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Abstraét

Message passing is a paradigm widely used for writing
parallel programs on clusters of workstations that have
become an attractive and efficient alternative for parallel
computing. Message Passing Interface (MPI) is a stan-
dard proposed for writing portable message-passing par-
allel programs. In this paper, we present a design and
implementation of MPI that is optimized for LAN clus-
ters of workstations. We develop a daemon-based imple-
mentation that consists of two main componenets: a MPI
library that provides the functionality of MPI, and a multi-
cast daemon that handles all message passing among MPI
processes and provides multicast operations. We propose
a user-level reliable multicast protocal, and implement it
with sliding window techniques and hardware broadcast
to improve performance. Performance measurement shows
that our implementation outperforms two of the major im-
plementations, MPICH and LAM, that are available from
public domain. Furthermore, our implementation allows
uncoordinated checkpointing that is simple and efficient.

1 Introduction

Clusters of workstations and personal computers run-
ning on Local Area Networks (LANs) have become an
attractive and effective alternative for parallel com-
puting as high performance and low cost workstations
and networks are widely available. It uses softwares
to integrate existing workstations and networks, and

does not require purchase of expensive multiproces--

sor systems. Programmers can use the same editors,
compilers, debuggers, and operating systems that are
available on individual workstations. This substan-
tially reduces development and debugging time.
Message passing is a widely used paradigm for
writing parallel programs on paraliel computers, es-
pecially scalable parallel computers with distributed
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memory such as clusters of workstations. A message-
passing program consists of a set of autonomous pro-

‘cesses running on each processor node. Processes com-

municate with each other by sending/receiving mes-
sages. Recently, a Message Passing Interface (MPI)
[14] has been proposed for writing portable and effi-
cient message-passing parallel programs. MPI sup-
ports process groups, and provides operations for
point-to-point communications, collective communica-
tions, process topologies and profiling.

In this paper, we present a design and implemen-
tation of MPI that is optimized for LAN clusters of
workstations and personal computers. One of our
major effort is to optimize the performance of com-

_munication operations on LAN clusters of worksta-

tions. Notice that current LANs such as Ethernet and
ATM provide efficient broadcast, but do not guaran-
tee reliable message delivery. We propose and imple-
ment a user-level reliable multicast protocal that can
be implemented on top of unreliable networks, and
makes use of the broadcast capability of current LANs.
Our implementation is daemon-based, and consists of
two major componenets: a MPI library, and a multi-
cast daomen. The multicast daemon provides reliable
muulticast among application processes. Performance
mesaurement shows that our implementation outper-
forms two of the major implementations, MPICH (1]
and LAM [3], available from public domain. Fur-
thermore, our implementation allows uncoordinated
checkpointing that is simple and efficient.

The following summarizes the main features of Our

‘implementation.

o We design and implement a daemon-based system
that consists of two major components: the MPI
library that provides the functionality of MPI,
and a multicast daemon that provides efficient

. and reliable multicast operations among all MPI
application processes. Notice that it is possible to



use our multicast daemon as a basic component
to implement other message passing system such
as PVM (Parallel Virtual Machine).

e We propose a reliable multicast protocol that can
be implemented on top of unreliable communica-
tion networks. We use the protocol to implement
our multicast daemon on Ethernet LAN. The pro-
tocal is based on selective repeat protocol[7, 18].
It is observed that most of packet loss on LANs
is due to buffer overflow. We modify sliding win-
dow protocol to control packet flow to reduce the
possibility of packet loss. To further imporve
the performance, we use hardware broadcast to
implement some of collective communications on
Ethernet. '

e We use shared memory for communication be-
tween MPI library and multicast daemon, and
develop simple techniques to synchronize their in-
teractions. The shared memory reduces the com-
munication overhead, and makes our MPI library
easily ported to shared memory multiprocessors.

o In the MPI library, we optimize our implemen-
tation for point-to-point comunications as well
as for collective communications. For point-to-
point communication, we use packetization to
overlap protocal processing and network trans-
mission within the sending node, as well as mes-
sage processing at sending and receiving nodes.
For collective communication, we use hardware
broadcast and nonblocking receive to improve the
performance. ’ :

e Based on our system architecture, we have pro-
pose an approach for ckeckpointing our MPI pro-
grams [13] in an uncoordinated fashion. Since
the multicast daemon handles all message pass-
ing and gurarntees reliable transmission, check-
pointing on each node can be taken without any
internode coordination.

Notice that there are several implementations of
MPI on LAN clusters of workstations. Local Area
Multicomputer(LAM) [3] is implemented by Ohio Su-
percomputer Center. It is a daemon-based implemen-
tation. Fach processor node runs a daemon to syn-
chronize all messages. It adopts Stop-and-Wait to pro-
vide reliability on top of unreliable UDP (User Data-
gram Protocol). MPICH [1] is implemented by Ar-
gonne National Laboratory. MPICH does not run a
daemon on each processor node. All MPI communi-
cation functions are implemented on top of reliable
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TCP (Transmission Control Protocol). Both LAM
and MPICH does not use any techniques to control
message loss, and does not use hardware broadcast to
improve the performance of collective communication.

Recently, J. Bruck et.al. [2] at IBM Almaden im-
plement the communication subset of MPI on LAN
clusters of wortkstations.. Their implementation is the
one closest to our implementation in the sense that
both implementations make use of hardware broad-
cast for collective communication, and sliding window
techniques to control message flow. Nonetheless, there
are several differences. Their implementation modifies
the kernel to improve the performance, and works only
for programs that ‘requires at most k packet buffers
for message passing. Our implementation is daemon-
based, is fully user-level, supports general MPI pro-
grams, and allows simple uncoordinated checkpoint-
ing.

2 System Architecture

In this section, we describe our implementation of MPI
on cluster of workstations running on LANs. As in
Figure 1, each workstation must run a multicast dae-
mon proccess, and can run more than one MPI ap-
plication proccesses. Application processes are con-
nected to the multicast daemon, and communicate via
multicast daemons. The multicast daemon handles all
the message passing among application processes, and
provides reliable multicast operations. The MPI li-
brary is linked as a part of the application process.

- MPI application processes communicate with the
daemon process via shared memory. Each applica-
tion process has a send queue and a receive queue in
the shared memory. To send a packet, an applica-
tion process writes the packet to its send queue, and
triggers the daemon to send out that packet. The trig-
ger message is sent via a FIFO channel. The daemon
always listens for messages from communication chan-
nels. When a trigger message arrives, the daemon will
examine each send queue, and send out all the pack-
ets ready in the send queue. When a packet arrives,
the daemon will receive the packet, and dispatches
the packet to the receive queues of its destination pro-
cesses.

3 Reliable Multicast Protocol

We propose a user-level multicast protocal to imple-
ment the multicast daemon. The protocol guaran-
tees reliable delivery, and FIFO order [12] between
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Local Area Network

Figure 1: System Architecture

every source and destination pair. We assume that
packet loss is possible; however, the content of a re-
ceived packet is not corrupted beyond the tolerance
of standard error correction. The protocol is based
on selective repeat protocol in which a lost packet is
resent until it is received. A packet is assumed to be
lost when its acknowledgement is not returned after
a certain period of time or when packets are not re-
ceived in their FIFO order. Each packet consists of
the following: "

e a packet type that is used to distinguish normal
packets from control packets such as acknowledge-
ments and resend requests, '

e the source of the packet that specifies the node
ID of the multicast daemon sending the packet,

_the number of destinations that specifies the num-
ber of nodes to receive the packet,

e the content packet, and

the target list that is an array of destination node
IDs and their corresponding sequence numbers.

We maintain a sequence number between every
source and destination pair, which guarantees FIFO
delivery. . Each sending packet is associated with
an ack_outstanding list[7] that keeps the list of re-
ceivers whose acknowledgements are not yet received.
The daemon $ransmits packets continuously and con-
stantly listens for acknowledgements of previous trans-
missions. Immediately upon transmission of a packet,
the daemon sets a time-out counter and initializes the
ack_outstanding list which is simply the list of all des-
tination daemon. The ack_outstanding lists of previ-
ously transmitted packets are constantly updated as
new error free acknowledgements are received. If the
ack_outstanding list of a particular packet becomes
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empty, the packet is deleted. Otherwise, after some
fixed interval, the counter expires and the daemon re-
transmits it. The ack_outstanding list is implemented
as a bit vector. In order to recude the acknowledge-
ment overhead, acknowledgement is not sent for every
packet. It is sent after every 25 packets in the current
implementation.

Packet loss is detected by a receiver when packets
are not received in FIFO order. As soon as packet loss
is detected, the receiver sends a request to the sender
to resend the lost packet.

The maximun packet size is about 1.3K bytes.
Packetization is handled by application processes.
Messages of size larger than 1.3K bytes are partitioned
into packets that are written into consective entries in
the send queue. It is observed that packet loss is the
main source of unreliable delivery on LAN. Further-
rfiore, most of the packet loss is due to system buffer
overflow. We use sliding window techniques to control
the flow and reduce the possibility of buffer overflow.
From experiment, it is observed that when the sys-
tem buffer is 32768 bytes, and the packet size is 1024
bytes, the best performance is achieved when the win-
dow size is 30. We choose 25 as window size in our
implementation.

4 Sending/Receiving Packets

Each multicast daemon has a send buffer and a receive
buffer that are shared by all application processes.
The send buffer and receive buffer are divided into
hundreds of entries. Each entry is a packet buffer that
can hold a packet of size upto about 1.3K bytes. Each
application process has a send queue and a receive
queue. Each entry of the send/receive queue stores
an index of a packet buffer in the shared send/receive
buffer. When a packet is written to an entry of a
send queue, the daemon will first replace that en-
try with a free packet buffer, send out the packet,

‘and then move the packet to the transmitting list

that keeps all the packets under transmitting. When
the ack_outstanding list of a sending packet becomes
empty, i.e. the acknowledgement from every receiving
process has been received, the daemon will then delete
that packet from the transmitting list. Notice that
packets from the same send queue will be transmitted
in their FIFO order; however, packets from different
send queues can be mixed arbitrarily. '
When a packet arrives, the daemon finds a free
packet buffer from the receive buffer, reads the packet
into the packet buffer, and then dispatches the packet
to its receiving processes by writing the index of the



packet buffer to thir receive queues. Each received
packet is associated with a read_outstanding list. Af-
ter the read_outstanding list becomes empty, i.e. all
receiving processes have read this packet, the daemon
free the packet buffer and returns it to the free list of
receive buffer. ' '

An acknowledgement contains the source node ID
and the sequence numbers of lost packets. There are
several situations for the daemon to send an acknowl-
edgement. When packets from the same source node
are not received in contiguous order, the daemon as-
sumes that packets not received in order are lost, and
send an acknowledgement to request the sender.to re-
send the lost packets. When the daemon receives a
packet that is previously received or a packet with se-
quence number not within the receiving window range,
it implies that it is highly possible that previous ac-
knowledgemt is lost. The daemon sends an acknowl-
edgement that records the current receiving status.
When everything is normal, the daemon sends an ac-
knowledgement after receving every N packets. In
current implementation, N is 25.

5 Point-to-Point
Communicaiton

The basic communication mechanism of MPI is point-
to-point communication that transmits messages be-
tween a pair of process. Send and receive are the basic
functions of point-to-point communication. MPI pro-
vides blocking and nonblocking send and receive func-
tions. The blocking send call blocks until the send
buffer can be reclaimed. Similarly, a blocking receive
call blocks until the receive buffer actually contains
the contents of the message.

In our implementation, a MPI message consists of
the following information:

o the number of destinations that specifies the num-
ber of processes to receive the message,

e the destination list that specifies the ranks of des-
tination processes in the MPI.COMM_WORLD

communicator,

e the rank of the source
process in the MPI.COMM_WORLD communi-
cator,

e the message tag that allows selectivity of mes-
sages at the receiving end,

e the context that specifies the world of the com-
munication,
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e the mode of communication, and

e the content of the message.

A send function appends the message header, par-
titions the message into packets, writes the packets
into consecutive entries of the send queue, and trig-
gers the daemon to transmit the packets. The first
packet is marked as MPI_ HEAD, and the last packet
is marked as MPI_TAIL. Message header is stored in
the first packet qnly. Packets from the saine message
will be transmitted continuously by the daemon. The
receive function extracts packets from receive buffer,
and assemble packets into messages. We next explain
our implementation of blocking send and receive.

5.1 Blocking Communication

MPI provides 4 modes of send functions: standard,
buffered, synchronous and ready. In our implementa-
tion, the standard send, MPI_Send blocks until the en-
tire message is copied to the send buffer. The buffered
send, MPI_Bsend, is the same as MP1_Send except that
it returns an error if the send buffer is out of space.
The synchronous send, MP!_Ssend, is the same as stan-
dard send except that MPIl_Ssend waits an MPI ac-
knowledgement from the receiving process. The ready
send is implemented as the standard send.

MPI library maintains a local buffer that keeps all
the packets read from the receive queue but not yet
matched by any receive operation. A receive oper-
ation, MPI_Recv, will searches over all arrived mes-
sages. If a matched message is found, it returns that
message; otherwise, it blocks until a matched message
arrives. Arrived messages can be in either local buffer
or receive queue. A receive will search the locall buffer
first, and then the receive queue. We assume packets
are extracted from the receive queue in their FIFO or-
der. Arrived messages are copied to local buffer when
the following situations occur. First, when packets are
not received by receive operations in their FIFO or-
der, the out-of-order packets are moved to local buffer.
Secondly, when receive queue is full, the daemon will
ask MPI library to move packets from receive queue
to local buffer so that it can proceed to-receive in-
coming packets. Notice that when all the packets are
received in FIFO order, and the receive queue does not
overflow, no packet will be copied to local buffer. In
such situtaion, our implementation achieves the best
performance.
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5.2 “Nonblocking Communication

Similar to blocking send, nonblocking send also has
4 modes: standard, buffered, synchronous and ready.
In our implementation, nonblocking sends are imple-
mented in a fashion similar to blocking sends except
that in the synchronous mode, instead of blocking un-
til acknowledgement returns, it generates a MPI re-
quest for the acknowledgement.

Nonblocking receive operation, MPl_Irecv, does not
read any message unless the message has already ar-
rived. When it can not find a mactched message, it
generates MPI request, and inserts the request to a
request list. When an arriving message mathces the
request, it will be copied to the local memory specified
by the request. :

A MPI_Wiait can be called to wait until the corre-
sponding request is satisfied. A MPI_Test can be called
to test if a request has been satisfied.

Notice that nonblocking receive is very useful when
a process needs to receive messages from multiple
source nodes, and the order of message arrival is non-
deterministig/ Such situation occurs .in some collec-
tive communication such as MPI_Gather, MPI_Reduce,
MPI_Alltoall, and all-node gather and reduce.

5.3 Performance of Point-to-Point
‘Communication »

The experiment is run on a cluster of Sun workstations
connected by a 10M Ethernet and running SunOS
4.1.3.

Three simple programs have been used to evalu-
ate the basic performance of point-to-point commu-
nication. Each program involves two processes each
running on one workstation. The first one is called
Ping in which one process keep sending messages to
the other process. The second one is called PingPong
in which a message bounces back and forth between
the two processes. The time measured in PingPong
approximates the latency of a message passing. The
third one is called Exchange in which two processes
exchange data. ;

For Ping, experiment shows that our system is al-
ways better than MPICH. LAM is slightly better than
our system when message size is between 6000 bytes
and 8000 bytes. This is because the message of size
less than 8192 bytes is sent in only one message by
LAM. However, LAM is much worse than our system
for messages of other sizes.

For PingPong and Exchange, our system is always
better than LAM and MPICH. Figure 2 and figure 3
shows the performance of PingPong on 2 nodes. Note

that the time measured in PingPong approximates
the latency of a message passing. Figure 4 gives the
bandwidth estimated from the running times of Ping-
Pong. It shows that our system achieves better band-
width for long messages. This is because the longe
messages allow more overlap of protocol processing
and network transmition, as well as concurrent pro-
cessing at sending and receiving ends. OQOur system
achieves a bandwidth of about 6.4 Mbit /sec when the
message size is about 8,000 bytes, and a bandwidth
of about 7Mbit/sec when the message size is about
16,000 bytes.

6 Collective Commuhication ,

Our implementation of collective communications
makes use of hardware broadcast and nonblocking re-
ceive to improve the performance. Nonblocking re-
ceive improves the performance when a process needs
to receive messages from muitlple processes, and the
order of message arrival can be nondeterministic.
Due to length limitation, we give performance data
with brief description for MPI_Bcast, MPI_Gather,
MPI_Scatter, and MPI_Reduce. For other operations,
we give performance data without description. Fur-
ther details can be found in [4]. All the performance
data are measured on 8 workstations connected in the
same segment of Ethernet. '

6.1 MPI_Bcast

One MPI process is run on each of the 8 worksta-
tions. All processes first run a barrier to synchronize.
Process with rank 0 then broadcasts a message to all
other processes by MPI Bcast. Above processes is re-
peated 50 times. The maximum time taken over all
the non-root processes gives an estimate of the max-
imum time taken by any process participating in the
broadcast. In Ethernet, broadcast can be performed
by either hardware broadcast or point-to-point com-
munication. Figure 5 shows that our implementation
outperforms LAM and MPICH with either hardware
broadcast or point-to-point communication. When-all
the workstations are connected in the same segment,
hardware broadcast achieves better performance. In
next following subsections, we assume MPI_Bcast is
implemented with hardware broadcast.

6.2 MPI_Gather

Each process sends the message to the root process.
The root process uses nonblocking receive, MPI_lrecv,



in rank order. It then uses uses MPIl_Waitall to com-
plete all receive operations. Figure 6 shows the results.
The byte count refers to the size of the data sent by
each process to the root.

6.3 MPI_Scatter

We call MPI_Bcast to broadcast the whole message to
each process. Each process receives the message and
extracts the part it needes. Using broadcast reduces
the sending time in the sending process, especially for
short messages that. are smaller than a packet. For

long messages that are larger than a packet, we simply -

use unicast to send each part of the message to each
process. Figure 7 shows. the results. The maximum
time taken over all the non-root processes gives an
estimation of the maximum time taken by any process
participating in the broadcast. This maximum time is
what is shown in the graph plotted against the byte

count which refers to the size of data sent by the root

to each process.

6.4 MPI_Reduce

We first call MPI_Gather to gather the array to the
root process. The root process then performs the re-

. duce operation. Figure 8 shows the results. The time
reported is the running time of the process with rank
0, and the integer count refers to the size of the data
send by each process to root process.

7 Bitonic Sort and Matrix Mul—
tiplication

To measure overall performance of our system, we also
run two programs Bitonic Merge Sort and Cannon’s
Matriz Multiplication on 8 and 9, respectively, work-
stations. Bitonic Merge Sort [19] runs in phases. In
each phase, processes exchange data to form larger
sorted list. We take the longest time of the 8 processes
as the running time. Figure 9 shows that our system
achieves better performance for various data size. In
addition, our system has the smallest variance of the
running times of the 8 processes.

In Cannon’s algorithm [19] for matrix multiplica-
tion, two n X n square matrices A and B is partitioned
into p square submatrices. We label the processors
from Py to P 51, 51, and initially assign A; ; and
B; j to P; ;.

The first communication step of the algorithm
aligns the blocks of A and B in such a way that each
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processor multiplies its local submatrices. This align-
ment is achieved for matrix A by shifting all sub-
matrics A; ; to the left by i steps and all submatri-
ces B;; are shifted up. After a submatrix multipli-
cation step, each block of A move one step left and
each block of B moves one step up. A sequence of ,/p
such submatrix multiplications and single-step shifts
pairs up each A; x and By ; for k(0 < k < ,/p) at P; ;.
This completes the matrix multiplication of matrices
A and B. The communication activity in each sub-
matrix multiplication is two message passing. We run
Cannon’s algorithm on 9 workstations. Figure 10 gives
the maximum time of 9'processes to multiply matrices
of various size. It shows that our system achieves the
best performance. '

8 Conclusion and Future Work

In this paper, we have presented a daemon-based im-
plementation of MPI that achieves better performance
than MPICH and LAM on clusters of workstations
connected by Ethernet LANs. We believe our perfor-
mance improvement is a combined effect of the follow-
ing:

o the reduction of packet loss that is a combined
results of the daemon-based approach and the use
of silding window techniques,

e the overlap of protocal processing and message
transmitting, and the concurrent execution of
sending and receiving processes, which are due
to packetization, and

e the use of hardware broadcast and nonblocking
receive in collective communications.

In the future, we will proceed to measure the per-
formance of our implementation on other LANs such
as FDDI and ATM.
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