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Abstract

This paper proposes a class of simple and efficient
concurrency control algorithms based on_the notion
of compatibility. We consider a schedulability anal-
ysis model to better manage the schedulability of a
transaction system. The schedulability of a transac-
tion system is improved by aborting excessive block-
ing from lower priority transactions and, at the same
time, blocking excessive aborting from highly priority
transactions. We consider the criticality of transac-
tions and provide a uniform mechanism to tune up the
tolerable blocking time of transactions. The strengths
of this work is demonstrated by improving the worsi-
case schedulability of an avionics ezample [16] and o
satellite control system [5].

KEY WORDS AND PHRASES: real-time databases,
concurrency control, transaction aborting, priority inver-
sion.

1 Introduction :

Real-time database systems must preserve data
consistency and meet the timing constraints of trans-
actions. A number of analytic and simulation stud-
ies on the performance of scheduling algorithms that
meet the specified deadline requirements have been
documented in the literature [1, 2, 3, 6, 7, 8, 9, 11,
15, 18, 19, 22, 23, 25]. In these studies, some pro-
posed new real-time concurrency control algorithms;
some adopted real-time scheduling algorithms such
as the Earliest-Deadline-First algorithm (EDF) [10]
to meet the timing requirements of transactions; and
some adopted conventional concurrency control algo-
rithms such as the two-phase locking protocol (2PL)
to coordinate the data accesses of transactions.

The technical question is to determine which real-
time scheduling algorithm can be used with which
conventional concurrency control algorithm without
adverse results. This paper proposes a class of con-
currency control algorithms based on the notion of
compatibility. We consider a schedulability analysis
model to better manage the schedulability of a whole
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transaction system. The schedulability of higher pri-
ority transactions is improved by aborting lower prior-
ity transactions that may introduce excessive blocking
to higher priority transactions. The schedulability of
lower priority transactions is retained by controlling
their aborting cost from higher priority transactions.
Lower priority transactions are allowed to increase the
length of their critical sections or use an implicit lock-
ing scheme based on the idea of preemption level [2]
to reduce any interference from higher priority trans-
actions. We also provide a uniform mechanism to
consider the criticality of a transaction and to tune
up the tolerable blocking time of transactions. The
strengths of the work is demonstrated by improving
the worst-case schedulability of an avionics example
[16] and a satellite control system [5].

The rest of the paper is organized as follows. Sec-
tion 2 introduces the modulized scheduling approach
(MSA) and related real-time concurrency control al-
gorithms. We also prove some important properties
such as serializability preservation and maximum pri-
ority inversion time. Section 3 derives theorems and
provides an analytic procedure to balance aborting
cost and blocking cost. Some case studies are also pro-
vided. Section 4 further extends the MSA approach
and proposes a uniform mechanism to consider the
criticality of transactions. Section 5 is the conclusion.

2 Real-Time Data Syn-
chronization: Modulized Scheduling

Approach (MSA)

2.1 Compatibility Model

The basic idea of the modulized scheduling ap-
proach (MSA) is to integrate real-time scheduling
algorithms, conventional concurrency control algo-
rithms, and simple aborting algorithms based on the
notion of compatibility. A real-time scheduling al-
gorithm is compatible with a concurrency control al-
gorithm if the real-time scheduling algorithm allows
transactions to access data objects according to the
synchronization requirements of the concurrency con-
trol algorithm. As an example, a real-time schedul-
ing algorithm such as the Earliest-Deadline-First al-
gorithm, that schedules transactions/processes with
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the most urgent deadline, is compatible with a con-
currency control algorithm like 2PL, which forbids
any transaction to obtain any new locks on data ob-
jects if the transaction has released any locks. A
real-time scheduling algorithm that forbids transac-
tions/processes to hold more than one resource or
data object at a time is apparently incompatible with
2PL.

As the astute reader can expect, most weli-known
real-time scheduling algorithms such as EDF [10] and
conventional concurrency control algorithms such as
2PL are compatible with each other. The main dif-
ficulty lies on the compatibility problem of an abort-
ing algorithm with a real-time scheduling algorithm
and a concurrency control algorithm. It is because an
aborting algorithm may change the priority structure
of transactions such as that adopting priority inheri-
tance [24] or violate the synchronization requirements
imposed by a concurrency control algorithm such as
serializability. An aborting algorithm must specify
these concerns if it is to be used with or to be com-
patible with a real-time scheduling algorithm and/or
a concurrency control algorithm. As an example, if
an aborting algorithm does not reset the priority of
a transaction that is inherited from the priority of
an aborted transaction, then the aborting algorithm
is not compatible with the Priority Ceiling Protocol
(PCP) [24] where PCP depends heavily on the idea
of priority inheritance. Furthermore, an aborting al-
gorithm that aborts any transactions involved in cer-
tain resource competition must release all resources or
data objects held by the transactions to be compatible
with 2PL. If an aborting algorithm is, indeed, com-
patible with a real-time scheduling algorithm and/or a
concurrency control algorithm, then the combination
of these might preserve the properties of the two algo-
rithms. The minimum requirements for an aborting
algorithm to be compatible with a real-time schedul-
ing algorithm and a concurrency control algorithm are
to ensure that the aborting algorithm does not harm
the priority assignment scheme, scheduling mecha-
nism, and/or data synchronization requirements of
the real-time scheduling algorithm and the concur-
rency control algorithm. We refer interested readers
to [11] for the detailed definition of “compatibility”.

For the purpose of this paper, we will use the terms
“resource” and “data object” interchangeably. (A
data object is one kind of resource.) We will also use
the terms “process” and “transaction” synonymously.

Now, we will state our notation.

Notation:

o 7;; denotes the j;; instance of transaction 7. p;
and ¢; are the period and worst-case computation
time of transaction 7;, respectively. If transaction
7; is aperiodic, p; is the minimal separation time
between its consecutive requests. When there is
no ambiguity, we use the terms “transaction and
“transaction instance” interchangeably.

e R;; denotes the j;; request of transaction 7;.
A transaction instance 7;; is initiated for each
request of transaction 7;. Once transaction in-
stance 7;; is aborted, 7;; may be restarted or
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terminated as required by the selected schedul-
ing algorithm.

2.2 Modulized Scheduling Approach

We assume that a transaction system consists of a
fixed set of transactions. Transactions are classified
as abortable or non-abortable in an off-line fashion.
(Please see Section 3.) Before a transaction can access
a data object, the transaction must first obtain a lock
on the semaphore that guards the data object. When
a transaction terminates s(commits or is aborted), it
must release all of its locks. A critical section of a
transaction is a code segament between the locking
operation and its corresponding unlocking operation
of the corresponding semaphore. We assume in this
paper that critical sections are properly nested!.

Transactions are required to adopt a delayed write
procedure. For each data object updated by a trans-
action, the update is done in the local area of the
transaction and the actual write of the data object is
delayed until the commit time of the transaction. Asa
result, transactions do not release locks of semaphores
until they commit or are aborted. The delay write
procedure eases the aborting process and avoids cas-
cading aborting.

Protocol | Bounded | Blocked at | Deadlock
Priority | Most Once | Avoidance
Inversion
NPCS Yes Yes Yes
HLP Yes Yes Yes
PCP Yes Yes Yes
Table 1 Real-Time Schedulin Al-

gorithms: Non-Preemptible Critical Section %NPCS),
Highest Locker’s Priority (HLP), and Priority Ceiling
Protocol (PCP).

Our scheduling algorithms are the integration of
three compatible components: real-time scheduling
algorithms in Table 1%, the two-phase locking pro-
tocol (2PL), and a simple aborting mechanism. We
are interested in the context of uniprocessor priority-
driven preemptive scheduling, and every transaction
has a fixed priority.

Real-Time Scheduling Algorithms:

The non-preemptible critical section algorithm
(NPCS) is an extension of the kernelized moni-
tor algorithm in [17]. The NPCS algorithm, is a
priority-driven scheduling algorithm, where the crit-
ical sections of every transaction instance are non-
preemptible. The highest locker’s priority algorithm
(HLP) documented in [20] is a refinement of the NPCS
algorithm. Instead of making all critical sections non-
preemptible, when a transaction instance is executing
within a critical section, the transaction instance runs
at a priority equal to the highest priority of all trans-
action instances which may access the corresponding

11t is one of the assumptions of PCP to handle the priority
inversion problem.
2A similar table appears in [14, 20)



semaphore. The priority ceiling protocol (PCP) in
[24] further refines the HLP algorithm, in which pro-
cesses can inherit the higher priority of a process they
block. The priority ceiling of a resource is the prior-
ity of the highest priority process which may use the
resource. A process’s resource request is blocked if its
priority is no larger than the priority ceiling of any
resource which has been grabbed by another process
but has not yet been released. The priority ceiling of a
semaphore is equal to the highest priority of transac-
tions which may use the semaphore. Note that PCP
can only be used with fixed priority assignments, and
the complexity of PCP is the highest in Table 1. How-
ever, it allows the highest level of concurrency in a
transaction system.

Concurrency Control: 2PL

Transactions are required to access semaphores in
a 2PL fashion. For example, if NPCS is used to sched-
ule real-time transactions, transactions tend to have
a single non-preemptible critical section, in which
semaphores are accessed in a 2PL fashion.
Aborting Mechanism:

Transactions are classified as abortable or non-
abortable in an off-line fashion (Please see Section 3).
When transaction instance 7 requests a semaphore
lock, and 7 is blocked (under the chosen NPCS, HLP,
or PCP algorithm) by some lower priority transaction
instances, 7 aborts all of the blocking lower priority
transaction instances if the lower priority transaction
instances are all abortable. If any one of the block-
ing lower priority transactions is non-abortable, r is
blocked and does not abort any transaction instance.
Note that when a transaction instance is aborted, it
releases every lock it owns and restarts immediately.

A scheduling algorithm consists of any real-time
scheduling algorithm in Table 1, 2PL, and the above
aborting mechanism is called a MSA algorithm. The
set of MSA algorithms can be properly enlarged by
considering other compatible real-time scheduling al-
gorithms and concurrency control mechanisms. For
example, the Basic Aborting Protocol, Table-Driven
Aborting Protocol, and Dynamic Aborting Protocol
are also a MSA algorithm or its variations [12, 13].

Example 1 A MSA Schedule: PCP + 2PL + Abort-
ing

re-execute

| | I ! I ! | t | ) ]
T
0 2 4 6 8 10 12 14 16 18 20 22 24

Figure 1: A MSA Schedule

We illustrate a MSA schedule by an example. Sup-
pose there are three transactions 7, 7a7, and ¢ in
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a single processor environment. Let 7z, a7, and g
have computation requirements 5,5, and 7, respec-
tively, and periods 11,19, and 22, respectively. Sup-
pose g is the only transaction using semaphore S,
and transactions 7 and rr share semaphore S,. Let
TH, TM, and 77 have priorities 3,2, and 1, respec-
tively (3 is the highest priority level). Suppose trans-
action 77, is abortable, and transactions 77 and 7
are non-abortable. According to the MSA algorithm,
semaphores S; and Sy have priority ceilings as high
as the priority levels of transactions 7z and 1y, re-
spectively.

As shown in Figure 1, transaction 7 locks
semaphore S and runs at-its assigned priority level
at time 1. When 7y arrives at time 2, 737 preempts
Tr. At time 3, Ty tries to lock semaphore S, and
the lock request results in the aborting and restart-
ing of transaction 7 because 71 holds a semaphore
(52) with a priority ceiling no less than the priority
of 7r, and 7z, is abortable. Since the lock request of
semaphore Sy is granted, 73y proceeds with its execu-
tion, but it is later preempted by transaction ry at
time 5. At time 6, the lock request of semaphore S;
issued by 7y is granted because the priority of 75 is
higher than the pririty ceiling of semaphore S5, that
1s owned by transaction 737 at that time. At time 10,
7g commits and releases its lock on semaphore S,
and 7p resumes its execution. At time 12, 7p; com-
mits, and 71 regains CPU and re-executes as a new
transaction. However, transactions 7 and 7y arrive
again at times 16 and 21, respectively; 77 receives
only 4 units of computation time before its deadline
at time 22., but 77, needs 7 units of computation time.
7L misses its deadline at time 22!

This example demonstrates one of the goals in de-
signing MSA that a higher priority transaction may
abort lower priority transactions to meet its timing
constraints, and the schedulability improvement of a
higher priority transaction is at the cost of the possi-
ble schedulability degradation of lower priority trans-
actions. O

2.3 Properties

We shall prove the following theorems to illustrate
the idea of compatibility (See Section 2). Some defini-
tions and proofs of PCP from [24] are listed as needed.
Note that jobs in the definitions and theorems from
[24] are transaction instances in this paper. When
NPCS, HLP, or PCP is used as a real-time scheduling
algorithm in a MSA algorithm, the MSA algorithm is
named as MSA(NPCS), MSA(HLP), or MSA(PCP),
respectively®. With limited space, detailed proofs are
removed in this section. ‘

Lemma 1 MSA prevenis deadlocks.

Proof. The correctness of this proof directly fol-
lows from the fact that NPCS, HLP, and PCP all
prevent deadlocks. O

Theorem 1 Schedules generated by MSA are logi-
cally correct (based on serializability).

®MSA(PCP) is also named as the Basic Aborting Protocol
in [13].
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Proof. Directly follows from the properties of the
delayed write procedure and 2PL.

Definition 1 [24] Transitive blocking is said to occur
if a transaction instance is blocked by another trans-
action instance which, in turn, is blocked by the other
transaction instance.

Theorem 2 MSA prevents transitive blocking.

Proof. The correctness of this proof directly fol-
lows from the fact that NPCS, HLP, and PCP all
prevent transitive blocking. O

Theorem 3 A transaction instance can be blocked
for no more than one critical section of at most one
lower priority transaciion instance under MSA. In
other words, a transaction instance can experience at
most one time of priority inversion under MSA.

Proof. Directly follows from the properties of
NPCS, HLP, and PCP. O

Theorem 4 A higher priority transaction instance
can abort at most one lower priority transaction in-
stance under MSA(PCP).

Proof. This theorem can be proved by arguing
the semaphore locking scheme and the definition of
priority ceiling. O

3 Schedulability Analysis
3.1 Schedulability Model

Lehoczky, et al. [14] and the Rate Monotonic The-
ory [20] first provided a pseudo polynomial time algo-
rithm to predict the schedulability of a transaction 7;
precisely. Let b;, ab;, d;, p;, and ¢; be the worst case
blocking time, aborting cost (time), deadline, period,
and worst case computation requirement of a trans-
action 7;, respectively. We can extend their results as
follows:

Let the priorities of transactions be defined in a
rate monotonic fashion (RMS), where RMS assigns
transactions with priorities inversely proportional to
the periods of the transactions. For transactions with
prierities out of RMS order, their execution times are
modeled as blocking times. We refer interested read-
ers to [20]

Lemma 2 Transaction 7; in a set of periodic trans-
actions scheduled by a MSA algorithm will always
meet its deadline for all phases if there exists a pair
(k,m) € R; such that '

i-1

m
E (¢ [—pk]) +¢; + b; + ab; < mpy
j=1 p]

where Ry = {(k,m)|]1 < k <i,m = 1,2,---,[}%_]},
and b; and ab; are the blocking time and aborting cost
of 1;, respectively.

Proof. The worst case aborting cost of 7; is mod-
eled as an extra computation time of 7;. The correct-
ness of the proof follows from lemmas in {20]. O
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3.2 Preemptibility: Aborting Cost
We use the following theorems to estimate the
aborting cost of transactions.

Definition 2 The direct aborting cost charged to a
lower priority transaction instance T by a higher pri-
ority transaction instance 7’ is the CPU téme that has
been consumed by T when T is aborted by 7’

Definition 3 A-cost; ; denotes the mazimum direct
aborting cost possibly charged to an instance of trans-
action.7; by an instance of transaction ;.

Definition 4 Given a set of
transactions Ty, Ta, -+, T listed in the non-decreasing
order of their priorities, the mazimum aborting cost
charged to an instance of transaction 7; by an instance
of transaction 7; is a-cost; j = max(A-cost; ), where
i1<k<j.

Theorem 5 A request of a lower priority transaction
can be aborted at most once by a higher priority trans-

-action within a period of the higher priority transac-

tion.

Proof. This theorem can be proved by arguing
the semaphore locking scheme and the definition of
priority ceiling. O

Let IT = {71, 7, -+, Tn} be a set of periodic trans-
actions listed in the non-increasing order of their pri-
orities, and HPC; = {r, 7, -+, -1} is the set of
transactions with a priority no less than that of 7;.

Lemma 3 The worst-case aborting cost charged to a
request of a lower priority transaction 7; by a higher
priority transaction 7 is [EX] x a-costi,; = [E] x
manZkN'(A-COSti,k),

Proof. Follows directly from the definition of a-
cost;.; and Theorem 5. O

Lemma 4 The worst-case aborting cost for a request
of transaction 7; is Zr;eHch(r;_J;] X a—cosfg,j).
Proof. Follows directly from Lemma 3 O

Lemma 5 The worst-case aborting cost for a request
of transaction 7; between time 0 and time ¢ < p; is at

most ™, eqpe, (] x a-costs ).
Proof. The statement can be proved in the same
way as Lemma 4 does. O

3.3 Non-Preemptibility: Blocking Cost

Theorem 6 A request of a transaction can be blocked
for at most one critical section of at most one lower
priority transaction instance under MSA. In other
words, a transaction request can experience at most
one time of priority inversion under MSA.

Proof. The correctness of this proved can be de-
rived from Theorem 3. O



3.4 Schedulability Analysis Procedure

The underlying idea of the analysis is that when
a lower priority transaction may introduce excessive
blocking to a higher priority transaction such that
the higher priority transaction may miss its deadline
in the worst case, the lower priority transaction is
abortable.

Let b;, ab;, d;, p;, and ¢; be the worst case block-
ing time, aborting cost, deadline, period, and worst
case computation requirement of a transaction 7;, re-
spectively. Also let Il = {7, 79,---, 7} be a set of
periodic transactions listed in the non-decreasing or-
der of their priorities. HPC; = {71, 72, -, Ti—1} is a
set of transactions with a priority no less than that of

T
Schedulability Analysis Procedure:

Let R; = {(k,m)|]l < k < t,m = 1,2,---,{_%J},
and SF; = {mpk|(k,m) € Rz}

Lemma 2 shows that the maximum. blocking
time that transaction 7; can tolerate is MB; =
maziesp;[t — ZJ'EHPC,- (¢ [%;&]) — ¢;.— ab;]. Based
on Lemma 5, the maximum tolerable blocking
time of transaction 7 is MB; = maziespt —

ZjeHPC,- (¢ [%;&D -G ZjeHPc;(rp%] a-cost; i].

Initially, all transactions are non-abortable. The
maximum tolerable blocking time M B; of transaction
7; is calculated as defined.

LLi=1
2. If 1 > n then stop

3. If a transaction 7; (j > 7) has a critical section
that may lock a semaphore with a priority ceiling
no less than transaction 7;, and the length of the
critical section is larger than M B;, transaction
7; becomes abortable. (See Theorem 6.)

4. go to 2

3.5 Case Study

Two transaction systems based on an avionics ex-
ample [16] and a satellite control system [5] are stud-
ied to demonstrate the strengths of the work by im-
proving the worst-case schedulability of the transac-
tion systems. MSA(PCP) is used in the analysis.

3.5.1 Generic Avioniés Platform

The avionics platform example has 18 periodic trans-
actions and 9 data objects [16]. Table 2 shows
that MSA(PCP) can successfully schedule the first
six most critical transactions. However, PCP with
semaphores locked in a 2PL fashion fails to schedule
transaction Weapon_Release because of its stringent
5ms jitter requirement and-excessive blocking from
lower priority transactions that may -access data ob-
ject “DB” such as transaction Display_Graphic. Note
that the cumulative processor utilization of transac-
tions with priorities no less than that of transaction
Weapon.Release is 6.6%; only the most critical trans-
action, i.e., Timer Interrupt, is schedulable.
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3.5.2 Olympus AOCS

The Olympus AOCS [5] has 10 periodic transac-
tions ~and 4 sporadic transactions. Transactions
are assigned priorities according to the deadline
monotonic priority assignment that assigns transac-
tions priorities inversely proportional to their dead-
lines. Table 3 shows that, by making transac-
tions Process_IRES_data and Control_Law abortable,
MSA(PCP) can schedule the first eight most criti-
cal transactions. However, all of the transactions ex-
cept Bus_Interrupt remain unschedulable by the pure
locking PCP protocol due to excessive blocking from
transactions Process_IRES_data and Control Law.

4 Extensions

Under the modulized scheduling approach (MSA),
a lower priority transaction is abortable if it poten-
tially introduces excessive blocking to some higher pri-
ority transactions. As a result, lower priority trans-
actions tend to have a higher chance to miss their
deadlines. In this section, we further extend the MSA
approach in two ways: (1) The critical sections of
a transactions may be lengthened to reduce the pre-
emption cost from higher priority transactions. (2)
Each transaction is assigned a fixed preemption level
to reflect its criticality or to increase its maximum
tolerable blocking time. ' :
4.1 Increased Non-Preemptibility: En-

larged Critical Section

A critical section of a transaction can be lengthened
by moving the corresponding semaphore locking oper-
ation toward the beginning of the transaction or mov-
ing the corresponding semaphore unlocking operation
toward to the commit operation of the transaction.
We argue that moving a semaphore unlocking opera-
tion toward to the commit operation of a transaction
is more effective in improving the schedulability of a
transaction because whether a transaction misses its
deadline is determined by the time when the transac-
tion executes its last instruction, i.e., the commit op-
eration. Note that lengthening critical sections only
increases the blocking time of higher priority transac-
tions. Theorems in Sections 2 and 3 remain valid.

As the astute readers may notice, the schedulabil-
ity of a transaction can be best improved if the trans-
action only unlock semaphores at its commit time. If
critical sections are properly nested (as requested by
PCP), and we take this approach to the extreme, then
a transaction consists of two code segments; one is a
critical section with all of the semaphores needed by
the transaction locked in the beginning of the critical
section and unlocked at the ending of the critical sec-
tion. When a transaction begins its execution, it first
runs a non-critical-section code segment and, then, a
critical section code segment. If a critical section (or
the critical section of a transaction) is non-abortable,
we can revise Lemma 2 and have a more ” optimistic”
theorem to justify the schedulability of a transaction.

Lemma 6 Let transaclion 7; consist of a non-
critical-section code segment and a critical-section
code segment. Suppose that the non-critical-section
and critical-section code segments need c} and c?
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units of computation time, respectively, and the non-
critical-section ezecutes first. Transaction 7; can be
scheduled by a MSA algorithm for all phases if there
ezists a pair (k,m) € R; such that

m
3 (I + L+ of + b <,
JEHPC; Pi

and -
Z (cj[———'kl)+ci+bi_<_di
jEHPC; Pj

Proof. The first condition makes sure that the
critical-section code. segment of transaction 7; is
scheduled before the scheduling point {k, m), and the
second condition ensures that transaction 7; receives
enough computation time before its deadline. The
rest of the proof follows directly from the correctness
of Lemma 2. O
4.2 Preemption Level: Criticality and

Schedulability Refinement

Real-time scheduling algorithms often assign trans-
actions priorities based on some criteria irrelevant to
the criticality{importance of the transactions. As a
result, critical but lower priority transactions may
miss deadline and cause the failure of the whole sys-
tem. Suppose that each transaction is given a pre-
emption level proportional to its criticality. Transac-
tion scheduling in a MSA algorithm can be further
restricted in the following way. :

A transaction 7; can preempt the running transac-
tion if it also satisfies the following two conditions:

1. The premption level of 7; is larger than the sys-
tem premption level, where the system preemp-
tion level is the highest preemption level of trans-
‘actions which were scheduled and have not ter-
minated.

2. If MSA(PCP) is considered, the premption level
of 7; is larger than the system priority ceiling (as
defined in [24])*.

These conditions help critical but lower priority
transactions to retain CPU and semaphores with-
out sacrificing the integrity of the original MSA al-
gorithms. Theorems related to serializability, dead-
[ock avoidance, priority inversion, and schedulability
analysis remain valid. However, Lemma 2 can be fur-
ther relaxed if the schedulability of a non-abortable
transaction is considered.

Lemma 7 A non-abortable transaciion 7; scheduled
by @ MSA algorithm for all phases if there exist two
pairs (ky,my) and (k2,m2) € R; and mapg, > mipk,
such that —

Yienpc(ei[ =5 1) + 14 b < mapy,,

Yienpci~mrc:(ci [f%i—kl‘])‘*‘

4The preemption levels of transactions must be defined care-
fully to satisfy this condition.

and

m
Tienre, (G [™522]) + ¢ + b < mapy,,

where HPC; is the set of transactions which have a
higher priority than that of 7;, and HLC; is the set of
transactions which have both a higher priority and a
higher preemption level than those of 7;, respectively.

Proof. The first condition makes sure that trans-
action 7; is scheduled before the scheduling point
(k1,my), and the second condition ensures that trans-
action 7; receives enough computation time before its
deadline. Note that transactions belonging to the set
HPC; — HLC; can uno longer preempt transaction.7; .
after 7; is first scheduled. The rest of the proof follows
directly from the correctness of Lemma 2. O

Note that the tolerable blocking time of transaction
7; can be easily adjusted by changing its preemption
level. However, the idea of preemption level does in-
troduce another form of blocking.

5 Conclusion

This paper proposes a class of concurrency control
algorithms based on the idea of compatibility. The
algorithms are not only simple and intuitive but also
preserve many important properties of their individ-

" nal compatible components such as the maximum pri-

ority inversion number of the Priority Ceiling Pro-
tocol (PCP). We consider a schedulability analysis
model to better manage the schedulability of a whole
transaction system. The schedulability of a transac-
tion system is improved by aborting excessive block-
ing from lower priority transactions and, at the same
time, blocking excessive aborting from highly prior-
ity transactions. We also provide a uniform mecha-
nism to tune up the tolerable blocking time of transac-
tions and consider the criticality of transactions. The
strengths of the work is demonstrated by improving
the worst-case schedulability of an avionics example
[16] and a satellite control system [5].

How to provide a compromise among the block-
ing, preemption, and aborting costs of transactions is
of paramount importance to the schedulability of a
transaction system. This work provides various ways
to observe the schedulability of a tansaction system
from these three aspects. One future research direc-
tion of this work is to investigate the application se-
mantics of a transaction system and its implications
on transaction abortings and restartings. We will also
further exploit the concept of preemption level to mul-
tiple locking granularities and modes. We believe that
more research in classifying and analyzing real-time
concurrency control algorithms and transaction sys-
tems to derive proper benchmarks may prove to be
very rewarding. ‘
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. Transaction # Period | Exec | Abort Abort Schedﬁ]abilit.y Test . Tolerable

(ms) (ms) ? Cost (ab;) | (Use best mpk Blocking
(ms) . | for MB;). (M B;)
Timer_ Interrupt 1 0.051 No 0 0.051 0.949
Weapon_Release 200 3.01 No 0 [5/1] % 0.051 + 3.01 1.735
Radar_Tracking_Filter 25 .1 2.03 Yes 2.03 [25/1] x 0.051 + [25/200] 16.655
, : | x3.014 [25/25] x2.03 + abort
RWR_Contact_Mgmt | 25 | 5.03 | Yes 10.06 | [25/1] x 0.051 + | 25/200] 3.595

x3.01 4 [25/25] x 2.03

: +[25/25] x 5.03 + abort
Poll_Bus_Device 40 1 No 15.09 [40/1] x 0.051 + [40/200] 4.74
x3.01 + {40/257 x°2.03
+[40/25] x 5.03 + [40/40]
x1 4 abort i
Weapon._Aim 50 3.02 No 15.09 [50/1] x 0.051 + [50/200] 10.21
x3.01 + [50/257 x 2.03
+{50/25] x 5.03 + [50/40]
x1+ [50/50] x 3.02 4 abort

Table 2: Schedulability analysis of MSA(PCP) for the generic avionics example

Transaction Period | Exec | Deadline | Abort | Aborting | Schedulability Test Tolerable
(ms) [ (ms) (ms) ? Cost (ab;) | (Use best mpx Blocking
(ms) - | for M B;) (M B;)
Bus_Interrupt 0.96 0.19 0.63 No 0 0.19 .| 0.44
RTC 50 029 |- 9 No | 0 [9/0.96] x 0.19 + 0.29 6.81
Read_Bus IP 10 1.82 10 No 0 [10/0:96] x 0.19 4 [10/50] 5.8
' : x0.29 + 1.82 )
Comand_Actuators 200 2.18 14 No 0 [14/0.96] x 0.19 + [14/50] 5.04
: x0.29 + [14/10 x 1.82 + 2.18
“Request_DSS_Data 200 | 1.46 17 No 0 [17/6.96] x 0.19 + [17/50] 6.01

x0.29 + [17/10] x 1.82+
[17/200] x 2.18 + 1.46

Request_.Wheel Speeds | 200 1.46 22 No -0 {20/0.96] x 0.19 + [20/50] 6.78
' ' x0.29 + [20/10] x 1.82+
[20/200] x 2.18 + [20/200]
x1.46 + 1.46

Request_TRES data 100 | 1.46 24 No 0 [24/0.96] x 0.19 +[24/50] 1 6.94
’ x0.29 + [24/10] x 1.82+
[24/200] x 2.18 + [24/200]
x1.46 + [24/200] x 1.46 + 1.46

Telemetry_Response 62.5 | 3.24 30 No 0 {30/0.961 x 0.19 + [30/50] 8.37
x0.29 + [30/10] x 1.82+
[30/200] x 2.18 + [30/200]
x1.46 + [30/200] x 1.46+
[30/100] x 1.46 + 3.24

Process_ IRES.data 100 8.26 50 Yes 90.86 [50/0.96] x 0.19 + [50/50] miss
x0.29 + [50/10] x 1.82+
[50/200] x 2.18 + [50,/200]
x1.46 + [50/200] x 1.46+
[60/1007 x 1.46 + [50/62.5]
| x3.24 + 8.26 + abort

Table 3: Schedulability analysis of MSA(PCP) for the Olympus AOCS example
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