Joinf Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

A Temporal Join Algorithm Based on Rank Key—to—Address Transformation

C.Y. Chenl, C. C. Chang? and R. C. T. Lee3

1C. Y. Chen is with the Department of Electronics, Feng Chia University, Taichung,

Taiwan 40724, Republic of China

2C. C. Chang is with the Institute of Computer Science and Information
Engineering, National Chung Cheng University, Chiaji, Taiwan 62107,

Republic of China

3R. C. T. Lee is with Providence University, Taichung, Taiwan 43301, Republic of

China

ABSTRACT

In this paper, we present an efficient
nested—loop like algorithm for the temporal
join operation in temporal relational
databases. The algorithm is based on the
concept of rank KAT (key—to—address
transformation) which was introduced by
Ghosh in 1977. By pre—storing appropriate
ranking information of endpoints of time
intervals in the joining temporal relations, our
algorithm can determine the resulting relation
of a temporal join rapidly without requiring
any scan on the joining relations. We further
show that, for a given tuple in the outer
relation satisfying the local predicates, the
average case time complexity for the
presented algorithm to determine all the inner
relation tuples which match the given tuple is
O(IZ3), where r is the number of distinct

endpoints of time intervals in the joining
relations.

Keywords:Temporal database, temporal join,
rank KAT (key—to—address transformation)

1. Introduction

Many real database applications
intrinsically involve time—varying
information. By a temporal relational

database, we mean a database comsisting of
temporal relations. A temporal relation is a
relation which involves some time—varyin
attributes (also called temporal attributes%
and some time attributes that indicate the
periods of time for which the given values of
time—varying attributes-are valid.

Temporal join is an important operation
for temporal relations which matches tuples
from two temporal relations whose time
intervals overlap. In other words, a temporal
join requires finding events among two
temporal relations that happen at the same
time. It is also a very expensive operation

169

because temporal relations are usually very
large and, unlike the "snapshot" join in
traditional relational databases which is only
an equijoin, temporal join is a mon—equijoin
operation in its nature. However, up to now,
only a few efficient processing methods for the
temporal join operation have been proposed
[2,5,7-9,11,14]. _

Many of the previously proposed
temporal join methods are in fact extensions
of the existing three major methods for the
conventional snapshot join; namely, the
nested—loop join, the sort—merge join, and the
partition join [5,8,9,11,14]. ~ All these
approaches inevitably need to scan or
partially scan at least one joining relation and
their performances depend on the average
scan length through the relations. Leung and
Muntz [7], on the other hand, introduced a
stream processing approach for various
temporal joins. This, however, involves some
additional house—keeping cost. Recently,
Chen, Chang and Lee [2] proposed a
nested—loop like temporal join algorithm
which was based upon a line segment
intersection searching techniqe suggested by
Overmars [10]. In their proposed method,
each time interval is associated with a
horizontal line segment in the plane and, by
preparing an appropriate index for the line
segments, the proposed method can find
resulting relations without requring any scan
on the joining relations. ,

In this paper, we are also concerned with
efficient processing methods for the temporal
join operation. Based upon the concept of
rank KAT (key—to—address transformation)
introduced by Ghosh [4], we present a new
nested—loop like temporal join algorithm
which doesn’t requrie to scan any joining
relation either. We further show that, for a
given tuple in the outer relation satisfying the
local predicates, the average case time
complexity for the presented algorithm to

Proceedings of International Conference on Distributed
Systems, Software Engineering and Database Systems

determine all inner relation tuples which

r+3

match the given tuple is O(=7=), where r-

denotes the number of distinct endpomts of
time intervals in the joining relations.

The rest of this paper is organized as
follows. Section 2 describes the relational
representation for temporal data that we
adopt in this paper. Section 3 introduces the
concept and the definition of the rank KAT.
Section 4 first illustrates the idea and the
technique of the proposed method while our
proposed algorithm 1is described in the second.
part of this section. Section 5 consists of time
complexity analysis and some discussions.
Finally, conclusions and future research
problems are given in Section 6.

2. Relational Representation for Temporal
Data '

The model that we use in this paper to
represent temporal data as relations is
described as follows.

- Firstly, the time dimension is considered
as a sequence of discrete, consecutive,
equally—distanced time instants. A time
interval consisting of time instants tg, tS+1,

tS+2 by is denoted as <tS, tp> where tg
is called the startmg time and tp is called the

ending time of the interval, respectively.

A temporal relation is a set of temporal
tuples. A temporal tuple consists of the
surrogate of the tuple, non—time varying
attributes, time—varying attributes (also
called temporal attributes), and two time
attributes TS and TE. Interval <TS, TE> is

called the lifespan of a tuple which indicates
the period of time that the given values of
temporal attributes are valid. The lifespan of
a temporal relation V is defined as the time
interval <LS,LE>, where

Lg=min{v-T¢|veV} and
Lp=max{v-Tg|veV}. Besides, all temporal

relations are assumed to be in first temporal
normal form ‘[13], i.e., there are no two
intersecting time intervals for a given
surrogate instance.

Two time intervals <tg, tg> and <t§,

E> are said to intersect each other if and
*
only if ts<tE and tp2ts.

For the special

170

intersection where tS<t’§
say that <t§
t

and tE<tE , we also
tE> is fully contained in <tg,

E>.

A temporal join over two temporal
relations U and V is defined to consists of the
concatenation of all tuples ueU and veV such
that their time intervals intersect.

Example 2.1
Consider two temporal relations

DEP-TRABDG (department—travel budget)
and EMP-DEP (employee—department) as
shown in Table 2.1.

In DEP-TRABDG, D# is the surrogate,
TRABDG is a temporal attribute, and TS

and Ty are time attributes. Similarly, in

EMP-DEP, E# is the surrogate, D# is a
temporal attribute, and TS and TE are time

attributes. Note that both relations are in
first temporal normal form. The lifespan of
the second tuple in DEP-TRABDG is <5,
10> and that of the second tuple in
EMP-DEP is <7, 20>. These two time
intervals intersect each other. Besides, both
relations have the same lifespan <1, 20>.

In order to answer the query Ql"Find all

employees who worked when at least one
department had a travel budget greater than
35, we should first do a selection on
DEP-TRABDG to get tuples satisfying the
local predicate = TRABDG>35, then
temporally join these tuples with EMP—-DEP.
The resulting relation is shown in Table 2.2.
Similarly, to answer the query Q2"Find

the budget of each department when employee
E3 worked at department Dl’" we should

temporally join the sixth tuple of EMP—DEP
with all tuples of DEP-TRABDG. The
resulting relation is shown in Table 2.3.

Table 2.1 here

Table 2.2 here

Table 2.3 here

3. A Review of Rank KAT

KAT, also called hashing function, is
well known as a fast technique for information
storage and retrieval, and which has been

widely used in database management,
compiler construction, and many other
applications

KAT can be formally defined as a
transformation which maps a key into an
address location for storage or retrieval of the

key and its associated information (see Figure -

3.1) [4].

Figure 3.1 here

A bijective KAT, also called a minimal
perfect hashing function, is a KAT which
maps the set of keys one—to—one and onto the
address space. Being bijective, it avoids
collisions of keys (a collision occurs when two
or more keys are mapped into the same
address location) and there is no waste of
memory locations in storing keys. Further, a
bijective KAT allows single probe retrieval for
each key. Accordingly, bijective KAT is the
most desirable transformation in applying
KAT techniques. Unfortunately, up to now,
only a few approaches have been proposed for
constructing bijective KATs [1,3,4,6,12].
Nevertheless, based upon an interesting
bijective KAT introduced by Ghosh [4], called
rank KAT, we are capable of designing an
efficient processing algorithm for the temporal
join operation (see Section 4).

The concept of the rank KAT is based on
computing algebraically the rank of a key
among the sorted list of the given keys.
Suppose each key is represented as a bit string
of the same length (b;b,...b g¢)» where b.=0 or

1 for i=1,2,...,d. Let 'ﬂi‘ be the symbolic

representation of the bit in the i—th position
of the key, i.e., bi is the value of ﬂi, for

i=1,2,...,d. Further, let the
1§i1<i2<...<iq5d, denote the number of keys
for which ﬂi1=bi1,ﬂi2=bi2,...,and ﬂi =bi

qQa ¢
Then the rank KAT for the key (byb,...b d) is
defined as follows [4].

function

t(b;by...b @)=mo+b; -1(B;;5,)+b,-h(B;,5e:b

171

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

where mg is the initial address of the address.

space and Fi denotes the complement of b,

fori=1,2,...,d. '

In order to see why the rank KAT works
correctly and illustrate the computation of
t(b;b,...bg), let us give an example as follows.

Example 3.1
Consider the set of ten keys as listed in

the first column of Table 3.1. The second
column of Table 3.1 shows the 5—bit string
representations of the keys. Suppose ~m0=1.

Then the address locations computed by (3.1)
for all the keys are shown in the last column
of Table 3.1. For instance, the address
location of k1 under the rank KAT is

computed as-

$(11101)=1+1-h(8;;0)+1-h(B; 6y;1,0)+
1°h(ﬂ1:ﬂ2;ﬂ3;171)0)+0 'h(ﬂlaﬁzaﬂ3)ﬂ4;1:1)1a1)
+1 'h(ﬂl)ﬂ2:ﬂ3)ﬂ4)ﬂ5)1’111a070))

=141x5+1x241x1+0+41x0=9. o

However, the problem is how to evaluate the
values of h functions. Let us examine the
binary tree corresponding to the set of keys as
shown in Figure 3.2. Note that, in Figure 3.2,
the value beside each node indicates the
number of keys in the subtree of the node
which, by the definitions of h functions, is
actually identical to the wvalue of
h(ﬂl,ﬂz,...,ﬁq;bl,b2,...,bq), where b1'b2...bq,

1<q<d, denotes the path from the root to the
node. Also note that nodes which don’t show
up in the tree represent the cases where no
keys exist in the subtrees of these nodes. For
example, the path from the root to node B is
0 and the value beside node B is 5 imply that
h(ﬁ1;0)=5; the path from the root to node F is

10 and the value beside node F is 2 imply that
h(ﬁ1,52;1,0)=2. Similarly, from Figure 3.2, we
obtain h(ﬂl,ﬁz,ﬂ?);'l,l,o):the value beside
node M=1 and h(ﬂl,ﬂz,ﬂs,ﬂ4,ﬂ5 ;1,1,1 ,0,0)=

the value beside the left child of node V which
doesn’t appear in the tree=0. Since b 4=0 for

Proceedings of International Conference on Distributed
Systems, Software Engineering and Database Systems

the key 11101, there is no need for evaluating

h(ﬁ17ﬂ27ﬁ37ﬂ4)1717171)

Careful readers should have found that
each of nodes B,F,M, and the left child of
node V is the left child of some node on the
path from leaf key node k1 to the root and

doesn’t belong to the path. Accordingly, the t
function for a key can be computed by simply
summing up all the values beside the nodes
which are left children of nodes on the path
from the leaf key node to the root and don’t
belong to the path. And, consequently, it
takes O(d) time, where d is the length of the
bit string representing the key. As -an
example, by traversing the tree from k1 to

root A, we have
t(11101)=1+all the values
beside the doubly circled nodes
=1+414245=0.

Table 3.1 here

Figure 3.2 here

From the above example, we realize
that rank KAT does guarantee to give the
rank of each key among the sorted list of the
given keys and the time taken to compute the
rank KAT value t(b;b,..b;) for key

(bl,bz,...;bd) is O(d). However, one

disadvantage for rank KAT is that the values
of h functions for computing rank KAT are
data dependent. That is, if some keys are
added or deleted, the values of rank KAT will
also be changed. Consequently, rank KAT is
good only for static sets of keys for which keys
are not added or deleted too often.

4. A New Temporal Join Algorithm Based
upon Rank KAT

In this section, we present a new
temporal join processing method which is
based on the rank KAT that we have
reviewed in the last section. The idea and the
technique are introduced as follows.

4.1 The Idea and the Technique

Let there be two temporal relations U
and V. Suppose we want to temporally join a
given tuple u* of U with the full relation V.

172

We should first find out all intervals in V
which intersect the interval <u*-TS,

u*-Tp>. Then concatenate the corresponding

tuples of V with u*. Thus the real issue is
knowing how to determine these intersecting
intervals efficiently and rapidly.-

Note, by definition, that an interval
<v-Tg, v-Tp> in V intersects <u*-TS,

u*-TE> if and only if u*-ngv-TE and
v-Tg<u*-Tp. Further note that u*- Tg<v-Tp
and v-Tg<u*-Tp are equivalent to (1)
u*-ng(\?-TS or v-Tg)<u*-Tgp, or (2)
V-Ts<u*-TS and u*-TE<v-TE. Now, by the

rank preserving property of rank KAT, we see
that t(k,)<t(ky) if and only if k, <k, for any

two given keys kl and k,. Thus, by applying
rank KAT to the set of keys {u-Tg, u-Ty,
v-Tg, v-TEI ueU and veV}, it is easy to see
that <v-Tg, v-Tp> intersects <u*-TS,
u*-Tp> if and only if (1) t(u*-Tg)<(t(v-Tg)

or t(v-Tg))$t(u*- T), or (2)
t(v-Tg)<t(u*:Tg) and t(u*-Tp)<t(v-T).

This reveals that we can find the required
intersecting intervals through the technique of
rank KAT if appropriate ranking information
of endpoints of time intervals in the joining
relations are available.

4.2 The Algorithm
The above discussed idea and technique

can be formally implemented as the following
algorithm. .

Algorithm RKATTJ(Rank KAT Temporal
Joi

Input: Two temporal relations U and V,
where |U|=m and |V|=n.

Output: The resulting relation for temporal
join of U and V. v

Preprocessings:

Apply rank KAT on the set of all
endpoints of time intervals in U or V to
construct a sequence of information sets
INFOI,INFO2,...,INFOr to indicate the ranks

of endpoints and the relationships of full
containments for all time intervals in U and
V. Here r denotes the number of distinct

endpoints of time intervals in U and V. The
constructing steps are as follows.
1. Fori=l1tomdo
compute t(u;- Tg) and t(v; T)

add (U,Ai,S) to INFO‘t(ui-TS) //

store the rank information of u,-Tg in //

1 INFO

end for '
2. For j=1tondo
compute t(vj-TS) and t(v j-TE)
add (V,j,E) to INFOt(vj-TE)
end for
3. Fori=1 tom do
compute t(u; - Tg) and t(u;- Tg)
thendo
for each (V,x,5)eINFO,U

INFOU..UINFOy, .y

. then add (V,x,I) to
INFOt(ui-TS) /] <uy;-Tg, uifTE> is fully //
// contained in <v Tg, v r Tp> //
end if
end for
else do

for each
(V,x,E)eINFO

INFO

u
t(y;- Tp)+1

b, T 420 INFO_

then add (V,x,I) to

// contained in <v - Tg v -Tp>//

end if
end for
end if

for each

173

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

(Vx8)eINFO,
INFO

v U

: U...u INFO
t(u;- Tg)+2 t(u;- Tp)-t

if t(v - Tg)<t(u;-Tg)
then add (U,,I) to
X .

INFO

/] contains <v_-Tg, v _-Tp> [/

end if
end for
end for
4. Store INFOi, 1<i<r, in the i—th

address location determined by the rank
KAT.
Steps:

1. Input the next tuple u of U

2. Compute t(u-Tg) and t(u-Tg) //

the matching V—tuples for u can be found

in //
INFOt()U INFO U .. U

Y- Tg
INFO
3. For k=t(u-Tg) to t(u-Tg) do

for each tuple v in V Which
appears in IN F(‘)k do

input v
output the resulting temporal
join tuple of u and v
end for
end for
4. Go to Step 1.

Example 4.1
Consider the temporal relations

DEP-TRABDG and EMP-DEP, and queries
(;31 and Q2,that we have met in Example 2.1.

For simplicity, let U denote DEP—TRABDG
and V denote EMP-DEP. Then, according to
Algorithm RKATTJ, we have, in
preprocessing stage, a sequence of information
sets INFOl,INFoz,...,INFO1 4 38 shown in

Table 4.1.

Table 4.1 here

Now, to answer query Ql"F_ind all

employees who worked when at least one
department had a travel budget greater than

Proceedings of International Conference on Distributed
Systems, Software Engineering and Database Systems

35," we first select i, and uy from U which

satisfy the local predicate TRABDG>35.
Since t(,- TS)=t(5)=3 and

t(uy TR)=t(10)=7, those tuples
appeared in INFO3U INFO 4U...UINFO7,
i.e.,vl,v2,v3,v5 and Ve, are the matching
V—tuples for Uy, Similarly, since
t(u4-TS)=t(1)=1 and t(u4-TE)=t(15)=11,
those tuples of V appeared in INFOIU
INF02U...UINF01'1, i.e.,vl,v2,v3,V5,v6 and
Vy, aTe the matching V—tuples for u 4 Finally,
temporally join these matching tuples of i,
and u 4 with i, and u L respectively. We have

the resulting relation as shown in Table 2.2,
which answers Ql'

Next, consider the query Qz"Find the
budget of each department when employee E3
worked at department Dl." The only tuple
which satisfies the local predicate is Vg Since
(v Tg)=t(8)=6 and (v T)=t(12)=9, the
U—tuples which match Vg are those which
appear in INFOGU INFO,U INFOgQU INFOQ,
i.e.,uz’u?‘,u4 and ug. Temporally join these
tuples with Vg The resulting relation is shown
in Table 2.3, which answers Q2.

5. Complexity Analysis and Some Discussions

It is meaningless to speak of worst case
time complexity for temporal join operation
since, in worst case, each tuple in one relation
matches all tuples in the other joining
relation. However, average case time
complexity. is often difficult to analyze and
there has been no average case time
complexity being given for all previously
proposed temporal join algorithms.
Nevertheless, the average case time
complexity for Algorithm RKATTJ can be
easily analyzed as follows.

The complexity of Algorithm RKATTJ
is mainly dominated by that of Step 3 which,
however, is dominated by the value
L =[t(u-Tg)t(u-Tg)|. Note that since

174

of V

‘temporally join

u-ngu-TE, we have lgt(u-TS)gt(u-TE)gr-.
Suppose that the probability of t(u-TS) being

a, 1<agr, is + Then the expected value of

. 1+3
Lu 18)
follows.
E(L,)=E(E(L_|t(u-Tg))

which can be evaluated as

= (B(Ly | 1)+E(Ly | 2)+...+E(L, 1))

= (12 AT (1424 1)

=
; 1
et T
__I+3
=
Accordingly, for a given tuple u of U, it takes

Of IZ?’) time in average to determine and

(142+...41—a+1)+...+1]

the matching V—tuples.
Therefore, the average case time complexity
of Algorithm RKATTJ is O(m-—233).
Recall that r is the number of distinct
endpoints of time intervals in the joining
relations U and V. '

The preprocessing time of the presented
algorithm can also be given as follows. Steps 1
and 2 compute rank KAT values of endpoints
of all intervals in U and V which need
O((m+n)d) time, where d is the number of
bits used to represent the endpoints as bit
strings. Step 3 takes advantage of information
sets INFOi, 1<i<r, partially constructed in

Steps 1 and 2, to determine all intervals
<‘1‘Ts’ u-TE> and <v-TS, v-TE> such

that <u-TS, uw-Tp> fully contains <v-TS,
v-TE> or vice versa. The time to be taken is

at most O(mn).

It has been pointed out in [9] that the
nested—loop method is a reasonably good
choice for the temporal join operation. Our
approach also behaves like a mnested—loop
algorithm. However, unlike most previously
suggested nested—loop - temporal = join
algorithms which need to scan or partially
scan the inner and/or outer relations, our
approach doesn’t require any scan on the
joining relations. The line segment
intersection based temporal join method
proposed recently by the authors themselves
[2] doesn’t require any scan either. However,

the rank KAT based method still has a lot of
merits over the line segment intersection
based method. This includes (1) simpler data
structure, (2) faster computation, and (3)
easier implementation. In addition, our
approach also provides an efficient direct
access to the matching tuples when the tuples
in each joining relations are clusterly stored
according to the ranks of starting points of the
associated time intervals.

It has been pointed out, in Section 3,
that the main disadvantage of rank KAT is
that it is a static KAT. Accordingly, the main
disadvantage of our approach is that it is good
only for static temporal databases for which
data are not added or deleted too often.

6. Conclusions . '

Tn this paper, based upon the concept of
rank KAT, we have presented a new
algorithm for the temporal join operation. An
efficient direct access to matching tuples is
also provided. Since it is meaningless to speak
of worst case time complexity for a temporal
join algorithm, we have analyzed the average
case time complexity of the presented
algorithm.

Comparing with other previously
suggested methods, it can be seen that our
approach has three advantages. They are (1)
the data structure used is simple, (2) the
computation needed is little, and (3) the
implementation is easy. However, since rank
KAT is a static KAT, it has also been pointed
out that the main disadvantage of our
approach is that it is not suitable for
"dynamic" temporal databases for which
tuples are frequently added or deleted.
Therefore, we are now working toward the
design of a dynamic rank KAT to overcome
this problem.

REFERENCES
[1] C.C. Chang: "The Study of an Ordered
Minimal Perfect Hashing Scheme," Commun.
ACM, Vol. 27, No. 4, pp. 384387, 1984.
[2 C.Y. Chen, C.C. Chang and R.C.T. Lee:
! Line Segment Intersection Based
Temporal Join," to appear in ADTI’94, Nara,
Japen, Oct. 1994.
[3] R.J. Cichelli: "Minimal Perfect Hash
Function Made Simple," Commun.ACM, Vol.
23, No. 1, pp. 17-19, 1980. .
[4] S.P. Ghosh: "Data Base Organization for
Data_Management," Academic Press, New
York, N.Y., pp. 147-151, 1977.

175

Joint Conference of 1996 International Comp uter Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

[5] H. Gunadhi and A. Segev: "Query
Processing Algorithms ~ for Temporal
Interseetion Join," Proceedings of the

Seventh International Conference on Data
Engineering, pp. 336—344, Kobe, Japan, April
1991. .

[6] G. Jaeschke: "Reciprocal Hashing: A
Method for Generating Minimal Perfect
Hashing Function," Commun. ACM, Vol. 24,
No.12, pp. 829833, 1981.

[7] T. Leung and R. Muntz: "Query
Processing for Temporal Databases,"
Proceedings of the Sixth International

Conference on Data Engineering, pp.200—208,
Los Angeles, CA, April 1990.

[8] T. Leung and R. Muntz: "Temporal Query
Processing and Optimization in
Multiprocessor Database Machines,"
Proceedings of the 18th International
Conference on Very Large Data Bases, pp.
383—394, Vancouver, Canada, August 1992.
[9] H. Lu, B. Ooi and K. Tan: "On Spatially
Partitioned Temporal Join," to appear in
Proceedings of 1994 International Conference
on Very Large Data Bases, Chile, August
1994.

[10] M. H. Overmars: "Efficient Data
Structures for Range Searching on a Grid,"
Journal of Algorithms, Vol. 9, No. 2, pp.
254275, 1988. _

[11] S. Rana and F. Fotouhi: "Efficient
Processing of Time—join in Temporal Data
Bases," Proceedings of the 3rd International
Symposium __on__ Database _Systems for
Advanced Applications, pp. 427432, Taejon,
Korea, April 1993. _

[12] T.J. Sager: "A Polynomial Time
Generator for Minimal Perfect Hashing
Functions,"Commun. ACM, Vol. 28, No.5,
pp.523—532, 1985. -

[13] A. Segev and A. Shoshani: "The
Representation of a Temporal Data Model in
the Relational Environment," Lecture Notes
in Computer Science, Vol. 339, M. Rafanelli,
J.C. Klensin, and P. Svensson (eds.),
Springer—Verlag, pp. 39—61, 1988.

14] M. Soo, R. Snodgrass, and G. Jenson:
'Efficient Evaluation of the Valid—time
Natural Join," Proceedings of the Tenth
International Conference on Data
Engineering, April 1994.

Proceedings of International Conference on Distributed
Systems, Software Engineering and Database Systems

DEP_TRABDG ENMP_DEP Koy P ywTE—
DI JIRABDG| T, T, A Bl Ty | Tg ki (b1 b2 bs) 10 baby)
B, Q) T 4 T D, i 6 2 1ol 9
D, 40 5 10 L, n, 7 20 10 01010 2
D, 20 n 20 E, D, 1 16 17 1000 6
n, 45 1 15 E, D, i7 20 12 otloe 4

. D, 10 16 20 E, D, i 7 n 01011 3
D, 20 ! 12 E, D, 8 12 23 10111 7
D, 15 13 20 E, D, 13 20 24 11000 8

14 01110 5
Table 2.1 Example of two temporal relations 6 00110 1
31 1111 10
] D Dl TRABDG Ty T,
Fy D, D, 40 5 6 Table 3.1 Address location computed by rank KAT
E, D, D, 40 7 10 .
E, D, D, 40 5 1o
E, D, D, 40 5 7
F, D, D, 40 8 10 (r)o
E, . D, », 45 1 6 e ~.
E, D, D, 45 7 15 2 L
E, D, D, 45 1 15 .
7o >
F, n, Dy 45 1 7 @)}5 ()5
K, D, l)zi 45 8 12 P o N
E, D, D, !} 45 13 15 0 S 4 Ny
e N <
I ®1 ey 02
Table 2. 2 Result of a té} poral join for answering query Q4 \” 0.7 Al
A -7 hy e \
A M 1 ()2 g_)z ®1 L1 }("‘))1
// \l g o/ N g N
D TRABDG B DI Ty Te)1 P2 @1 M1 (51 (T)1 U51
D, 40) Es b, ;8 10 0 o\ o o/
n, 20 ¥V, D, [n 12 - Raa. I\ A\
n, a5 E, D, 8 12 k, k;l Ll« lkJ Bl ‘k ij
n, 20 K, D, 8 12 .) Lo e

Table 2.3 Result 6f a temporal join for answering query Q2

Key Information

Address space

k, m k,] Info9
Key set
emply

) [

K k, l Info2
KAT
. 2 5

Kn
I k, | Tnfon I -
i k,] Info 7

Figure 3.2 Binary tree corresponding to the keys in Exampie 3.1

Figure 3.1 The KAT (key to address transformation)

Distinct Ranks Associated information scts INFO
endpoinls
1 1 {(U,1S). (U4,5). (U,6,5). (V,1,5), (V,3,5), (V,5,5) }
4 2 {(ULE)}
5 3 {(U2.8). (V3D }
6 4 HVARAR
7 5 { (V,2.5). (V,5.F) }
H 6 {(V,6.5)}
10 7 { (U,25) }
1 {(U3S)}
12 9 { (U,6.E), (V,6,5), (U4, }
13 10 { (U5 (V,7,9) }
15 1 {UAE)}
16 12 { (U,58) (V,3E) }
17 13 {(Vi4,5)}
20 14 { (U,3.5), (U,S,E), (U7,E), (V,2,E), (V,4E), (V,1.E) |

Table 4.1 Distinct values of endpoints in Example 4.1 and their
associated rank KAT values and information sets

176

