Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

Declarative View Updates in Linear Logic Databases

Dong-Tsan LEE

C.P. TSANG

Logic and Al Lab., Department of Computer Science,
The University of Western Australia,
Nedlands, Perth, Western Australia,
Australia

Abstract

The problem of updating deductive databases through
views is an important practical problem that has
attracted much interest. In this paper, a systematic
approach to the problem of view updating in linear
logic databases is described. The semantics of views,
constraints, and view updates is defined declaratively in
linear logic. In contrast to classical logic, we can
Jormalise non-shared view and transition constraints
easily. An additional advantage is that the associated
meaning of a given relation can be defined in terms of
the validity of a legal update in a given relation. We
also defined formally the update principles and showed
the correctness of the update translation algorithms. In
this approach, view DELETIONSs are special cases of
view REPLACEMENTs. This permits . three
transactional view update operations (INSERTION,
DELETION, REPLACEMENT) in comparison to only
(INSERTION, DELETION) in most exiting systems.

Keywords: Deductive Databases, View updates, Linear
logic, Database updates, Knowledge representation,
Views, Constraints, Declarative support.

1 Introduction

In this paper, we consider the view update problems in
linear-logic databases. View update in databases has
two main problems. The first one is how to compute the
next database state with respect to updates on the
underlying database. This problem has been solved by
our previous research[17], which centers on the
computation of next database state within first-order
linear logic theory. For example, the database is
initially A, F. Assuming that we wish to delete the fact
F which is not prefixed with the exponential operator !.
Rather than deleting F directly, we add to the database
the formula (F —o 1). As a consequence, we have A, F,
(F —o 1)}. Thus the next database state T can be
deduced by proving the sequent A,F,(F — 1) |

- We also provided proof search strategies to obtain the

193

next database state X. These are described in our
paper[17]. Our approach is also free from the Al frame
problem. This is because we treat facts as resources that
can be consumed and produced. Hence there is no
need for the frame axioms to be stated explicitly. The
second problem is how to translate a given update on a
user view into an update in the database. In this paper,
we solve this view update problem with respect to a
linear-logic database. Many distinct advantages will be
emphasised.

We also consider a linear logic database as a linear
logic theory. A theory consists of a consistent set of
formulas in first-order linear logic. In our framework,
we use the full linear logic as defined by Girard[7, 8].
In logic databases, a database relation corresponds to a
predicate. A view is associated with a view relation and
a view definition[20]. A view relation. is a rule-defined
relation that is made to appear like a base relation to
the user. A database relation defined directly by its
tuples is called a base relation. A rule-defined relation
is defined to be a database relation based on a set of
rules. The rules that define the view relation constitute
the view definition. For a view to be useful, users must
be able to apply query and update operations. In
general, a mapping is required to translate view updates
into the corresponding updates on the underlying
database. However, such a mapping does not always
exist. Even when it does exist, it may not be unique
because a view defines a many-to-many mapping from
the base relation tuples to the view tuples[4, 20]. Thus
we use a translator to decide between the alternatives.

Let us make it clear that we are concerned here with
declarative support. Many approaches to a theory of
updates[2, 3, 4, 6, 9, 13, 16, 23, 24] do not emphasize
declarative support. Declarative support means that the
operational semantics can be captured by using the
same specification language as the database. In general,
declarative support is better than procedural support
which uses stored or triggered operations. In this paper,
we define a declarative view, declarative constraints,
and declarative view updates. By using declarative

Proceedings of International Conference on Distributed
Systems, Software Engineering and Database Systems

views, many traditional view update problems can be
overcome. One of the motivation of using views is to
hide sensitive information and to control the access
privileges of a user. Views provide logical data

independence by allowing certain changes to be made V

to the database schema without affecting the
application programs. Different users can also have
different views of the same data. One problem with
classical logic databases is that it cannot formalise non-
shared views, declarative transition constraints and
declarative (view) updates. This is because classical
logic cannot handle ‘the resource and it cannot specify
database state transition. Recently, Date and
McGoveran[5] described a systematic approach to the
problem of updating relational views. The main
contribution of [5] was the identification of a series of
principles that must be satisfied by any view updating
procedures. However, the approach of that paper is
rather informal. It is our intention to formulate some of
those update principles with our formulation of view
update in linear logic databases. There has been much
research. of view update in deductive databases [3, 6, 9,
16). However, they only allow DELETION or
INSERTION transactional operations, because
REPLACEMENT is treated as a shorthand for the
DELETE-then-INSERT operation. However, this
shorthand can lead to inappropriate results due to its
transaction of non-ground atoms. We clearly need to
support for all three update operations (DELETION,
INSERTION, REPLACEMENT).

Linear Logic was introduced by Girard[7] in 1987
It is a state based resource-sensitive logic. Increasingly,
computer scientists and proof theorists have recognised
linear logic as an expressive and powerful logic
suitable for capturing the semantics of computation.
The expressive power of linear logic is evidenced by
many computer science applications. Lafont has
initiated some of these applications in the areas of logic
programming[14] and operational ~semantics[15].
Marti-Oliet and Meseguer present a systematic
correspondence between Petri-nets, linear logic
theories, and linear categories{19]. With regard to
linear logic programming languages, there have been
various proposals, including Forum[22], Lygon[25],
ACL[12], Lolli[11], and Linear Objects[1].

2 Preliminary

Linear logic differs from classical and intuitionistic
logic in several ways. The difference is that Linear
logic is a constructive logic and is suitable for the
“Proof as Program” paradigm. Classical logic is not
constructive due to the use of structural inference rules

194

such as weakening and contraction. While
intuitionistic logic is constructive, it is not symmetric
(negation is void meaning unprovable).

Linear logic specifically does not have two
structural rules, contraction and weakening. Removing
the two rules gives a linear system in which each
resource(formula) must be used exactly once. Once the
two rules are dropped, the two possible traditions for
the right A-rule in the Gentzen classical sequent
calculs,

rll:;’ L__AIB.Z - (AR) and

AFAAB, Z, %,

kA2 T}B, X
T'FAAB, Z

are no longer equivalent; the removal of contraction

and weakening leads to two forms of conjunctions,

namely ®(times) and &(with), and similarly to two

(AR¥)

forms of disjunctions, g (par) and ®(plus). Moreover,

Girard[7] discovered that in coherent spaces, the
function space A = B can be split into !A —o B, where
! is the exponential operator, and —o is the linear
implication. But linear logic is not logic without
weakening and contraction. To restore the power of
intuitionistic and classical logic, two modal
(exponential) operators ? and ! are introduced, with
contraction and weakening as their main logical rules.
The main difference is that we now control in many
cases the use of contraction and weakening; unlimited
reuse or consumption is' allowed only at formulas
specifically marked with ! or ?, respectively. Girard

“also showed that it was possible to translate

intuitionistic or classical logic into linear logic(see [7]).
Details of Linear Logic can be found in references[7, 8,
18].

2.1 The Language

The language includes a set of finite terms, a countable
set of predicates and a set of logical connectives. A
term is defined as being a variable or a constant.
Constants are usually names of objects, such as John,
Lily, 3. Variable symbols are customarily lower-case
unsubscripted or subscripted letters, X, y, z, ...
Predicates are customarily upper case letters P, Q, ... or
expressive strings of upper-case letters such as LESS
and EMOTION. Each predicate has an arity. It allows
to define a set of atomic formulas: if P is an n-ary
predicate and ty,..., t, are terms. Then P(ty,..., t) is an
atomic formula. A set of logical connectives is given as
(®, 0, & &, —, ¥, 3, 1,20, 1, L, T }. The
connectives of linear logic are described as follows:

* Linear negation is denoted by (.)" : Unlike Negation
As Failure paradigm, linear negation is an involution
satisfying De Morgan-like properties. Thus, it is
possible to describe linear logic in terms of one-sided
sequents, transforming A | X to }A", Z. Yet unlike
classical negation, linear negation has a simple
constructive meaning.

* The linear implication —o : A —o B means “if the
resource A was available, then the computation could
go to state B”. For example, DOLLAR(1) —o
FUJIAPPLE(3) says that with one dollar one can get
three Fuji-apples. Obviously, one dollar must be used
exactly once in obtaining 3 Fuji-apples.

* The multiplicative conjunction ®(times), and the dual
disjunction go(par), with the neutral elements 1 and
1, respectively: The tensor product A ® B expresses
the availability of the two resources A and B; both
will be used. On the other hand, A g B stands for a
dependency between A and B; A g B can either be
read as A —o B or as B* — A, ie, “p“is a
symmetric form of “—o“. The constants true and
falsity have their multiplicative version 1 and 1, and
their additive version T and 0. Also, note that 1 ® A
=Ayand Lp A=A. ,

* The additive conjunction &(with), and the dual
disjunction @(plus), with the neutral elements T and
0, respectively: A & B appears as a kind of external
choice in the terminology of CSP[10]. It expresses
the availability of the two types of resources A and B;
only one of them will be chosen. Dually, A © B
stands for the possibility of either A or B, but you do
not know which. It appears as an internal choice. In
addition, note that T& A=A, and 0 @ A=A.

* The exponential ! (of course), and the dual ? (why
not): ! and.? are modalities. !A means the unlimited
availability of the resource A. A computational
metaphor often used to talk about this is the fact of
storing a datum in a computer memory, where it can
be read as many times as necessary. Dually, ?A
denotes that A can be consumed as many times as
necessary. In terms of computer, ! and ? may indicate
which kind of memory operation has been performed.
With this interpretation, the rules for ! and ?
correspond to storing, erasing, reading and
duplicating.

* The quantifier V (every) and the dual 3(some),
which are pretty much the same as in classical logic.

Gentzen-stype sequent calculus rules for "the

Classical Linear Logic are given in Appendix A. A

sequent is composed of two sequences of formulas

separated by a |, or turnstile symbol. The intended
meaning of the sequent Al, ..., An | B1,....Bm is that

Al®..®An — Bl g...@Bm. A sequent calculus proof

195

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

rule consists of a set of hypothesis sequents, displayed
above a horizontal line, and a single conclusion
sequent, displayed below the line. When investigating
sequent calculus rules for linear logic, one notices that
(®R) rule and (—L) rule require disjoint contexts
whereas (&R) rule and (®L) rule work with twice the
same context.

Throughout the paper, we use the following notation
conventions: Multisets of formulas will be referred by
the letters T, A, X, ... The letters can possibly be
indexed by integers. Moreover, a linear logic formula
which is prefixed with the exponential operator !(of
course) or ?(why not) is called an exponential formula.
We often drop universal quantifiers in formulae. For
instance, we just write A(x) — B(x), instead of Vx
(A(x) — B(x)).

3 View updates
3.1 Declarative view definitions

In general, declarative operational semantics can be
expressed in terms of the specification language. Thus
these operations can be reasoned as part of the
specification logic system. Linear logic provides a
convenient way to formalise declarative views. We
define a view in a linear logic database as a formula of
the following forms, and it can be stored in the
dictionary. First, a non-shared view is a non-
exponential linear logic rule:

F —-L
, where F is a general linear logic formula and the view
relation L is a literal. The non-shared view states that
only one user can access the view at the given time.
The ability to have non-shared views produces a
number of beneficial results. In particular, we can
define a view for a particular user, thus providing data
security. By contrast, classical logic cannot define the
non-shared view, because it cannot handle resource
issues. Some examples about non-shared views can be
described as follows.
1. Join view:

S(sno, sname, city) ® SP(sno, pno)

—o SSP(sno, sname, city, pno).
Here, S(sno, sname, city) and SP(sno, pno) are
database relations. SSP(sno, sname, city, pno) is a view
relation.
2. Intersection view:

A(X, Y) ® B(X, y) - Q(X, Y)
Here, A(x, y) and B(x, y) are relations, and Q(x, y) is a
view relation.
3. Union view:
A(x, y) ®B(x,y) — P(x,).

Proceedings of International Conference on Distributed
Systems, Software Engineering and Database Systems

Here, A(x, y) and B(x, y) are relations, and P(x, y) is a
view relation

The second form is a shared view and it is an
exponential linear logic rule defined as follows:

(F —L)

, where F is a general linear logic formula and the view
relation L is a literal. Please note that views defined by
classical logic can be transformed into shared views in
linear logic.

3.2 Declarative constraints

Every one knows that data integrity is important. It is
highly desirable for integrity constraints to be managed
declaratively instead of procedurally so that
constraints can be combined and reasoned easily. Our
constraint checking method deals directly with query
constraints of the form

'F.

Here, the constraint is expressed as a reusable formula,

and F is the general linear logic formula. And, we

classify integrity constraints into three kinds, namely
column constraints, predicate constraints, and database
constraints, as follows:

* A column constraint states that the value(argument)
appearing in a specific database relation must be
drawn from some specific domain. For example,
consider the student base relation

STUDENT(sno, sname, sdept, gpa).
The arguments of that relation are subject to the
following column constraints:

! INDOM(sno, SNO_DOM).

! INDOM(sname, SNAME_DOM).

1 INDOM(sdept, SDEPT_DOM).

! INDOM(gpa, GPA_DOM).

* A predicate constraint states that a specific database
relation must satisfy some specific condition, where
the condition in question refers solely to the database
relation under consideration — i.e., it does not refer
to any other database relation, nor to any domain. For

- example, here is a predicate constraint for the base
relation EMP(eno, ename, deptno, sal):

I(EQ(edept, D1) —o LE(sal, S0K))

The constraint says that employees in department D1
must have a salary less than 50K. EQ(edept, D1)
expresses that dept is equal to D1. And, LE(sal, 50K)
says that sal is less than 50k.

Furthermore, we divide predicate constraints into
static vs. transition constraints, Static constraints are
concerned with those integrity constraints whose
enforcement depends on only one state of the
database. Transition constraints are those which

196

represent dynamic properties of the database and
control the proper transition between two consecutive
database states. Please note that classical logic is not
convenient for = transition constraints[17]. . For
example, in situation calculus[23], a transition
constraint stating that ‘salaries must never decrease
during the evolution of the database’ can be
expressed by:
(Y55)(Vp.$.$").
So<sAs<s’ asal(p,$,s)asal(p,$’,s)2$<$’

This representation within the situation calculus is
awkward. It would be preferable to ignore the ad hoc
temporal parameters So, s, s’. Using linear logic, the
transition constraint can be described as follows:
I(SAL(p, X) — SAL(p, y)) —o GE(y,X)).

Here, we encode transition constraints as reusable
linear implications. SAL(p, x) expresses that the
salary of the person p is x. GE(y, x) says that y is not
less than x.

* A database constraint states that the database in
question must satisfy some specific condition, where
the condition in question can refer to as many
database relations as desired. Furthermore, database
constraints can also be divided into static vs.
transition constraints. For instance, a transition
constraint stating that “When a person is fired, he is
no longer an employee’ can be expressed by:

I((EMP(x) —o FIRED(x)) ~o (EMP(x) —o 1)).
Here, EMP(x) —o 1 means ‘erase EMP(x)’.

3.3 View update principles

McGoveran and Date[21] tried to" capture the
associated meaning of a relation and proposed a new
database design principle. We follow this important
concept, and define the associated meaning in linear
logic form. Every database relation certainly does have
an associated meaning, and users must be aware of
those meanings if they are to use the database
effectively and correctly. The associated meaning of a
relation constitutes the criterion for deciding whether or
not some proposed update is in fact valid for the given
database relation. Now it is possible to obtain a
reasonably closer approximation to the associated
meaning for a given database relation. We certainly
know all the column constraiits and predicate
constraints that have been declared for a given database
relation. Whenever an update is attempted on a
database relation, we will verify whether or not the
given update satisfies all the column constraints and
predicate constraints concerned with the given database
relation. Therefore, the associated meaning for a given

database ‘relation is closely related to its column
constraints and predicate constraints. Formally, we can
define the associated meaning of a given base relation
as follows:)
Let linear logic formulae I' represent the
associated meaning of a base relation. Let 'y be
all column constraints that apply to that
relation, and let T'; be all predicate constraints
that apply to that relation. Then, T'=T'; ® I,
Since the view update problem is concerned with
determining how a request to update a view can-be
translated into an update of the undetlying base
relations. We only need to consider the associated
meanings of base relations. That is, it is not necessary
to obtain the associated meaning of a view relation, as
in Date and McGoveran[5]. They present an informal
introduction to view updates on relational databases
and try to compute the associated meaning for a derived
table(i.e. a view relation). Formally, we state the first
update principle as follows:
Assume that a view update ¢ on a relation
changes the current database X into the next
database ¥’. Let I' represent the associated
meanings of the corresponding base relations.
Then,
e is valid = The sequent =’ | ' ® T is provable
, where the neutral element T (w.r.t. &) can erase
unused resources. The principle says that if a view
update e is valid, then the update on a relation must
satisfy the associated meanings of the corresponding
base relations.

3.4 Declarative view update expressions
and translators

In this section, we define view update expressions in
linear logic and discuss operational semantics for view
updates; we present procedures which examine cut-free
proof trees from a query and the linear logic database.
Formally, we define a replacement expression through
view with the format:
A(ol, ...,on) — B .

, where view A(al, ..., an) is a literal, and new data B
is either a literal A(B1, ..,Bn) or a neutral 1. The
expression says that view A(ol, ..., o) is replaced by
new data B. Here we treat deletions as special cases of
replacements. That is to say, if B is 1 then A(al, ...,
on) —o 1 indicates a deletion.

A REPLACEMENT TRANSLATOR
To replace A(al, ..., an) by B from a database X, we
need to construct the cut-free proof tree for Z} A(al,

197

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

..., on) ® T, where the neutral element T(w.r.t. &) can
erase unused resources.

PROCEDURE for the replacement through view
Input: a linear logic database X, the data to be
updated through view is A(al, ...,on) and let the
updated version be B(i.e., B is either neutral 1
or the literal A(B1, ..., Bn)), and the associatea
meanings of base relations
Output: a set of replacements
BEGIN
L.IFZ } A(al, ...,an) ® T is not provable,
THEN exit
2. Construct all possible cut-free proof trees for
Z} A(al,..,on) ®T
3. Compute sets of replacements:
Examine each proof tree to select the base relations
appearing on the axioms(non-failed branches) of the
proof tree, and construct the members of a
replacement set. We only select the base relation
which satisfies the condition: one of its arguments is
connected with argument oi in A(al, ...,0n), where
if B is a literal then ai # Bi.
4. Choose a set:
Check whether or not the set of replacements satisfy
the update principles.
END

We have to show the correctness of the replacement
translator. Correctness is expressed by the following
theorem:

Theorem 1 (Correctness of Replacement Translator)
Let T be a linear logic database. The data to be updated
through view is A(al, ..., on) and let the updated
version be B(i.e. B is either 1 or A(B1, ..., Bn)). Let the
replacement set F be one of the output of the
replacement translator for the input Z, A(al, ..., an), B,
and the associated meanings of base relations.

Then, A} A(al, ..., an) ® T is not provable and A} B
® T is provable, where F updates Z to A.

Proof

Since we examine the proof tree for T} A(ad, ..., on)
® T and select the base relation satisfying the following
condition: one of base-relation’s arguments is
connected with argument i in A(ol, ..., on), we can
update X to A by the replacement set F. We must prune
the non-failed branches(the axioms) of the proof tree. It
follows that we have each proof tree for A|— A(ald, ...,
on) ® T fail. That is to say, A} A(al, ..., xn) @ T is
not provable. Furthermore, if Bis 1, then A} B® T
always succeeds. If B is a literal, then we can construct

Proceedings of International Conference on Distributed
Systems, Software Engineering and Database Systems

from the proof tree for £} A(al, .., an) ® T a
succeeded proof tree as follows. By means of the
replacement set F, the selected base-relations are
replaced by new base-relations. And, A(al, ..., on) in
the proof tree for Z} A(al, ..., on) ® T should be
replaced by A(B1, ..., Bn). Obviously, the succeeded
proof tree corresponds to the proof tree for A} A(B1,
ey P1) ® T. Then, A} B ® T is provable..
Last, we define an insertion expression through
, view with the format:
1 —o A

, where A is a literal. The expression states that we
‘wish to insert A into the database.

AN INSERTION TRANSLATOR

To insert a literal A through view into a database X, we
need to construct the cut-free deduction tree for £ |A
®T.

PROCEDURE for the insertion view update
Input: a linear logic database Z,
a literal A appearing in the insertion view
_update, and the associated meanings of
base relations
Output: a set of insertions
BEGIN
I.IFZ } A ®Tis provable, THEN exit
2. Construct a failed deduction tree tfor X } A®T
3. Compute sets of insertions:
Examine the deduction tree T to select the base.
relations as the members of an insertion set, by
means of having the failed branches of the
deduction tree T succeed.
4. Choose a set:
Check whether or not the set of insertions satisfy the
update principles.
IF the insertion sets are not valid, THEN
IF possible to construct another deduction tree,
THEN go to step 2
ELSE exit
END

We show below that the insertion translator is correct
as expressed by theorem 2.

Theorem 2 (Correctness of the Insertion Translator)
Let X be a linear logic database and A a literal. Let the
insertion set F be one of the output of the insertion
translator for the input X, A, and the associated
meanings of base relations.

Then, A} A® T is provable, where F updates Z to A.

Proof

198

The proof is straightforward since the insertion set F is
obtained by means of having the failed branches of the
deduction tree succeed. And, F updates = to A. That is,
the proof search for the linear sequent A | A® T does
succeed.

4 Examples
Consider the linear logic deductive database A below.

STUDENT(94061, Ted, CS, 5).
STUDENT(94067, Lily, EE, 6).
STUDENT(95002, Smith, EC, 6).
STUDENT(96005, Tom, CS, 5).
STUDENT(96015, Don, EC, 7).

Let (projection) view SC be defined as a non-shared
view: STUDENT(sno, sname, sdept, gpa) —o
) SC(sno, gpa).
The formal meaning of base relation STUDENT is the
following: .

! INDOM(sno, SNO_DOM). -

! INDOM(sname, SNAME_DOM).

! INDOM(sdept, SDEPT_DOM).

! INDOM(gpa, GPA_DOM).

I(EQ(sdept, CS1) —o GT(gpa, 4)).

I(EQ(snol, sno2) —o (EQ(snamel, sname2) &

EQ(sdeptl, sdept2) & EQ(sgpal, sgpa2))).

These linear logic expressions correspond to the
following statement: "The student with the specified
student number(sno) has the specified name(sname),
studies in the specified department(sdept), and has the
GPA(gpa). Furthermore, if the department number is
CS1, then the GPA must be greater than 4. Also, no
two students have the same student number."
* An attempt to insert the data SC(96017, 5) will
succeed. Figure 1 shows a failed deduction tree for A |
SC(96017, 5) ® T. A is split into A, and the formula
STUDENT (sno, sname, sdept, gpa) —o SC(sno, gpa) in
this deduction tree. In this tree, there is a failed branch
} STUDENT (sno, sname, sdept, gpa). The view update
will have the effect of inserting the data
STUDENT(96017, n, d, 5) into A, where n and d are
variables. And the data STUDENT(96017, n, d, 5)
satisfies the associated meaning for STUDENT.
* An attempt to insert the data SC(94061, 5) will fail,
because it violates the associated meaning of base
relation STUDENT. That is, we cannot insert duplicate
data into the database. Specially, it violates the
predicate constraint: !{(EQ(snol, sno2) — (EQ(snamel,
sname2) & EQ(sdept1, sdept2) & EQ(sgpal, sgpa2))).
* An attempt to replace SC(94061, 5) by SC(94061, 7)
will succeed; the effect will be to replace the data

STUDENT(94061, Ted, CS, 5) by the data
STUDENT(94061, Ted, CS, 7) — not by the dafa
STUDENT(94061, n, d, 7). Please observe that if
REPLACEMENT is regarded as shorthand for a

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

DELETE-then-INSERT sequence, then the effect will
be to replace the data STUDENT(94061, Ted, CS, 5)
by the data STUDENT(94061, n, d, 7).

fail {sno/96017,gpalS}.

} STUDENT(sno, sname, sdept, gpa) SC(sno,gpa) I-SC(96017,5)‘Id),

STUDENT(sno, sname, sdept, gpa) — SC(sno, gpa) } SC(96017, 5) i

L) mﬂ')

A | SC(96017,5)®@ T

(®R)

Figure 1. A failed deduction tree for A} SC(96017,5) ® T.

5 Discussion

In this paper, we have studied the problem of view
updating based on modelling of database using linear
logic. The advantages of declarative support have been
emphasised. This is crucial to the successes of an
intelligent database system. We have shown that the
application of linear logic to databases can overcome
many classical view update problems. These definitions
are concise and formal. They include non-shared views,
declarative transition constraints, and declarative
(view) update expressions. A pleasant consequence of
our approach is that deletions and replacements through
views not only have the same expressions, but also the
same operational semantics. We also show, through
different examples, how the replacement and insertion
translators produce correct translations for view
updates. In general, the number of translations of a
view update is expomential in the length of the
database. It is crucial to use the associated meaning of
a given database relation to reduce the number of
translations of a view update. While it may appear that
computational efficiency may be low, linear logic is
inherently a constructive logic and efficient programs
can be synthesised if optimisation processes are
applied.

This research can be extended in various directions.
In this paper we only consider primitive view update.
The ability to define complex view updates in terms of
primitive ones is extremely important for a theory of
updates. One research direction is to define complex
view update expression based on linear logic
connectives, and to generalise the (ranslation
procedures so that we can deal with complex view
updates. The problem of choosing among several
alternative updates sequences that may be available for
performing a view update still exists. Further research
will also be focused on the different criteria which can

199

help us to resolve ambiguity when translating view
updates.

- References

[1) JM. Andreoli and R. Pareschi, Linear Objects:
Logical Processes with Built-In Inheritance, New
Generation Computing. 9 (1991) 445-473,

[2] S, Abiteboul and V. Vianu, Procedural Languages
for Database Queries and Updates, J. Comput. Syst. Sci.
41(2)(1990)181-229. .

[3] P. Atzeni and R. Torlone, Updating Datalog
Databases, in: Next Generation Information Systems
Technology, Kiew, Soviet Union, LNCS 504 (Springer-
Verlag, Berlin, 1990) 347-362. _
{4] E. F. Codd, Recent Investigations in Relational
Data Base Systems, in: Information Processing 74
(North-Holland Publishing Company, 1974) 1017-1021.
{51 C.J. Date and D. McGoveran, Updating Union,
Intersection, and Difference Views, in: C.J.Date, ed.,
Relational Database Writings, 1991-1994 (Addison-
Wesley, Reading, MA, 1995). ‘

{6] R. Fagin, G. M. Kuper, J. D. Ullman, and M. Y.
Vardi, Updating Logical Databases, in: Advances in
Computing Research, V3, (JAI Press Inc., 1986) 1-18.
[7) 1. Y. Girard, Linear Logic, Theoretical Computer
Science. 50 (1987) 1-102.

{81 JY. Girard: Linear Logic, Its Syntax and
Semantics, in: J.-Y, Girard and Y. Lafont and L.
Regnier, eds., Advances in Linear Logic (Cambridge
University Press, 1995).

[9] A. Guessoum and J.W, Lloyd, Updating knowledge
bases. New Generatior Computing 8(1) (1990) 71-89.
[10] C.A. R. Hoare, Communicating Sequential
Processes (Prentice-Hall, 1985).

[11] 1.S. Hodas, Lolli, An Extension of AProlog with
Linear Context Management, in: D. Miller, ed,
Workshop on the AProlog Programming Language,
pages 159-168, Philadelphia, Pennsylvania, August
1992.

Proceedings of International Conference on Distributed
Systems, Software Engineering and Database Systems

[12] N. Kobayashi and A. Yonezawa, ACL: A
Concurrent Linear Logic Programming Paradigm, in:
D. Miller, ed., Proceedings of the International
Symposium on Logic Programming, Vancouver,
Canada, October 1993 (MIT Press, 1993)279-294.

[13] R. Kowalski, Databases Updates in the Event
Calculus, The Journal of Logic Programming. 12
(1992) 121-146.

[14] Y. Lafont, Linear Logic Programming, in:
Workshop on Programming Logic, Goteborg, (1987)
209-220.

[15] Y. Lafont, . The Linear Abstract Machine,
Theoretical Computer Science. 59(1988) 157-180
Some corrections in Volume 62 (1988) 327-328.

[16] D. Laurent, V. P. Luong, and N. Spyratos, in:
Database Updating Revisited. DOOD’93, Arizona,
USA, LNCS 760 (Springer-Verlag, Berlin, 1993).

[17] D. T. LEE and C.P. Tsang, Solving the Database
Update Problem Using Linear Logic, in: R. Topor, ed.,
Australian Computer Science ~Communications.
18(2)(1996) 131-138.

[18] P. Lincoln, Linear Logic, ACM SIGACT Notices.
23(2) (1992) 29-37.

[19] N. Marti-Oliet and J. Meseguer, From Petri Nets
to Linear Logic through Categories: A Survey, Journal
on Foundations of Computer Science. 2(4)(1991)297-
399.

[20] S. Manchanda, and D. S. A. Warren, Logic-based
‘Language for Database Updates, in: J. Minker, ed.,
Foundations of Deductive Databases and Logic
Programming (Morgan Kauffman, Los Altos, 1988)
363-394. ' o

[21] D. McGoveran and C.J. Date, A New Database
Design Principle, in: C.J.Date, ed., Relational
Database Writings, 1991-1994 (Addison-Wesley,
Reading, MA, 1995).

[22] D. Miller, A Multiple-Conclusion Meta-Logic, in:
Proceedings, Ninth Annual IEEE Symposium on Logic
in Computer Science, Paris, France, 4-7 July 1994
(IEEE Computer Society Press, 1994)272-281.
Theoretical Computer Science, to appear.

[23] R. Reiter, On Specifying Database Updates, The
Journal of Logic Programming . 25(1)(1995) 53-91.
[24] E. Teniente and A. Olivé, The Events Method for
View Updating, in: Deductive Databases. EDBT’92,
LNCS 580 (Springer-Verlag, Berlin, 1992).

[25] M. Winikoff and J. Harland, Implementation and
Development Issues for the Linear Logic Programming
Language Lygon, in: Proceedings of the Eighteenth
Australian Computer Science Conference, Adelaide,
Australia, 1995. '

200

Appendix A The sequent calculus for
linear logic

I'A,Z; AABB. 3,

AfA 1@ A, 2.3, (W)
DABAL gty HASRE G
TR %(m
e @) Tasaa©)
SN FP?“,FAA&E,?’A. (&R)
?%%Al_—&(&m IE’—A]?&%’??(&L)
Tora® %(@R)
Tihtien DAALEG,
L} (L Left) %(l Right)
TA}L A 5,BFA, T}A,B, A

T.%ApBF Ana, PP Tiaps, a (@R

LAFBA o THA% AB} X, L
TFA—B,ACR TAA =Bf =, 3, (=L)
LA TAL A
LA, 22 (9 T,AF & (D
T,IA AL A r} '
T,IAF A (O TaFa W
AR ThA A
T, oA 28) Troa, A D)
T}2A, %A, A TLA
Thoa,a OO TFA,4 W
THA, A LA y
T, A = (" Left) TEAL A (* Right)
TFA[y/x, A T, AMAl} A
Thvxa,a VR T,vxAl a4 VD
CRARVAL A o T, Aly/slF A
ETWRSEY T,axAf & O

where in (VR) and (3L), y does not occur free in the

conclusion.

