algorithms can
Goldman
proposed an efficient algorithm to find the

be devised to find the medians.

medians of a tree in linear time [6]. Recently,
Peng and Lo presented an excellent method to
solve the median problem on tree networks in
The weighted median of a
general graph can be found in O(J}) time by

linear time [18].

using Floyd’s algorithm which solves the all
pairs shortest path problem [4]. Lee and Chang
showed that the weighted median of a connected
strongly chordal graph is a clique when all
In [10],

Kincaid and Lowe gave a linear time algorithm

vertices are with positive weights [14].

to solve the absolute center problem on a 3-
cactus graph. An absolute center is a point of a
graph that minizes the maximum distance to all
points of interest on the graph. Maimon and
Kincaid also developed linear time algorithms to
locate the vertex of minimum variance and the
vertex of minimum average response time for
any 3-cactus graph [15].

The rest of the paper is organized as follows:
In Section 2, we describe some definition and
terminology used throughout this paper. Some

properties of tree and block graphs are also
developed. In Section 3, we propose an
optimal algorithm for the weighted median
problem on a weighted 4-cactus graph. Finally,
Section 4 contains the concluding remarks.

2. SOME PROPERTIES OF
DISTANCE 4-BLOCK GRAPHS

In this section, we shall discuss some
properties of distance 4-block graphs, which will
be used to find the weighted medians of a 4-
cactus graph. A block graph is a connected
graph in which every block with three or more
vertices is a clique [2]. A distance block graph
is a block graph in which wy(e) = d (u, v) if e =
uv is an edge of G. A distance 4-block graph,
then, is a distance block graph in which each
block contains at most four vertices.

At first, we introduce some notation used in
arooted tree 7 whose root is r [1].  If a vertex v
of T is adjacent to vertex u and u lies in the level
below v, then u is called a child of v, and v is the
parent of u. A vertex u is a descendant of v
(and v is an ancestor of u) if the v—u pathin T
Let ANC(u) denote the set of
vertices which are on the path from u to r.
Note that u itself is also in ANC(u). The
subtree of T rooted at vertex u is denoted by
T(u). The total weight of all vertices in subtree
T(u) is denoted by W, (u). Now, we state a
relation between Dy(r) and D u) as the
following theorem.

Theorem 1  Let r be the root of T and u be a
child of 7. Then, D (u) = D(r) + w(r, u) x (W,(r)
- 2W ().

Proof:

lies below wv.

Q.E.D.
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Dy (u) = Zdr (u,x)x wr(x)

xeT

= Zd,(u,x)x wp(x) + Z d,(u,x)x wp(x)

xeT, () xeT-T,(u)

= 2w (ryu) +dp (u,x) ~ wr (r,u)) x wy (x) +

xel, {(u)

> dyp (u,x) % wy (x)

xel~T,(u)

= Z dr(r,x)=wp(r,u))xwp(x)+

xel, (u)

2 dr (u,x)x . (x)

xeT'-T,(u)

= Za’,(r,x)xw,(x)-— Zw,(r,u)x wp(x)+

xeT, (u) xeT,(u)

Z dy(u,x) x‘ wr(x)

xeT-T,(u)

= Zd,(r,x)x we(x) - Zw,(r,u)xwr(x)+

xeT, (#) xeT, (u)

Z(wr (u,r)+d.(r,x))xwp(x)

xeT-T, (u)

= Zd,.(r,x)xw,(x)— Zw,(r,u)xwr(x)+

xeT, (u) xeT,(u)

Z dp(r,x)xw,(x)+ Z wp (u,ryx wp(x)

xeT'-T,{u) xeT-T,(u)

= Zd,.(r,x)xw,(x)— Zw,(r,u)x wr{x)+

xeT xeT, (u)

> wy (r,u)x wy (x)

xeT~T, (u}

=D, (r)- Z we(r,u)x wp (x)+ Z wp (r,u) x wi.(x)

xeT, (u) xeT-T,(n)

=Dr(r)+we(r,u)( Y wr(x)— Y wr(x)

xel-T,(u) xeT, (4)
= Dr(")"‘wr(r,u)(z wr(x) - Zwr(x)" Zwr(x))
N xeT xeT,(u) xeT, (u)

2D () we(raX S wr (1) =2 Y wr (1))

et *<T,(n)
=D (r) +wp (7, u)(W, (r) - 2W, (w)).

Breadth first traversal of the underlying
graph of a connected weighted graph associates
a spanning tree to the graph. It means that
breadth first traversal partitions the edge of G
into two types: tree edges (i.e., traversed edges)
and nontree edges (also called cross edges).
Let G(V, E) be a distance 4-block graph, T be
the breadth first spanning tree of G and w,{e) =
= wg(u)) for every
In the breadth first

wg(e) (respectively, w(u)
eeT (respectively, ueT).

traversal, the first visited vertex r of G is the

root of 7. We define the following notations
with respect to 7. A vertex v is called an adjust

vertex of vertex u if v is an ancestor of » and v is
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adjacent with a cross edge. Let 4(u) denote the

set of all adjust vertices of u. A cross edge e is
said to be an overpass between vertices u and v,
denoted b(u, v), if e is the cross edge between a
vertex in ANC(u) and another vertex in ANC(v).
Vertex v is called an overpass vertex of vertex u
if there exists an overpass between u and v.
Let B(u) denote the set of all overpass vertices
of vertex u. Vertex u is called a cross vertex of
vertex v if there exists a cross edge between u
Let C(u) denote the set of all cross

Notice that a vertex has at

and v.
vertices of vertex u.
most two cross vertices with respect to 7. Lete
be the cross edge between vertices # and v and x
be the parent of u. Define that o(u, v) = wg(x,
u) + wolx, v) = wele), fu) = Lyecwau, ¥) X
Wiy) and fu) = 2, 4, Ay). Note that oy, v)
can also be represented by ofe).

The following lemma states how to
compute d;(u, v) from d{u, v).
Lemma 1 Let G be a distance 4-block graph
and T be a breadth first spanning tree of G. If
vertex v is an overpass vertex of vertex u with
respect to 7, then dg(u, v) = d{u, v) - a(b(u, v));
otherwise d;(u, v) = d{u, v).
Proof: :
Since G is a distance 4-block graph, it is
clear that dg(u, v) = dfu, v) if v is not an
overpass vertex of u. For the case where v is
an overpass vertex of u, let vertices x and y be
the two adjacent vertices of edge b(u, v) and x
and y are the ancestors of vertices u and v,
respectively. Furthermore, let vertex z be the
parent of vertex x. Then, d(u, v) can be
derived as follows: _
de(u, v) = di{u, x) + ws(x, ) + d(y, v)
= d(u, x) + di(x, z) - di{x, 2) + wg(x, y) - di(Z ))
+di{z, y) + dyly, V)
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=d{u, z) - d{x, z) + wg(x, ) - d{z, y) + d{z, v)
=d(u, v) - di(x, 2) - di{z, y) + wi(x, ¥)
=d(u,v) - afx, y)
=dlu, v) - a(b(u, v)).
Q.E.D.

The following theorem presents how to
compute Dg(u) from Dy(u).
Let G(V, E) be a distance 4-block
graph and T be its breadth first spanning tree

Theorem 2

- whose root is r. Then, for any vertex ueV,

Dy(u) = Dy{u) — Ku).

Proof:
Do)=Y de (1,%) % W ()
xeV
= Y dg(u,x)xwg(x)+
xeV -B(u)
Z dg(u,x)x wg(x)
xeB(u)
= ZdT(uax)x we (x) +
xeV ~B(u)
Z d;(u,x)xws(x)
xeB(u)
= > d (u,x)xwg(x)+
xeV -B(u)
D (dr (u,x) = a(b(u, x))) x wy (x)
xeB(u)
= Zdr(u,x)x wg(x) +
xeV -B(u)
D dr(w,x)xwr(x) = D a(b(u,x))x wy(x)
xeB(u) xeB(u)
= Z dr(u,x)xwg(x)— Z a(b(u,x))x wp(x)
xeV ) xeB(u)
=D, )= Y Y Day)xw(x)
ved(u) yeC(v) xeT (y)

=D, W)= Y Y at,»)xW,(»)

ved(u) yeC(v)

=D, ()~ Y. ()

veA(u)
= Dr(u) -y ().
Q.E.D.
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3. FINDING THE WEIGHTED
MEDIANS OF A WEIGHTED 4-
CACTUS GRAPH

Given a weighted 4-cactus graph H(V, E),
we can construct a corresponding distance 4-
block graph G(V, E') from H. The construction
of G from H is described as follows. All of the
edges in H are also in G and for each 4-cycle of
H, two edges are inserted in order to form a
block. The resulting graph is a 4-block graph
G(V, E'). Moreover, wg(u) = wy(u) for every
vertex ueV and wg(e) = dy(u, v) if e = uv is an
edge of E'. Now, we are at the position to
describe our algorithm for finding the weighted
medians of a weighted 4-cactus graph.
Algorithm A
Input: A weighted 4-cactus graph H(V, E)
Output: The weighted medians of H.
Method: _
Construct the corresponding distance

Step 1.
4-block graph G(¥, E') from H.

Step 2. Construct a breadth first spanning tree
T from G. Let the root of T be r. Then,
compute D(r).

Step3. Compute W{u) and Hu) for each
vertex ueT.

Step 4. By using Theorem 1, compute D/(u)
for each vertex ueT in preorder.

Step 5. By using Theorem 2, compute D,(u)
for each vertex ueG.

Step 6. The vertices u with the smallest value

D(u) are the weighted medians of H.
End of Algorithm
Since each cycle of a 4-cactus graph has at
most four vertices, Step 1 takes O(|V]) time to
construct the corresponding distance 4-block
graph G(V, E’) of a weighted 4-cactus graph H(V,



E). Note that |E'| < 3|E| / 2 since every 4-cycle
needs two more edges to form a block.
Constructing a breadth first spanning tree takes
O(|V] + |E') time [1]. Computing D/u) also
takes O(V] + |E') time. Thus, Step 2 needs
O(|V] + |E']) time. Step 3 takes at most O(}V] +
|E')) time to compute W{(u) and Hu) for all
vertices uin 7. Steps 4, 5 and 6 can be done in
O(V)) time. Therefore, Algorithm A takes
O(IV] + |E]) time.

We conclude our result as the following
theorem.
Theorem3 Let H(V, E) be a weighted 4-
cactus graph. The weighted medians of H can
be found in O(}¥]) time.

Proof:

Let G be the corresponding distance 4-
block graph of H(V, E). It is obvious that d,{u,
v) = dg(u, v) for every pair of vertices u, veV.
Thus, Dy(u) = Dju) for every vertex ueH.
According to the analysis of Algorithm A, the
weighted medians of H can be found in O(}V] +
|E]) time.
oy [13]).
of H can be found in O(V]) time.
completes the proof.

Since H is a planar graph, O(lE]) =
Therefore, the weighted medians
This

Q.ED.

4. CONCLUDING REMARKS

In this paper, we propose an optimal
algorithm for solving the weighted median
problem on a weighted 4-cactus graph. On a
general graph, the running time for finding the
weighted median is O([V'}?). For special graph
such as tree graphs, more efficient algorithm can
be done in O(V]). The weighted 4-cactus
graphs, which are more general than tree graphs,
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have many interesting properties. By taking
advantage of the properties, we solve the
weighted median problem on the weighted 4-
block graphs and weighted 4-cactus graphs in
linear time. Possible further research includes
the application of our technique to other network

problems.
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