Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C. '

On the Representation of Dynamic Search Spaces
in Theorem Proving

Maria Paola Bonacina *
Department of Computer Science
University of Iowa
Iowa City, IA 52242-1419, USA

bonacina@cs.uiowa.edu

Abstract

We present a model for representing search in theo-
rem proving. This model captures the notion of con-
traction, which has been central in some of the recent
developments in theorem proving. We outline an ap-
proach to measuring the complexity of search which
can be applied to analyze and evaluate the behaviour of
theorem-proving strategies. Using our framework, we
compare contraction-based strategies of different con-
traction power and show how they affect the evolution
of the respective search spaces during the derivation.

1 Overview

Theorem-proving problems usually have infinite
search spaces. Theorem-proving strategies with con-
traction inference rules — rules that delete clauses,
such as simplification and subsumption — are known
to have in general better performance than strategies
without such rules. The intuitive explanation of this
experimental phenomenon is that contraction infer-
ence rules prune the search space, thus allowing the
strategy to find a solution in shorter time. However,
there has not been any formal mathematical analysis
to explain how contraction rules affect the complex-
ity of search in theorem proving. The main reason for
this is the lack of formal tools to analyze the complex-
ity of problems involving search in an infinite search
space. Indeed, the absence of such a formal method
for assessing the effectiveness of inference strategies
has been one of the serious weak points of artificial
intelligence.

Traditional algorithm analysis is concerned mainly
with the asymptotic analysis of finite objects. The
two dominating measures are time and space, which
are tightly related to each other. For instance, if a

*Supported in part by the National Science Foundatlon with
grant CCR-~94-08667.
fSupported in part by grant NSC 85-2221-E-002-009 of the
National Science Council of the Republic of China.

85

‘Jieh Hsiang '
Department of Computer Science
National Taiwan University
Taipei, Taiwan
hsiang@csie.ntu.edu.tw

problem has a lower bound of n? space complexity,
one cannot expect to find an algorithm that runs in
time less than n%. Such a methodology is not suitable
for analyzing search strategies in theorem proving (or
in artificial intelligence in general), since the search
space of a typical theorem-proving problem is usually
infinite. Given that the search space is infinite, it is
no longer meaningful to discuss about average case
analysis, much less worst case. However, contempo-
rary theorem provers from different approaches are
still capable of solving problems of practical interest
(e.g., [1, 15, 20]). This is mainly because the exis-
tence of an infinite search space may not require an
infinite amount of computation time, since it is not
necessary to traverse the entire search space to find a
proof. Thus, one needs a new way of analysis in or-
der to reason about and to compare theo1em—prov1ng
strategies.

The difficulty of analyzing the complexity of search
in an infinite space appears in many ways. One is the
absence of a relationship between the. complexity of
the computation and the input of the problem. In
a finite problem the time and space complexities can
usually be treated as functions of a measure of the
input. But for first-order logic, for instance, the diffi-
culty of finding a proof is not related to the size of the
input set of clauses. A source of the problem is that
a set of first-order clauses represents more than itself:
it represents the infinite set of the ground instances
of the clauses. Thus, any measure based on the input
alone is not sufficient.

Neither is the complexity of a search strategy re-
lated to its output. In theorem proving, the output is
the computed proof, if a proof is produced. The size
of the proof is generally not indicative of the difficulty
of finding the proof, since one may find a simple proof
after an extensive traversal of the search space. One
may remark that the size of the generated proof is a
lower bound of the size of the visited search space.

Proceedings of International Conference
on Artificial Intelligence

While this is generally true, there are two fundamen-
tal reasons why proof size is not a suitable measure for
search in theorem proving. First, a proof cannot be
measured until it is available. But when the theorem-
proving strategy has generated a proof, the theorem-
proving problem has been solved and the complexity
of searching for a solution has disappeared. (This
remark also applies to complexity measures based on
Herbrand theorem, such as the size of the smallest un-
satisfiable set of ground instances of the input clauses.
Until the strategy has succeeded, we do not have such
a set, in fact we do not even know whether it exists.
Therefore, we cannot use it to evaluate the strategy.)
Second, experiments in theorem proving show that it
may be necessary to search a larger portion of the
search space in order to find a shorter proof. Let C;
and C be two strategies, that generate proofs P; and
P, for a given problem. Then P; may be smaller than
P, in size even if C; may have traversed a greater
portion of search space in order to.produce P;. In
other words, comparison of search spaces cannot be
reduced to comparison of proofs, because going from
search ‘spaces to proofs does not preserve in general
the ordering relation. Thus, a more accurate notion
of complexity should be how difficult the process of
finding the proof is, rather than either the input or
the output of the computation.

In this paper we present an approach for the rep-
resentation of search and the analysis of theorem-
proving strategies. To demonstrate how it is used, we
apply our framework to compare strategies with con-
traction and those without contraction. We should
mention that very little is known about the analysis
of infinite search problems. Therefore the majority of
the definitions in this paper are new. In the rest of
this section, we briefly outline the ingredients of our
approach. '

a

Representation of search space - The first task is
to provide an appropriate representation of the search
space of a theorem-proving strategy. This task is
made difficult by the existence of contraction infer-
ences. If one considers only inference rules that gen-
erate clauses from existing clauses — called ezpansion
rules, such as resolution — the well-known approach
of Kowalski [13] should be sufficient. In [13], a search
space is represented as an infinite graph with vertices
representing the clauses and arcs representing the in-
ferences. When the strategy generates a clause the
corresponding vertex is reached. The search graph is
static and the action of the strategy consists in visiting
the search graph.

If the strategy contains contraction rules, the be-

86

haviour of the strategy cannot be described solely
in terms of visiting a graph, because whenever the
strategy performs a contraction inference a clause is
deleted. The execution of the strategy modifies the
search space. Furthermore, the modification is not
merely local, because the deletion of one clause may
affect the reachability of others. It follows that the
search space for a strategy with contraction is essen-
tially dynamic. .

To solve this problem, we distinguish between a
static part and a dynamic part of a search space. The
static part depends only on the inference system, that
is, all the applicable inferences in the search space.
We represent it by a search graph with vertices la-
belled by clauses and arcs labelled by inference rules.
The dynamic part depends also on the search plan,
which decides the actual inference steps chosen dur-
ing a derivation!. We capture it by a marking of the
vertices of the graph. Thus, the search space is repre-
sented as a marked search-graph. The generation and
deletion of clauses are performed on the graph by in-
crementing/decrementing the marking of the vertices
representing the clauses involved. This approach pro-
vides a natural way of reflecting a theorem-proving
derivation on the search graph, by associating a mark-
ing of the search graph to each state of the derivation.

The domains In conventional analysis of algo-
rithms, the complexity measures of time and space
refer to the history of the computation by the algo-
rithm from the initial state to the final state. The his-
tory of the computation is the domain over which the
measures have meaning. A theorem-proving deriva-
tion may not halt (the search space is infinite), and
therefore we cannot reason in terms of history from
the initial to the final state. We reason in a different
way: at each stage of a derivation a finite portion of
the search space has been generated and an infinite
portion remains to be explored. We call the former
the present and the latter the future of the deriva-
tion. In order to capture the complexity of the search
problem in the global search space, we need to mea-
sure the effects of the inference steps performed by
the strategy on both domains, present and future.

Complexity measures for theorem proving A
complexity measure is essentially a well-founded or-
dering over the domain of mathematical objects be-
ing considered. Conventional complexity measures
usually assume the ordering to be the natural order-
ing over IN. This is no longer sufficient for theorem

LA derivation is the computation by a theorem-proving
strategy.

proving strategy analysis. To be more precise, the
mathematical objects that are representatives of the
behaviour of a strategy in the domains that we just
described are as follows. For the present, we con-
sider the multiset of existing clauses at any stage k
of the derivation. For the future, we partition the
infinite search space into an infinite succession of fi-
nite bounded search spaces. A bounded search space
of bound j is the space of clauses that can be reached
from the present state by at most j steps of infer-
ence. Unlike a static notion such as a path length,
this notion of reachability reflects the past actions of
the strategy. This is because the inference steps may
affect the reachability of clauses that have not been
generated. In particular, a step that deletes a clause
may make other clauses unreachable. Thus, the suc-
cession of bounded search spaces changes at every step
in the derivation. In this way we can capture the effect
of inferences on the future. Bounded search spaces are
also characterized as multisets of clauses.

For theorem-proving strategies which assume a
well-founded ordering on’the set of clauses, e.g. [19],
it is natural to use the multiset extension of the same
ordering, which is also well-founded, as the ordering
in the complexity measures for theorem proving.

Analysis of strategies For the last task of the pa-
per, we demonstrate how our framework is applied
to the analysis and comparison of different strate-
gies with contraction. We analyze first the effects
of expansion and contraction on the bounded search
spaces. We prove that contraction steps contract the

- bounded search spaces by making redundant clauses
unreachable. Thus, while expansion inferences allow
the strategy to wvisit the search space, contraction in-
ferences also enable the strategy to prune it. Let C;
and Cs be two strategies with the same search plan
and the same set of expansion inference rules, but C,
has a higher degree of contraction power than C;2
We compare the derivations generated by C; and C
from the same input. Remark that the two strategies
start with different search spaces, since contraction
inferences are part of the search space, and Cy has
more. We show that C; eventually induces a higher
reduction of the bounded search spaces. Therefore,
contraction reduces the complexity of the search pro-
cess according to our measures.

Comparison with other work The classical re--
presentation of the search space of clauses for a
theorem-proving problem was given in [13]. Our work

2The case where C; has no contraction rules is included as
a special case.

87

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

is essentially compatible with [13] for the representa-
tion of expansion inferences, and adds the representa-
tion of contraction. Most works on search emphasized
heuristics (e.g., [16]), while studies of the complexity
of theorem proving analyzed provability or the length
of computed proofs (e.g., [7, 9, 10, 11, 14, 18, 21, 22]
and [23] for a survey). Our problem is the complex-
ity of search. This is also the interest of [17], that
analyzed the duplication in the search spaces gener-
ated by most of the known theorem-proving strategies
applied to propositional Horn logic. Unlike ours, the
analyzed search spaces are finite, and therefore the
approach in [17] may apply worst-case analysis and
classical counting techniques.

Organization of the paper Section 2 contains the
basic definitions, Section 3 the representation of the
search space, Section 4 the complexity measures for
theorem proving, and Sections 5 and 6 the analysis
of inferences and strategies. The complete version of
this paper, including all proofs and many examples,
is available as [4].

2 Inference rules, search plan
and derivation

A theorem-proving problem is the problem of de-
ciding whether Sy |= g, or, refutatienally, whether
S = SoU{—y0} is inconsistent. We consider theorem-
proving problems in clausal form, where inconsistency
is shown by deriving the empty clause O from S.

Theorems are proved by means of inference rules.
Because we are interested in the effects of inference
rules on the search space, we classify them into ezpan-
sion inference rules and contraction inference rules.
Expansion inference rules, such as resolution and
paramodulation [6], derive new clauses from the ex-
isting ones and add the new to the old. Contraction
inference rules, such as tautology deletion, proper sub-
sumption and equational simplification [6, 8], delete
clauses and possibly replace them by smaller ones.
Given a well-founded ordering > on clauses, an in-
ference rule is a contraction inference rule with re-
spect to > if 9 > ¢ whenever the rule replaces a
clause 9 by a clause ¢. The ordering on clauses is
often based on a complete simplification ordering [12]
on the atoms, and then extended to clauses via the
multiset ordering. For example, the inference rule of
(equational) simplification may use the rewrite rule
f(z) — z to simplify clause P(f(f(0))) to P(0) since
P(f(£(0))) = P(0) in any complete simplification or-
dering.

Clauses deleted by contraction are said to- be re-
dundant, in the sense that they are not necessary for

Proceedings of International Conference

on Artificial Intelligence

proving the theorem (e.g., [3, 5]). Accordingly, it is
possible to justify a contraction rule by a redundancy
criterion [3]. A redundancy criterion is a mapping R
on sets of clauses, such that R(S) is the set of clauses
that are redundant with respect to S according to R.
Note that since a clause generated from a redundant
clause in S may also be redundant, R(S) may not be a
subset of S. An inference step that uses a redundant
clause is a redundant inference step®. Keeping with
the above example, since clause P(f(f(0))) is redun-
dant in any set that contains P(0) and f(z) — =z,
all inferences that use P(f(f(0))) are also redundant.
Given a redundancy criterion R, a set of contraction
rules Ig is associated to R, if all clauses that can be
deleted by Ir with a set S are in R(S), and when-
ever ¢ is in R(S) NS, Ir can delete ¢. In addition
to contraction rules, redundancy criteria may be used
to refine expansion rules (e.g., [2]) to further prevent
the generation of redundant clauses.

A set of inference rules forms an inference system
or inference mechanism. Given an inference system
I, we use I, for its expansion rules and Ig for its
contraction rules justified by redundancy criterion R.
Given a set of clauses S, I(S) is the set obtained by
adding to S the clauses that can be generated by I in
one step (by either expansion or contraction).

An inference system I is usually nondeterministic
in nature, since typically more than one rule in I ap-
plies to different tuples of clauses in the set. There-
fore, in a strategy it is necessary to couple I with a
search plan ¥ that chooses the step to be executed
among all possible candidates. By applying repeat-
edly this selection, a strategy C =< I, X > generates
a derivation Sgt¢ Syte...b¢ Sitc ..., where for all
¢ > 0 S; is the multiset of existing clauses and repre-
sents the state of the derivation at stage 1.

A derivation is successful if it generates the empty
clause, and a strategy C =< I, X > is complete if it
is guaranteed to succeed whenever the input set is in-
consistent. If I is refutationally complete (successful
derivations in I exist for all inconsistent inputs) and
Y is fair (whenever successful derivations exist, the
one constructed by X is successful), then C is com-
plete [5]. A sufficient condition for fairness is uni-
form fairness, that requires that all clauses that can
be generated by expansion rules from premises that
are persistent (i.e., not deleted during the derivation)
and non-redundant, are generated eventually [3]. A
search plan that always gives priority to contraction
rules [12] is an eager-contraction search plan and a

3We remark that a clause generated by a redundant infer-
ence step may not be redundant since the same clause may also
be generated by a non-redundant step.

88

strategy that features contraction inference rules and
an eager-contraction search plan is a contraction-based
strategy.

3 Representation of the search space

The search space of a theorem-proving problem
contains all the clauses that can be derived from the
problem by using the inference rules:

Definition 3.1 Given a theorem-proving problem S
and an inference system I, the closure of S by I is the
set St = Up»o I¥(S), where I°(S) = S and I*(S) =
I(I*=1(8)) for all k > 1.

We represent the search space as a search graph
with vertices labelled by clauses in S; and arcs la-
belled by inference rules. Since inference steps gen-
erally have multiple premises, and possibly multiple
consequences, the search graph will be a hypergraph.
For the labels of the vertices we choose not to distin-
guish between variants: all variants of a clause will be
associated to the same vertex. We denote by S3/ =
the quotient set of S7 with respect to the relation =
of equivalence up to variable renaming;:

Definition 3.2 Given a theorem proving problem S,
a set of inference rules I and a graph (V,E), an
arc-labelling function ¢s a function h: E — I and a
vertex-labelling function is a bijective function I: V —

S/ <.

Thus, I(v) is a representative of an equivalence class
of variants. A vertex-labelling function is required to
be bijective, so that only one vertex corresponds to
each clause and all the clauses in the search space
have a vertex. The search graph will have a hyperarc
for every applicable inference:

Definition 3.3 Given a theorem-proving problem S
and a set of inference rules I, the search space induced
by S and I is represented by the search graph G(S}) =
(V, E,L, h), where V is the set of vertices, | is a vertez-
labelling function I: V — S}/ =, h is an arc-labelling
function h: E — I and if f € I, applied to premises
©1,...,9n, generates clauses ¥1,...,v¥m and deletes
clauses ay,...,ap, then E contains a hyperarc e =
(v, k5w, . Wi UL, . .., U), where h(e) = f°
and

e vy, ..., v are labelled by the premises that are not
deleted, i.e. l(v;) = @; and ; & {au,...,ap},
forallj, 1<j<k, wherel <k<n,

® wj,...,wp are labelled by the deleted clauses, i.e.
lw;) =aj, forall j, 1< j<p, and

® Uy, ..., Uy are labelled by the generated clauses,
e l(uj) =, forallj, 1 <j<m.

Without loss of generality, we consider hyperarcs
where at most one clause is added or deleted:

(vi,.. ., Un;Un1)

for expansion, and

(UI; <y Uny Ungt; vn+2)

for contraction. In the latter, ¢ = l(v5.41) is replaced
by ¢' = l(vn42), ¢ = ¢’ in the ordering on clauses,
and the clauses of vy, . . ., v, justify the step. For con-
traction rules that merely delete clauses, such as sub-
sumption, we assume that there are a dvmmy clause
true, such that true < ¢ for all ¢, and a vertex T in
the search graph labelled by ¢rue. Then, deletion of
a clause is represented as replacement by true. In the
following, we use interchangeably vertices and their
labels, e.g. v and ¢ if ¢ = I(v).

3.1 Representation of deletions:

the marking function

The representation of contraction inferences by
contraction hyperarcs captures the capability of con-
traction rules to generate new clauses, e.g. by simplifi-
cation, and allows us to have a uniform representation
of all the inferences. It is not sufficient, however, to
represent contraction, because only clauses that have
been generated can be deleted, and only those deletions
that are actually selected by the search plan need to be
represented. In other words, the representation of con-
traction cannot be separated from the representation
of the selection of inferences by the search plan.

In order to represent the selection of inferences by
the search plan, we enrich the search graph with a
marking: a marking of arcs and a marking of vertices.
The marking of an arc tells how many times the infer-
ence represented by the arc has been executed. The
marking of a vertex represents its status: the status
of a vertex in the search graph is positive, if its clause
has been generated and is being kept, is 0 if it has not
been generated, and is negative if it has been gener-
ated and then deleted. Generations and deletions of
clauses will be represented by setting the statuses of
their vertices accordingly. Since different variants of a
clause may be generated during a derivation, we also
use the marking to indicate the number of multiple
occurrences:

Definition 3.4 A marked search-graph
(V,E,l h,s,c)

is given by a search graph (V, E,l, h) and

8¢9

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

o A vertex-marking function s:V — Z from ver-
tices to integers, defined as follows:

m if m variants (m > 0) of I(v)
are present,
s(v) =< —1 if all variants of ()
have been deleted,
0 otherwise.

e An arc-marking function ¢: E — Z7% from hyper-
arcs to non-negative integers, defined by: c(e) =
n if the inference of arc e has been ezecuted n
times.

The search graph represents the static structure of
all the possibile inferences in the search space. Such
structure depends only on the logic of the problem,
i.e. the input clauses and the inference rules. The
marking, on the other hand, represents the dynamic
behaviour of the search space. While éxpansion infer-
ence tules can be represented by using only the static
structure, both components of the representation are
necessary for the proper representation of contraction.
3.2 The evolution of the search space
during the derivation

The marking allows us to represent a derivation
on the search graph. In the following two definitions
we assume that a marked search-graph (V, E, [, h, 5, ¢)
is given. We define first the pre-conditions for the
execution of an inference step:

Definition 3.5 A hyperarc

(V15 Un; Vg1 Unga)

in E is enabled, if s(v;) > 0 for all 5 < n+1, and
$(vns1) > 1 ff vpyy € {v1,...,0n}.

The post-cohdz'tz'ons of the execution of an inference
step are the following:

Definition 3.6 The successor marking induced by
the ezecution of an enabled hyperarc

€= (v, Un; Vnt1; Vnt2)

in E is given by: the successor verter-marking func-
tion succe(s) defined as:

s(v) -1 fo=wvup1 As(v)>1
-1 ifU=Dn+1 /\3('0):1

succe(s)(v) = ¢ 1 if v=ovp42 As(v) = -1
s(v) +1 fo=uvp4a A s(v) 20
s(v) otherwise.

Proceedings of International Conference
on Artificial Intelligence

and the successor arc-marking function succe(c) de-
fined as:

succe(c)(a) = { EEZ; 1 iftlczle:w(;;e.

An actual derivation can be reproduced by start-
ing from the marking associated with the initial state
and modifying the marking according to the deriva-
tion steps. In other words, changes in the marking on
the search graph mirror actual generations and dele-
tions of clauses. Since the steps in the derivation are
chosen by the search plan ¥, the corresponding trans-
formations of the marking of the search graph repre-
sent the effect of the search plan on the search graph:

Definition 3.7 Let S be a theorem-proving problem
and C =< I,Y > be a theorem-proving strategy.
Given the search graph G(S¥) = (V,E,lh), the
succession of markings associated to the derivation
Sote Sike...FeSitc ..., where Sy =S, s the suc-
cession {(si,¢i)}i>o such that:

o Ve € E, cole) =0; Vv € V, so(v) = 1 if clause
@ = 1(v) is in Sy, so(v) = 0 otherwise, and

o Vi > 0, if e is the hyperarc selected by ¥ at stage
i, then s;y1 = succe(s;) and cip1 = succe(ci).

It follows that each state S; of a derivation has an
associated search graph G; = (V, E,l, h,s;), and S; is
exactly the multiset of clauses with positive marking
in G;. If we consider all the clauses with non-zero
marking in Gj;, we obtain the multiset G} of all the
clauses generated up to stage i.

4 Measures of complexity of search

In this section, we define complexity measures
for search in an infinite search space. Let G; =
(V,E,l, h, si,c;) be the marked search-graph associ-
ated to stage ¢ during a derivation. In order to cap-
ture the complexity of the search process, the analysis
needs to involve both the present, the state repre-
sented by Gj itself, and the future, the portion of the
search graph which is still undiscovered. The crucial,
and difficult, point is to define complexity measures
that take the future into account, since the unexplored
search graph is infinite. To do it properly we need
notions of ancestor-graph and dynamic distance, that
replace conventional notions of path and path-length:

Definition 4.1 Let G = (V,E,l,h) be a search
‘graph. For allveV,

e if v has no incoming hyperarcs, the ancestor-
graph of v is the graph made of v itself.

90

o Ife=(v,...,Vn;Unt1;v) 18 @ hyperarc in E and
t1,...,tn,tny1 are ancestor-graphs of vi, ..., vn,
Uny1, then the graph with root v connected by
e to the subgraphs t1,...,tn,tny1 18 an ance-
stor-graph of v. We denote it by the triple
(vie; (1, tnytng1))-

An ancestor-graph of v represents a sequence of in-
ferences, or a generation-path, that generates its as-
sociated clause ¢ from the input clauses. The clauses
associated to the vertices of an ancestor-graph ¢ of ¢
are its ancestors on the generation-path represented
by t. Since the ancestor-graph of a clause in a search
graph is not unique, we use atg(v) (or atg(yp)) to de-
note the set of the ancestor-graphs of v in G.

Given G; = (V,E,l,h,si,ci), a clause o that has
not been generated, and an ancestor-graph t of ¢, we
are interested in measuring the distance that has been
covered and the distance that has not been covered, to
reach ¢ on the generation-path represented by £. The
global distance to ¢ will be the sum of these two dis-
tances. As a first approximation, the distance that has
not been covered is given by the number of clauses in ¢
that have not been generated (zero marking). Dually,
the distance that has been covered is given by the num-
ber of clauses in ¢ that have been generated (non-zero
marking). We use p-distance for the “distance that
has been covered”, f-distance for the “distance that
has not been covered”, and g-distance for the “global
distance”. In order to define these notions accurately,
we need to distinguish those ancestors that are rele-
vant to the generation of ¢ in the current marking:

Definition 4.2 Let G = (V, E,l, h,s,c) be a marked
search-graph, v be a vertex in V such that l(v) = ¢,
and t = (v;e;(t1,...,tn,tay1)) be an ancestor-graph
of v, with e = (v1,...,Un;Vn41;v). Then a verter
w E€t, w# v, is relevant to v in ¢ if

o cither w € {v1,...,Vn;Vn+1} and c(e) =0,

e or w is relevant to v in t; for some i, 1 < i <
n+ 1.

We denote by Revg(t) the set of relevant vertices of
t in G. Remark that all ancestor w of v such that
s(w) = 0 is relevant, because s(w) = 0 implies that
the arc connecting w to » cannot have been executed.
An irrelevant ancestor (c(e) # 0) is one that has been
already used towards the generation of . If such an
ancestor is deleted, the f-distance of ¢ is unaffected.
On the other hand, if a relevant ancestor of ¢ in ¢ is
deleted, ¢ is no longer reachable via ¢ and therefore
the f-distance of ¢ on t becomes infinite. The distance
of the deleted clause itself obviously also becomes in-
finite:

Definition 4.3 Given a marked search-graph G =
(V,E,l,h,s,c) and a clause ¢, for all t € atc(yp),
we define:

o The p-distance of p op t is pdistg(t) = {w | w €
t,s(w) # 0}

o The f-distance of p on t is
oo if s{(p) <0

or Jw € Revg(t), s(w) <0,
n otherwise, :

fdistg(t) =

where n = {w | w € ¢, s(w) = 0}].
o The g-distance of ¢ on ¢ is
gdiste (t) = pdista(t) + fdista(t).
Then, the f-distance of pin G is
fdistg(p) = min{fdistg(t) | t € ata(p)}
and the g-distance of ¢ in G is
gdistg(p) = min{gdistg(t) | t € atc(p)}-

This notion of distance is dynamic because it depends
on the marking.v The p-distance. measures the por-
tion of an ancestor-graph that has been visited. The
f-distance measures reachability. If the f-distance of
a clause ¢ is infinite on all its ancestor-graphs, then
fdistg(p) = o0, and ¢ is unreachable. If fdistg(yp) is
finite, then ¢ is reachable. A positive f-distance mea-
sures the distance between the current state and ¢. In
particular, if 0 < fdistg(t) < oo, fdistg(t) measures
the amount of work that needs to be done to reach ¢
from the current state by traversing the path t. For
instance, if ¢ is a candidate for generation at the next
step, its f-distance is 1 on at least one ancestor-graph
t of . This means that all ancestors of ¢ in ¢ have
already been generated and the hyperarc that gener-
ates ¢ in t is enabled. If a clause ¢ has been gen-
erated (reached), then fdistg(p) = 0. Remark that
a generated clause may have positive or even infinite
f-distance on ancestor-graphs other than the one that

was traversed to reach it. Also, a deleted clause may

be generated again, making its f-distance and those
of its descendants finite again. The g-distance keeps
into account both the work that has been already done
and the work that needs to be done. If the f-distance
becomes infinite because of deletions of needed ances-
tors, the g-distance also becomes infinite.

We now consider the portion of search graph that
contains all the clauses whose distance is within a
certain bound. Note that although the entire search

91

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

graph is infinite, the search graph within bounded dis-
tance s finite. In other words, the notion of distance
allows us to “slice” the infinite search graph into finite
layers:

Definition 4.4 Given a marked search-graph G =
(V,E,l,h,s,c), for all j > 0, the bounded search
space within distance j is the multiset of clauses

space(G,j) = Z mulg(v, j) - 1(v)

veEV, AT

where
mulg(v,j) = [{t | t € atg(v),0 < gdisig(t) < j}|.

For the ease of expression, we use the representa-
tion of multisets as polynomials, with the multipli-
cities as coefficients. The multiplicity mulg(v, j) of .
¢ = l(v) is the number of ancestor-graphs of ¢ with
g-distance not greater than j in the current marked
graph. It follows that ¢ appears in space(G, j), i.e.
mulg(p,j) > 0, if and only if gdistg(y) < j. There-
fore, space(G, j) is the finite portion of search space
that contains all the clauses reachable in at most j
steps.

The notion of bounded search space allows us to
analyze the complexity of search by transforming the
problem of search in an infinite search space into the
problem of search in an infinite succession of finite
search spaces {space(Gi,j)}i»0,j>0. As complexity
measure we take the bounded search spaces ordered
by the multiset extension »,,4;. The problem of com-
paring the infinite search spaces of different theorem-
proving strategies becomes the problem of comparing
their bounded search spaces.

5 Analysis of the effects of inferences
on the complexity measures
In this section we analyze the effects of inferences
on the bounded search spaces. We first give a lemma
which expresses an important property of eager con-
traction: once a clause is deemed redundant, it will
not be used for expansion.

Lemma 5.1 Let C be a contraction-based strategy
and SobeSike...Sikc ... be a derivation by C. For
all clauses o, if si(p) < 0 and s;(p) > 0 for some
0 < i < j, then there erists a k, k > j, such that
se{p) < 0, and ¢ is not selected as premise of an
ezpansion step at any stage h, j < h < k.

The consequence of this lemma is that, in a strategy
with eager contraction, we may ignore inferences that
regenerate a clause which had been already deleted.

Proceedings of International Conference

on Artificial Intelligence

Such a clause will be deletéd before an expansion step
is performed, therefore the impact of its regeneration
on the reachability of other clauses is null. More for-
mally, this lemma justifies the following approxima-
tion that we make in the rest of the paper: if a dis-
tance fdistg,(t) is infinite, then fdistg,(t) can be
regarded as infinite for all j > 1.

We start with the case of an (expansion) inference
step that generates a clause 9. All clauses that were
reachable before generating ¢ are still reachable af-
terwards. Thus, the bounded search spaces are un-

. changed:

Theorem 5.1 If S; + Siy1 generates a clause ¥,
then Vj > 0, space(Gi, j) = space(Giy1,J)-

This theorem reflects the fact that expansion infer-
enices consist in wvisiting the search space, without
modifying it.

A contraction step deletes a clause ¢ or replaces it
by a clause v'. The deletion of 3 affects those clauses
that have 9 as relevant ancestor. We denote this set
by D;(¢): Di(¥) = {¢ | 3t € at(p) such that ¢ €
Revg,(t)}. If ¢ is deleted at stage 4, it has nega-
tive marking at stage ¢ + 1. Therefore we are inter-
ested in the clauses in Djy1(%). The distances of these
clauses on the ancestor-graphs that include ¥ become
infinite. For all bounded search spaces whose bound
is sufficiently deep to include these ancestor-graphs,
the multiplicity of the descendants of ¥ decreases.

When the multiplicity becomes 0, clauses that are in -

space(Gi, j) are no longer in space(Git1,j). Thus,
the bounded search spaces are contracted:

Theorem 5.2 If S; F S;iy1 replaces a clause v by

!, then Yj > 0, space(Git1, j) 2mut space(Gi, j). If
si(¢¥) = 1 and Diy1(¥) # 0 then Ik > 0, Vj > &,
space(Git1, §) <mui space(Gi, j).

For those clauses in Dj41(¢) that have ¢ as rele-
vant ancestor in all the ancestor-graphs of minimum
f-distance, the f-distance in the graph grows when
¥ is contracted. If a clause in D;;1(%) has ¢ as a
relevant ancestor in all of its ancestor-graphs, then
its f-distance becomes infinite when ¥ is contracted.
In other words, such a clause becomes unreachable.
Thus, contraction prunes the future search space.

6 Comparison of strategies

In this section we apply our approach for the mea-
surement of search complexity to the comparison of
strategies. Theorem-proving strategies may differ in
many ways. As a first cut, one may distinguish be-
tween comparing strategies that have the same infer-
ence system and different search plans, and comparing

92

strategies that have the same search plan and differ-
ent inference systems. In this paper, we consider an
instance of the second type of problem: we compare
strategies that have the same search plan and differ
solely in the contraction component of the inference
system. Namely, we shall assume that one strategy
has more contraction power than the other.

Comparing two strategies C; =< I;, X > and
Cy =< I3, X > with different inference systems poses
the problem that given an input set of clauses S, the
search spaces G* = G(Sj,) and G? = G(S7,) are dif-
ferent in general. This is reflected by the complexity
measure in that space(G§, j) and space(G2, j) are dif-
ferent. Therefore, we cannot compare absolute values
of the complexity measures for the two strategies. We
need to compare them relative to the different search
spaces G(S7,) and G(S7,). In other words, we need to
compare variations of the complexity measures rather
than absolute values. For this purpose, we introduce
the following A notation to represent the variation in
the bounded search spaces:

Aspace(Gi, j) Z Amulg, (v, 5) -1(v)
veEV,w#AT
where Amulg,(v,j) = mulg,(v,§) — mulg,(v, j).

Since we proved in Section 5 that all inferences ei-
ther leave unaffected or decrease the multiplicities of
clauses in the bounded search spaces, it follows that
Amulg,(v,7) > 0.

Then, we restrict our attention to the case where
the search spaces G(S},) and G(S7,) contain the same
clauses, although they have different structure in gen-
eral. This is expressed by requiring that the inference
systems I; and I5 are equipollent:

Definition 6.1 Two inference systems I, and I are
equipollent if S; = S}, for all theorem-proving prob-
lem S.

We can now focus on a specific instance of the com-
parison problem. Let C; =< I;,Z > and C; =<
I, ¥ > with Iy = I, UIg, and Iy = [, U IR,, be two
complete, contraction-based strategies with the same
eager-contraction search plan ¥. C; and C3 have the
same set of expansion rules, I3, I and I, are equipol-
lent, and for all sets of clauses S, R1(S) C R»(S). In
other words, the redundancy criterion of C, is more
powerful than the redundancy criterion of C;. In par-
ticular, we assume that this condition is satisfied be-
cause I, C Ip,. It follows that Iy C I,. We assume
further that I, is refutationally complete with redun-
dancy criterion Ry (and therefore also with R;), so
that it is sufficient that ¥ is uniformly fair with re-

spect to I, and Ry (and with respect to I, and R;)
(., [3])-

The following results compare the derivations gen-
erated by the two strategies C; and C; applied to the
same problem S. We denote by

SOC !—Slc

and
82 FSEE L.,
Ca Gt
where .S’O = 52 = S, the derivations generated by C;
and Cs, 1espect1vely We use G* for G(Sy,), G? for
G(S%,), G} for the marked search-graph associated
to S; I and Gz, for the marked search-graph associated
to S}z The search graphs G' and G? are different
because G2 may contain more contraction hyperarcs.
The first lemma is a consequence of uniform fair-
ness and the equipollence of I}, Is and I,:

Lemma 6.1 For all j > 0 and for all clauses ¢ € S?,
there exists a k > 0 such that ¢ € SE or ¢ € Ry(S}).
Symmetrically, for all k > 0 and for all clauses ¢ €
S2, there exists a § > 0 such that ¢ € Sl or ¢ €
Ry (Sl)

The difference between the two strategies is made
by the redundancy criteria. The second lemma uses
the hypothesis that R (S) C Ry(S) for all S, so that
it does not hold in the opposite direction:

Lemma 6.2 For all j > 0 and for all clauses ¢ €
R1(S}), there exists a k > 0 such that € Ry(S2).

On the other hand, clauses that are redundant for Cy
(and therefore are not generated or deleted after gen-
eration), may not be redundant for C; (and therefore
are persistent if generated), because C, has a more
powerful redundancy criterion.

The consequence of the difference in the redun-
dancy criteria is that C; prunes the search graph at
least as much as Ci, as shown by the following two
lemmas:

Lemma 6.3 For all i > 0, for all clauses ¢ in G,
if sH(¢) = —1, there exists a k > 0 such that either
st(p) = ~1, or s} (p) = 0 and fdistga2(p) = co.

Lemma 6.4 Foralli > 0, for all clauses ¢ in G* and
for all ancestor-graphs t € atg:(yp), if fdzstG1 @) =

oo, there erists a k > 0 such that fdistg: (t) = co.

By using these lemmas, the theorem proves that C,
may contract the bounded search spaces more than

Cli

93

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

Theorem 6.1 Forall i >0, 3k > 0, such that Vj >
0, Aspace(G%,j) =mu Aspace(G},j).

We conclude with two corollaries that show how,
under additional conditions, the higher reduction of
the bounded search spaces of C5 translates into smaller
bounded search spaces. In the first corollary, we mea-
sure the impact of contraction on the portion of the
search space induced by the set of expansion rules
I.. 'This is relevant, because ¥ is wuniformly fair
with respect to I.. Let espace(G,j) be defined as
in Definition 4.4 but counting only ancestor-graphs
made solely of expansion steps. Since the two strate-
gies have the same set of expansion inference rules,
espace(G§, j) = espace(GZ,j) for all § > 0, and we
have the following:

Corollary 6.1 For alli >0, 3k > 0, such that Vj >
0 E’Sp(lbe(ck,]) -<m'ul 6‘3pacc(G1? ’j)‘

The second corollary applies to the special case
where all rules in I, ~ I; are deletion rules, such as
subsumption and tautology deletion. Since the arcs of
pure deletion steps do not contribute to the ancestor-
graphs, it follows that space(G}, j) = space(G}, j) for
all § > 0, and:

Corollary 6.2 For all i >0, 3k > 0, such that Vj >
0, space(G3,§) <mul space(C',)

To summarize, a strategy with a more powerful re-
dundancy criterion induces a higher reduction of the
bounded search spaces, that is, a higher reduction
of search complexity. The property that contraction
rules preserve completeness means that this contrac-
tion of the search space is done in such a way that the
capability of the strategy to reach the empty clause is
not impaired. Furthermore, since the search space is
contracted, a solution may be found sooner.

References
(1] S. Anantharaman and J. Hsiang. Automated
proofs of the Moufang identities in alternative
rings. Journal of Automated Reasoning, 6(1):76-

109, 1990.

[2] L. Bachmair and N. Dershowitz. Critical pair cri-
teria for completion. Journal of Symbolic Com-
putation, 6(1):1-18, 1988.

(3] L. Bachmair and H. Ganzinger. Non-clausal res-
olution and superposition with selection and re-
dundancy criteria. In Proceedings of the Confer-
ence on Logic Programming and Automated Rea-
soning, volume 624 of Lecture Notes in Artifi-
cial Intelligence, pages 273-284. Springer Verlag,
1992.

Proceedings of International Conference
on Artificial Intelligence

[4] M. P. Bonacina and J. Hsiang. On the mod-
elling of search in theorem proving — towards a
theory of strategy analysis. Technical report, De-
partment of Computer Science, The University of
Iowa, 1995.

[5] M. P. Bonacina and J. Hsiang. Towards a foun-
dation of completion procedures as semideci-
sion procedures. Theoretical Computer Science,

146:199-242, 1995.

[6] C. L. Chang and R. C. Lee. Symbolic Logic and
Mechanical Theorem Proving. Academic Press,
New York, 1973.

[7] S. A. Cook and R. Reckhow. The relative effi-
ciency of propositional proof systems. Journal of
Symbolic Logic, 44(1):36-50, 1979.

{8] N. Dershowitz and J.-P. Jouannaud. Rewrite sys-
tems. In J. van Leeuwen, editor, Handbook of
Theoretical Computer Science, volume B, pages
243-320. Elsevier, Amsterdam, The Netherlands,
1990.

[9] E. Eder. Relative Complezities of First-order
Calculi. Vieweg, Braunschweig, 1992.

[10] J. Goubault. The complexity of resource-boun-
ded first-order classical logic. In Proceedings
of the Eleventh Symposium on Theoretical As-
pects of Computer Science, volume.775 of Lec-
ture Notes in Computer Science, pages 59-T70.
Springer Verlag, 1994.

[11] A. Haken. The intractability of resolution. Theo-
retical Computer Science, 39:297-308, 1985.

[12] J. Hsiang and M. Rusinowitch. On word prob-
lems in equational theories. In Th. Ottman, ed-
itor, Proceedings of the Fourteenth International
Conference on Automata, Languages and Pro-
gramming, volume 267 of Lecture Notes in Com-
puter Science, pages 54-71, Karlsruhe, Germany,
1987. Springer Verlag.

[13] R. Kowalski. Search strategies for theorem prov-
ing. In B. Meltzer and D. Michie, editors, Ma-
chine Intelligence, volume 5, pages 181-201. Ed-
inburgh University Press, 1969.

[14] R. Letz. On the polynomial transparency of reso-

lution. In Proceedings of the Thirteenth Interna-

- tional Joint Conference on Artificial Intelligence,
pages 123-129, 1993.

94

(13]

[16]

(17]

(18]

(19]

[20]

[22]

(23]

W. W. McCune. Otter 3.0 reference manual and
guide. Technical Report 94/6, Mathematics and
Computer Science Division, Argonne National
Laboratory, 1994.

J. Pearl. Heuristics — Intelligent Search Strate-
gies for Computer Problem Solving. Addison
Wesley, Reading, Massachusetts, 1984.

D. A. Plaisted. The search efficiency of theo-
rem proving strategies. In A. Bundy, editor, Pro-
ceedings of the Twelfth Conference on Automated
Deduction, volume 814 of Lecture Notes in Arti-
ficial Intelligence, pages 57-71, Nancy, France,
1994. Springer Verlag. Full version available as
Technical Report of the Max Planck Institut fiir
Informatik, MPI-1-94-233.

D. A. Plaisted and A. Sattler-Klein. Proof
lengths for equational completion. Technical Re-
port SEKI Report SR-95-06, Fachbereich Infor-
matik, Universitat Kaiserslautern, 1995.

M. Rusinowitch. Theorem-proving with reso-
lution and superposition. Journal of Symbolic
Computation, 11(1 & 2):21-50, 1991.

M. E. Stickel. A Prolog technology theorem
prover: implementation by an extended Pro-

log compiler. Journal of Automated Reasoning,
4:353-380, 1988.

G. S. Tseitin. On the complexity of derivation in
propositional calculus. In A. O. Slisenko, editor,
Studies in constructive mathematics and mathe-
matical logic, volume 2, pages 115-125. Consul-
tants Bureau, New York, 1970. Reprinted in J.
Siekmann and G. Wrightson (eds.), Automation
of reasoning, Vol. 2, 466-483, Springer Verlag,
New York, 1983.

A. Urqubart. Hard examples for resolution. Jour-
nal of the Association for Computing Machinery,
34(1):209-219, 1987.

A. Urquhart. The complexity of propositional
proofs. Bulletin of Symbolic Logic, 1:425-467,
1995.

