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Abstract

Our research Is to extend Petri nets by associating
uming constraints with places and transitions in the
original Petri nets, we called the extended places and
transitions as timed places and timed transitions.
respectively, and called the extended Petri nets as
timing constraint Petri nets (TCPNs).  TCPNs can be
used to model and verifyy whether a real-time system
specification satisties the imposed timing constraints.
Based on the definition of TCPNs. in this paper. we
have defined three synthesis rules—*“sequential”
synthesis rule, “or” synthesis rule, “and” synthesrs
rule to synthesize a time range.  The time range can
be either a span of fireable time (earliest and latest
fireable times) associated with each timed transition
or a span of enabling time (earliest and latest enabling
times) associated with each timed places. A TCPN
1s verified to be satisfied with timing constraints if
none of the synthesized spans of time is negative.
The synthesis rules presented in this paper can be
used not only in TCPNs. but also in other time-related
extensions of Petri nets.
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1. Introduction

Real-time systems are becoming more and more
important to our everyday life. Examples include
command and control systems. flight control systems.
space shuttle landing control systems, aircraft
avionics control systems. robotics, patient monitoring
systems. and nuclear power plant control systems.
These systems are often required to interact with the
environment that evolves independently from the
control systems. A common character of these the
correctness of such systems. This time-related
correctness distinguishes real-time systems from non-
real-time systems. For non-real-time systems, time
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simply affects the performance, but not the correctness.
For real-time systems, time plays the ‘most critical
roles, a delay or a failure of the systems to react to
certain input signals from the environment within
some specified time bounds may results in severe
damage or even fatal disasters. In suminary, real-time
systems differ from non-real-time systems because of
the timing constraints. Therefore, the most essential
issue regarding specifying and analyzing real-time
systems is to find timing constraint violations (or
timing errors in general). :

Real-time system specification and verification
tries to find the most timely valid responses for the
system.  Most of the verification methods proposed
nowadays are able to verify whether a timely response
is valid with respect to the timing requirements, but
not many of them can synthesize the approximate
range of such timely responses.

Timing constraint Petri nets (TCPNs) are derived.
from the concepts of timing constraints and Petri nets
[16]. TCPNs extend Petri nets by associating a pair
of minimum timing constraint and maximum timing
constraint (TCmin(pj)A Tcma.\'(pj)) with each place pj:

and (TCypin(tj). TCppax()) associated with each
transition tjs and a duration timing constraint

tJ'. We

called the extended places and transitions as timed
places and timed transitions. respectively, and called
the extended Petri nets as timing constraint Petri nets
(TCPNs). TCPNs can be used to model and verify
whether a real-time system specification satisfy the
imposed timing constraints. Besides proving those
responses are timely with respect to the specified
timing requirements, the other .objective of our
research is to synthesize the best approximation of
time range for the timely response. Based on the
definition of TCPNs, in this paper, we have defined
three synthesis rules—"sequential’ synthesis rule,
“or’ synthesis rule, “and’ synthesis rule—- to
synthesize a time range. The time range can be
either a span of fireable time (earliest and latest

[FIREdm(tj)] associated with each transition
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fireable times) associated with each timed transition
or a span of enabling time (earliest and latest enabling
times) associated with each timed places. A TCPN
is verified to be satisfied with timing constraints if
none of the synthesized spans of time is negative.
The synthesis rules presented in this paper can be used
not only in TCPNs, but also in other time-related
extensions of Petri nets.

The rest of the paper is organized as follows. In
Section - 2 we present: numerous time related
extensions of the Petri nets and compare them with
our TCPNs. Section 3 presents the three synthesis
rules based on the TCPNs. The computation
procedures for synthesizing the spans of firing time
for real-time system specifications is also presented in
this section. Section 4 addresses our analysis-via-
synthesis method for verifying the real-time system
specification.  We conclude this paper with our
future research in Section 3.

2. Petri Nets for Real-Time Systems

Petri nets (PNs) have gained popularity in recent
years because of their ability to model and analyze
concurrent systems [9]. However. the concept of
time is not explicitly provided in PNs. which limits
their usefulness for real-time systems. Many efforts
to extend PNs can be found in the areas of temporal
behavior analysis [1.2,3.4.6.8.10.15] and performance
evaluation [5,11.12,13.14]. - "Most of the extensions
have been achieved by imposing additional timing
constraints onto the enabling and firing rules of the
original PNs. Therefore. I conduct the following
comparison from the enabling and firing rules point of
view. as well as from the timing constraints point of
view.

We classify enabling rules as two types: typeless

enabling rules and typed enabling rules.  Typeless
enabling rules treat all tokens. as the same.

Therefore. for the enabling of a transition. t;, one only

considers the presence of tokens in each input place of
t. - In contrast. typed enabling rules treat tokens

individually so that. each token may possess different
attributes.  Therefore, for the enabling of a transition,
(j. one not only considers the presence of tokens, but

also the types of tokens, i.e.. ti is not enabled until
each input place of tj has the right combination of
token types.
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Figure 1(a). A fragment of a Petri Net.

Based on the classification of ¢ypeless and typed
enabling rules. we classify firing rules as typeless
firing rules and typed firing rules, respectively.
Typeless firing rules are associated with typeless
enabling rules which treat all tokens as the same. -
The result of a transition firing is implicit, which
means tokens will be removed from each input place
of t and added into each output place of g based on

the arcs' weights.  Petri nets use the typeless
enabling and firing rules. In contrast, for those nets
following typed enabling rules. the firing rules also
have to be tvped. The firing of a typed transition, s

will remove specific colored tokens from each input
place of ti and add specific colored tokens into each

output place of tj- As a result, a table is used to

specify what combinations of input colored tokens can
be used to enable transitions, and.what combinations
of colored tokens should be removed from input places
and be added into output places after transition firing.
Colored Pelri nets are a typical example of nets that
follow both typed enabling and firing rules.

We also define two firing modes based on how
soon an enabled transition has to fire: weak firing
mode and strong firing mode. The weak firing mode
does not force any enabled transition to fire. In other



words, an enabled transition may or may not fire.
The weak firing mode is used in Petri nets modeling.
The strong firing mode forces an enabled transition to
fire immediately. In other words, a transition is
forced to fire as soon as it is enabled. The strong
firing mode is used in conflict-free firing Petri nets
modeling [9]. The strong firing mode is not suitable
for some nets with conflict-free structures because this
mode will result in a contradiction, as explained in the
following example. As shown in Figure 1(a),
transitions t2 and t4 are in a conflict structure, i.e.,
only one transition can fire at a time. However,
according to the definition of the strong firing mode,
both t and t4 are enabled and begin to fire at the same

time when the token arrives at p2, which results in a -

token being added into p3, p4, and p6, respectively.
This contradicts the definition of conflict structures, in
which only one transition can fire.

The imposed timing constraints can be
represented as constants or functions. The former
includes timed Petri- nets which treat a timing
constraint as a single delay [5,12,13], and, time Petri
nets which treat a timing constraint as a time pair
consisting of lower and upper bounds [6,8,14]. The
latter includes stochastic Petri nets which treat a
timing constraint as a probability function of
transition firing rate {7,11], and ER nets which treat a
timing constraint as a function of colored tokens in
input places [3,4]. :

Timed Petri nets (timed PNs) were first proposed
by Ramchandani [13] who examined the timing
analysis of asynchronous concurrent systems.
Ramamoorthy and Ho [12] extended the use of timed
PNs to the area of performance evaluation. Timed
PNs follow the strong firing mode, i.e., a transition, tjs

with a delayed time, T,,, will immediately fire at time
when necessary tokens have arrived at time T,
Before T, the tokens which have arrived are not
preserved and can be used to enable other transitions

if t is in a conflict structure. During the time period
from T, to (T+T,,), the tokens are preserved for tj so

that no other transitions can use these tokens. At
time (T+T,,), the tokens will and must be removed
from tj's input places to tj's output places.

Stochastic Petri nets (SPNs) are also mainly used
for performance evaluation. In contrast to the
constant delay used in timed PNs, SPNs use the
-average delay which is a probability function of a
transition's firing rate. Peng and Shin use
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generalized stochastic Petri nets (GSPNs) to model
real-time control activities of a distributed system [11].
The modeled activities in GSPNs are then formed as a.
sequence of homogeneous continuous-time Markov
chains (CTMC) in order to analyze the probability of
missing deadlines. Timed and stochastic PNs are
mostly used for performance evaluation, such as
finding how fast a transition can initiate consecutive
firing in a periodically operated timed PNs or SPNs.
In other words, the performance is evaluated by
finding a minimum cycle time for completing a firing
sequence (each transition fires at least once) that leads
back to the initial marking, i.e., finding the minimum
cycle time for the execution of a periodicdl process.
Time Petri Nets (time PNs) were introduced by
Merlin and Farber [8] for analyzing the recoverability
of communication protocols. Time PNs are similar
to timed PNs except that time PNs use a time pair

_instead of a single delay. A transition in time PNs is

associated with (TCrjp, TCmax), where TCin
represents the minimum delay and the TCpax
represents a time-out. If a transition, tj> is enabled at
time T, then tj can fire neither before (T +TCpryin) nor
after (TO+TCmax).

firing mode, if the firing does not take place during
the time period from (T#+TCpin) to (T+TCrmax),

then tj must fire at (T+TCmax)- Leveson and Stolzy

Since time PNs follow strong

use time PNs to model a real-time system for safety
analysis [6]. To perform the safety analysis, a
reachability graph of the time PNs which models the
system behavior is first constructed to determine
whether a high-risk state will be reached. The timing
constraints imposed by the modeled system can then
be derived to avoid such high risk states.
Berthomieu and Diaz propose an enumerative method
to analyze the temporal behavior of a concurrent
system [1]. Through the technique of reachability
analysis used in time PNs, Berthomieu and Diaz claim
that their method can exhaustively validate the
behavior of the modeled system.

Timing constraint Petri nets (TCPNs) were
introduced by Tsai, Yang, and Chang [16]. TCPNs
extend Petri mets by adding minimum timing
constraint and maximum timing constraint pairs to
places or transitions, and by adding durational timing
constraint to transitions or places. For example,
(TCphin(t2), TCrpax(t2)) is denoted as (0,5) and
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[FIRE4,(t2)] is denoted as [6] as shown in Figure

1(b). The major difference between TCPNs and time
(timed) Petri nets is that TCPNSs follow the weak firing
mode and the analysis method is based on either the
relative or absolute time mode, whereas time (timed)
Petri nets follow the strong firing mode and the
analysis method is based on the relative time mode
only. For example, due to the strong firing mode,
transition t2 in time (timed) Petri nets must fire by 5
units- of time once t2 has been enabled, this leave
transition t4 has no chance to fire at all because t4
cannot fire until 6 units of time after t4 has been fired.
In contrast, TCPNs follows weak firing mode, which
are more suitable for systems with conflict structures
(priority, decision, and choice structures) as shown in

Figure 1(b).
@

(0,5) [6]

P3

Figure 1(b). A fragment 6f a Petri Net
with timing constraint

We summarize above extensions of PNs by
distinguishing their difference in firing modes.
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Timed (stochastic) PNs use the strong firing mode in
which a transition is forced to fire immediately after it
is enabled. Firing of a transition will last for a period
of time, and tokens will be preserved during the firing
period. Time .PNs use the strong firing mode in
which a transition is forced to fire at time T, +TCax

if the transition has neither been fired not disabled due
to other transitions' firing. In time PNs modeling,
tokens will not be preserved because the firing of a
transition is instantaneously. @ TCPNs follow the
weak firing mode, which not only preserve the same
firing mode used by PNs, but also is capable of
modeling and analyzing conflict structures.

3. The Three Synthesis Rules

Based on the enabling and firing rules of TCPNs,
three synthesis rules are presented here to compute the
time instants of each timed transition and timed places
with given imposed timing constraints. 'We construct
the three synthesis rules which can be used
to synthesize span of fireable time associated with
each timed transition and span of enabling time
associated with each timed places. A TCPN is
verified to be satisfied with timing constraints if none
of the synthesized spans of time is negative. The
synthesis rules presented in this paper can be used not
only in TCPNs, but also in other . time-related
extension of Petri nets. The three synthesis rules are

+ SEQ (sequential) synthesis rule,
* OR synthesis rule,
¢ AND synthesis rule.

3.1. Sequential Synthesis Rule

Please be noted that we have classified types of
time into time instant and time interval which are
denoted as @T and T, respectively. For example, an
airplane from Chicago to Springfield is scheduled to
departure at a time instant of @8:05:April-5-1995, and
the flight will take a time interval of 30 minutes As
shown in Figure 2, given a transition t; may fired
within a span of time ranging from time instant @a to
@b, and place pj is associated with timing constraint-
interval of (c,d) and transition 4 is associated with
timing constraint interval (e,f). In Figure 2, we
highlight the synthesized pair of earliest and latest
enabling time instants of p; as (@Xp; ,@ Ypj), and the
synthesized pair of earliest and latest fireable time



instants of tj (@Xtj , @Yt;). The rule for obtaining
the time instants is as follows:.

@Xpj=@a+c
@Ypj=@b+d

@Xty = @a+cte = @Xpj+e
@Ytj = min(@b+d, @b+c+f) = @b + min(d, c+f)

4
[ (@a,@b)

Figure 3. The earliest and latest enabling
time instants of ¢ in Figure 2.

As shown in Figure 3, since t; may fired within a

span of time ranging from time instant @a to @b, and
place pj is associated with timing constraint interval of

(c,d), it is clear that pj can begin its enabling to t; as
early as @a+c and as late as @b+d. Due to the
minimum delay, the enabled ¢ needs to wait for e
amount of time before it can fire, thus the earliest time
for tj to be fireable is the earliest time that tj is enabled

. plus e, which is @a+c+e as shown in Figure 2.  Since
tj must remains enabled to be fireable, thus from
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Figure 4, we notice that the earliest time instant for t

to be fireable is the minimum of (@b+d, @b+c+f).
Thus, the result of (@Xtj , @Yy) is (@a+c+te,

@b+min(d,c+f)).

@13+c

Figure 4. The earliest and latest fireable
time instants of t; in Figure 2.

3.2. AND and OR Synthesis Rules

tj (@al,@bl)  ti2 (@a2,@b2)

SEQI

SEQ2

Figure 5. The AND synthesis rule.

As shown in Figure 5, to obtain the time instants
of tj within which tj is fireable, both pjj and pj2 have

to remain enabling, thus this is an AND relationship.
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The way we conduct this synthesis rule is'to treat the
firing sequence from tj1, pi], to tj as sequence 1 and

the firing sequence from tj2, pj2, to tj as sequence 2.

Thus, the time instants associated with the timed
places and transitions along the two sequences can be
constructed by using the sequential synthesis rule, then
we take a conjunction of the synthesis results.

In sequence 1, given tj] is fireable from @al to

@b1, then based on the SEQ synthesis rule,

@Xpj] = @al +cl,
@Ypj1 = @bl +dl.

Similarly, in sequence 2, let tj2 is fireable ranging
from @a2 to @b2, then

@Xpj2 = @a2 +¢2,
@Ypjp = @b2 + d2.

Then we can take the conjunction of the two
synthesized results, @X{j and @Yy as shown in

Figure 5, then we have

@Xtj= max(@Xpil+e,@Xpi2+e)
= max(@Xpil,@Xpi2)+e

@Ytj= min(@bl+min(dl,cl+f),
@b2+min(d2,c2+f))

t;, (@a1,@b1) tin
I

(@a2,@b2)

SEQ2

Figure 6. The OR synthesis rule.

The mechanism for deriving OR synthesis rule as

~ shown in Figure 6, is similar to the one we have AND

synthesis rule, the difference is in OR synthesis rule,
we have to take a disjunction instead of conjunction to
obtain the time instants associated with .

(0,=)
(D

xesponse

Figure 7. A real-time control system with timing
constraints.

4. Analysis via Synthesis

The three steps for analyzing a real-time system
specification via the result of synthesis is as follows:

1. Synthesizing span of enabling time associated
with each timed places in a TCPN.

2. Synthesizing span of fireable time associated
with each timed transitions in TCPN.

3. TCPN is verified to be satisfied if none of the
synthesized spans of time is negative.

We use a hypothetical TCPN as shown in  Figure
7 as an example to illustrate why the results of



synthesis can verify the real-time specification.
From Figure 7. if there is a stimulus occur, the system
has to take actions in order to give a response back to
the controlled environment, in addition, the response
.must occurs timely. i.e. within a time interval (1. 5)
since the stimulus occurs. It is very difficult to tell
whether the system can satisfv the timing constraint
form Figure 7.

o

t

(@T+1,@T+3)

(@T+1,@T+c0)
(0,%)

10 (@T+6,@T+13)
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The result of synthesis using the three rules we
just presented is shown in Figure 8. In Figure 8, if
we know the time instant of the stimulus is @T, then
the result of synthesis tell us that tg has no way to
meet the imposed timing constraint because tg is
never fireable.

@r

stimulus

(0,w)(@T,@T+m)

(@T+4,@T+w)

(0.00) XL @T+6@T+9)

.response

(@T+1,@T+5)
(1,5)

Figure 8. A real-time control system and the results of synthesis.

5. Conclusion and Future Research

In this paper, we have introduced the extension of
the original Petri nets in terms of timing constraints.
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The extended transitions and places associated with
timing constraints are called as timed transitions and
time places, respectively, and the resulting Petri_nets
extension is called as timing constraint Petri nets.
Three synthesis rules are presented in this paper to
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compute the time instants of each timed transition and
timed place with given timing constraints. A net is
said to satisfy the imposed timing constraints if and
only if the timed transitions are fireable. ~The
synthesis rules presented in this paper can be used not
only in TCPNs, but also in other time-related
extension of Petri nets. Of course, besides timing
constraints, real-time systems have to satisfy other
important properties, such as safety, liveness, fairness,
and temporal properties such as nest, eventually,
always. The approach we are currently working is to
combine temporal logic along with the TCPNs.
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