Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.O.C.

On Detection of Bounded Global Predicates

Loon-Been Chen and I-Chen Wu

Department of Computer Science and Information Engineering
National Chiao Tung University
Hsin-Chu, Taiwan
lbchen@csie.nctu.edu.tw and icwul@csie.nctu.edu.tw

Abstract

Distributed programs often follow some bounded
global predicates, e.g., the total number of certain to-
kens is always the same or bounded in a range. In
order to detect bounded global predicates, we can first
derive the minimum and mazimum global snapshots
and then check if the minimum aend mazimum are out
of the range. Recently, Groselj [9] proposed an effi-
cient method to derive the minimum global snapshot
by reducing this problem to a mazimum network flow
problem. A restriction of this method is that all values
must be non-negative.

In this paper, we propose an elegant technique,
called normalization. By using this technique, we can
easily derive the minimum and mazimum global snap-
shots and also remove the restriction of being non-
negative. -

1 Introduction

Error detection and debugging have been very im-
portant when programmers develop code. Most previ-
ous experiences and research reports showed that er-
ror detection and debugging are very time-consuming
part in a software development cycle [12]. This is
because a bug may happen in an unexpected way
at an unexpected spot. In single-processor systems,
users usually debug programs by breaking programs
at some points and then tracing the code step by step.
Sometimes, programmers also put some assertions in
code in order to detect the correctness of code.

With the fast development of network and dis-
tributed systems, programming on distributed envi-
ronment is getting more common. However, the diffi-
culty of distributed programming is much higher than
that of sequential programming. Let us consider an
example of debugging a distributed program on two
processors. When we want to break at a certain line
of the program on one processor, it is very hard to
stop the program on the other processor simultane-
ously. This makes distributed debugging very diffi-
cult. Since distributed debugging 1s difficult, error
detection in a distributed program becomes more sig-
nificant.

From our past experiences on implementing a large
distributed system (for load balancing) in [15], we
‘found that a distributed program usually needs to

follow some rules in order to make it easy to run cor-
rectly. For example, in a distributed program, there
may be a number of tokens distributed over processors
(e.g., the token may represent the number of resources
and critical sections) and the number of these tokens
remains constant or bounded in a range at any snap-
shot, no matter how tokens are moved over different
processors. The kind of rules are usually formulated
as predicates, called global predicatesin [2]. Note that
in some cases if some resources have been used or
consumed in advance, it is possible to use a negative
number to represent the number of tokens consumed
in advance.

In fact, it is non-trivial to detect above global pred-
icates because when tokens are sent to another process
via a message these tokens are hidden from detection.
Therefore, if we need to detect global predicates, we
need to keep track of all process states and then judge
from all the states whether the global predicate holds
absolutely.)

Chase et al. [3] proved that the problem of general
global predicate detection is NP-complete. Most re-
searchers use the following three kinds of approaches
to solve global predicate detection problems.

1. Exhaustively search all the combinations [4] to
detect general global predicates. This kind of so-
lutions are intractable in the sense of time com-
plexity.

2. Periodically check satisfiability of global predi-
cates [1, 2]. However, this approach works only
for the problems with stable global predicates.
Stable global predicates are predicates with the
following property: once the global predicates
turn true, they will remain true forever. How-
ever, these methods cannot detect unstable global
predicates because such a predicate may become
true for a short period time (between two check
points).

3. For specific problems, detect unstable global
predicates in polynomial times. Garg and
Waldecker [6] presented a tractable algorithm to
detect unstable predicates that are formed by
conjunction of local states. Miller et. al. [13]
and Hufin et. al. [11] respectively investigated
some other different global predicates. Recently,

217

Proceedings of International Conference on Distributed
Systems, Software Engineering and Database Systems

Groselj [9] proposed an interesting method to de-
rive the minimum of the total numbers of tokens
at all snapshots, called the minimum global snap-
shot [9], by reducing the detection problem to a
maximum network flow (or minimum cut) prob-
lem. This method can be easily extended to solve
the (unstable) bounded global predicate: the to-
tal number of tokens is always bounded from be-
low by a constant at all snapshots. Later, Garg
et al. [3] developed the same algorithm indepen-
dently. Since the maximum network flow prob-
lem requires the restriction on non-negative edge
values, the above approach needs to restrict non-
negative state values.

Although Groselj and Garg can derive the mini-
mum global snapshot, we find 1t non-trivial to reduce
the above result to the maximum global snapshot.
This is because deriving a minimum network flow is
an NP-complete problem([7], much more complex than
deriving a maximum network flow.

In order to derive the maximum global snapshot ef-
ficiently, we first propose an elegant technique, called
normalization, in this paper. Then, based on the tech-
nique of normalization, we can easily derive the mini-
mum and maximum global snapshots in the same way
and we can also remove the restriction of being non-
negative.

The remainder of this paper is organized as follows.
In Section 2, we describe our model and notations
used in this paper. Section 3 presents the normaliza-
tion technique and derives the minimum and maxi-
mum global snapshots from this technique. Finally,
we conclude our results in Section 4.

2 Model and notations

A distributed program is composed of processes
communicating via a network. These processes share
no memory and no global clock. Each pair of pro-
cesses need to communicate via a channel of the net-
work. The state of such a program is distributed over
these processes and channels at each snapshot. For
simplicity of discussion, we assume in this paper that
the system has p processes. :

The states of processes and channels change only
when events [10], atomic actions, are executed. There
are three kinds of events on each processor P that we
are concerned:

¢ Internal event: does a local computation. It
may change the state of process P.

e Send event: sends a message from process P to
another via a channel. It may also change the
state of process P.

¢ Receive event: receives a message from another
process via a channel. It may also change the
state of process P.

Note that each process should start with an initial
internal event and end with a final internal event.

In order to define the chronological order of events,
we define that event e; immediately happens before
event e;, if and only if one of the two following con-
ditions holds:

1. Events e; and e; happen in the same process,
the time of e; (happening) is earlier than that of
ej, and no other event happens between the two
events in the same process.

2. Event ¢; is the send event of a message and event
e; is the receive event of the same message.

Furthermore, we define that event e; happens before
event e;, denoted by e; — ¢;, if and only if one of the
following two conditions hofds:

1. Events e; immediately happens before event ¢;.

9. There exists another event e; with the following
two relations: e; — e; and ex — e;j.

For simplicity of discussion, we can use an event
graph to represent a run of a distributed program as
follows. (1) Each event is referred to by a vertex.
(2) If an event e; immediately happens before event
ej, there is a corresponding arc, denoted by (e, ¢;),
from e;’s corresponding vertex to e;’s, representing
the event transition from e; to ej. An arc (e;,e;) is
called a message arc if there is a corresponding in-
transit message from event e; to e;. Otherwise, an
arc is called an internal arc because it corresponds to
the internal event transition inside a process.

Since an arc represents an event transition without
any other event in-between, we can extend the defi-
nition of chronological relation — to arcs as follows.
For an arc @ = (e;, ¢;), e — a and a — e;. Since all
the states are changed only by events (as mentioned
above), each arc a can use a unique value, denoted
by S, to represent the corresponding process state
value or the message content. Figure 1 illustrates an
event graph corresponding to a run of a distributed
program. The value on each arc represents, for exam-
ple, the number of tokens in a process or a message.
A complete path is from some initial internal event
to some final internal event. From the figure, we can
also easily see that for each process there must exist
a complete path from its initial to final internal event
without going through any message arcs. Such a path
is called a process internal path, on which all arcs are
internal arcs. These process internal paths do not in-
tersect. Arcs between different process internal paths
are all messages arcs. In addition, it is also obvious
that for each arc there exists a complete path that
passes through the arc.

In a common graph, if we separate the vertices into
two sets, a cut is the set of all the arcs each of which
is incident to these two disjoint vertex sets. In an
event graph G, we define that a cut must partition
the event graph into two disjoint graphs such that
one called the source part, denoted by G;, contains
all the initial internal events and the other called the
sink part, denoted by Gy, contains all the final internal
events. Thus, it is trivial to see that the cut has at
least one arc in each process internal path. The cost
of a cut is defined as follows:

> 5

Va:a=(u,v)EC,u€G;,vEG,

218

Time
sink part
O intemal event m ipitial internal event
© sendevent o final internal event

@ receive event — > internal arc or

message arc

Figure 1: Event graph of a run of a distributed pro-
gram.

For example, in Figure 1, the costs of cut Ci, Co
and C3 are respectively 14, 12 and 16. The minimum
(mazimum) cut is the cut with the least (largest) cost
among all cuts. The least (largest) cost is called the
minimum (maximum) cut cost.

A consistent cut is a. cut in which each arc a does
not happen before another arc a’. For example, cut
Cs in Figure 1 are consistent and cuts C; and C3 are
inconsistent. From Lemma 1, a cut C is consistent if
and only if each arc on C must be from the source
part to the sink part.

Lemma 1 From the above definition, a cut C is con-
sistent if and only if each arc on C must be from the
source part to the sink part.

Proof. First, we will prove that if a cut C is consis-
tent then each arc on C must be from the source part
to the sink part. For each arc a on C, there must
exist a complete path passing through arc a. From
the definition of consistent cut, cut C' will cut across
no other arcs in the path. Apparently, arc a must be
from the source part to the sink part.

Second, we will prove in the reversed direction that
a cut C is consistent if each arc on C is from the
source part to the sink part. Let us contradictorily
assume that each arc on cut C is from the source
part to the sink part, but C is not consistent, say it
cuts across two arcs, a; and as, with a; — a3. Let arc
ay = (v1,v}) and ag = (v2, v3), as illustrated in Figure
2. Then, vy and vy are in the source part and v} and
v} are in the sink part. But, since v{ — vz (because

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

source part
P B ... B) APIPP Pq-l Pq
Vie
T .
V{ >\4' \\
A}
! 5
P “‘
4
~
1%
']
I3
H u\;
1
‘\‘ ND
NN'!‘ ~~~~~ (v,
“a%
/)

sink part

Figure 2: The arc from the sink part to the source
part.

a1 — ay), the path from v} to vy must have an arc
(see ar in Figure 2) from thesink part to the source
part. This contradicts to our assumption. Therefore,

the cut C must be consistent. D

The minimum (maximum) consistent cut is the
consistent cut with the least (largest) cost among all
consistent cuts. The minimum (maximum) consistent
cut cost is the cost of the minimum (maximum) con-
sistent cut. In [9], the minimum (maximum) consis-
tent cut cost is called the minimum (maximum) global
snapshot. ‘ :

The definition of consistent cut above has an im-
portant implication: all transitions corresponding to
arcs of a consistent cut may potentially happen at the
same time. The reason is as follows. In a distributed
system, it is common that a process may suspend run-
ning due to context switching to another job. Since
each process in a distributed system may delay oper-
ations unexpectedly due to context switching, if we
let each process delay an appropriate tirme, all tran-
sitions corresponding to arcs of a consistent cut may
happen at the same time. For example, in Figure 1,
those arcs in a consistent cut Cy may happen at the
same times after delaying appropriate times in each
process as shown in Figure 3. As for cut C; in Figure
1, since it is not consistent (event a; happens before
a;), there is no way adjusting delays to make a; and
a; happening at the same time.

A global predicate is a predicate on all states of
channels and processes. Consider the following exam-
ple. A distributed program often needs to keep the
total number of tokens in all messages and processes
bounded from below by a constant. Let the value of
a message (internal) arc be the number of tokens in

219

Proceedings of International Conference on Distributed
Systems, Software Engineering and Database Systems

od C,

delay
New C2 -

Figure 3: Appropriate delays to make arcs in a con-
sistent cut happening at the same time.

the corresponding message (process) . Then, for this
example, the following global predicate holds at each
time £,

(Y Su®) 2 L (1)

varca

where S,(t) is the number of tokens in the message
or process corresponding to a at time ¢. However, it
is very difficult to have an accurate global clock and
to keep checking the global predicate at each time.
Therefore, in order to prove that a global predicate
holds, most researchers check, instead, if the global
predicate holds for all consistent cut C,

(Y s>l @

Vv arc aeC

In fact, the detection on consistent cuts (Formula
(2)) is more rigorous or stronger than the detection at
each time ¢ (Formula (1)) for the following reason. For
each time ¢, there must exist a consistent cut whose
arcs covers the states of all processes and channels.
Therefore, if Formula (2) holds for all consistent cits,
then Formula (1) holds at all time £.

Furthermore, in order to check if the global pred-
icate on each consistent cut holds, we simply need
to derive the minimum global snapshot (or the mini-
mum consistent cut cost) and then check if the cost is
greater than the constant L. In this paper, our goal is
to detect bounded global predicates. From the above
discussion, we can achieve our goal by simply deriv-
ing the minimum and maximum global snapshots of
an event graph. In the next section, we will focus on
the minimum and maximum global snapshots.

3 Minimum and maximum global

snapshots

In this section, we will derive the maximum and
minimum global snapshots in an event graph. In Sub-
section 3.1, we will describe the method modified from
Groselj’s [9] that can efficiently solve the minimum
global snapshot problem. In Subsection 3.2, we pro-
pose a new technique, called normalization, based on
which we can elegantly derive the minimum and maxi-
mum global consistent cuts as described in Subsection
3.3. Our solution in Section 3.3 does not assume that
the arc values should be non-negative as Groselj and
Garg’s solutions did [3, 9].

3.1 Basic technique for the minimum
consistent cut

Groselj [9] proposed a method to derive the mini-
mum consistent cut cost of an event graph based on
the common flow network algorithms. In this subsec-
tion, we describe a method, based on Groselj’s, but
simpler than his. :

Actually, an event graph can also be viewed as a
flow network with multiple sources and sinks [14], de-
fined in Definition 1. All the initial (final) internal
events correspond to the source (sink) nodes and the
value on each arc corresponds to the capacity of the
arc.

Definition 1 A flow network N = (V, E) is a di-
rected graph in which each edge (u,v) € E has a non-
negative capacity c(u,v) > 0. Some nodes are desig-
nated sources and some are designated sinks. A cut
is the set of all the arcs each of which is incident to
two vertex sets partitioned from V, where all sources
are on one set called the source set and all sinks are
on the other called the sink set. The capacity of a cut
is the total capacity of all arcs (on the cut) from the
source set to the sink set. A minimum cut of a flow
network is the cut with the least capacity. The least
capacity is also called the min-cut capacity.

The key of Groselj’s technique is to reduce an event
graph to another flow network while keeping the fol-
lowing property satisfied:

e the min-cut capacity of the reduced flow network
equals to the minimum consistent cut cost of the
original event graph.

Since the minimum cut problem in a flow network is
equivalent to the maximum network flow problem as
shown by Ford and Fulkerson [5], we can use some
efficient maximum network flow algorithms such as
[8] to find the minimum cut cost.

In order to reduce an event graph to a flow network
with the above property, we will use the following
reduction operation:

R1 For each arc (v;,v;), add a reverse arc (vj,v;)
with value co. Note that the initial (final) inter-
nal nodes become the source and sink nodes.

Lemma 2 shows that after the reduction operation R1
the min-cut capacity of the reduced flow network is
the same as the minimum consistent cut cost of the
original event graph.

220

[

Figure 4: The event graph before and after the reduc-
tion operation.

Lemma 2 Given an event graph G, use the reduction
operation R1, described above, to reduce G to a flow
network N. Then, the min-cut capacity in N equals
to the mintmum consistent cut cost of G.

Proof. Since the reduction operation does not change
the vertex set, we define, for simplicity of discussion,
that the cut Cg in the event graph G is equivalent
to the cut Cy in the reduced flow network N, if and
only if the two vertex sets partitioned by cut Cg in G
are the same as those partitioned by cut Cyin N.
For each cut Cn in the reduced flow network N, its

equivalent cut C¢ in G is either consistent or inconsis--

tent. Suppose that cut Cg is consistent. According to
Lemma 1, each arc in cut C¢ must be from the source
part to the sink part. Thus, after the reduction op-
eration R1, the equivalent cut still has the same cost
(or capacity) since the costs of reversed arcs are not
counted. : :

Suppose that Cg is inconsistent. From Lemma 1,
there exists an arc (u,v) where u is in the sink part
and v is in the source part. On the equivalent cut
Cn in N, since the reversed arc (v,) (added from
the reduction operation R1) is from the source part
to the sink part, the capacity of the arc, oo, will be
added into the total capacity of the cut Cp, which
will become co. Thus, the min-cut capacity in N is
also'the minimum consistent cut cost in G. D

Figure 4 illustrates that after the reduction opera-
tion R1 the minimum cut will not cut across a message
arc such that its receive event is in the source part and
its send event is in the sink part.

3.2 Normalization

The above approach in the previous subsection still
has the following two problems:

1. The arc cost should be non-negative. Intuitively,
it seems easy to deal with negative arc costs by
adding a large enough value into each arc cost to
make all arc costs non-negative. However, since
cuts may cut across different numbers of mes-
sages arcs, the straightforward method does not
work well. This can be illustrated in Figure 5.
After adding 100 into each arc value, the mini-
mum consistent cut in the event graph (see the

221

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

< minimum
|~ consistent ~consistent
cgt_%OSt cut cost
= s
—
add 100 to
each arc

Figure 5: Adding 100 to each arc cost.

left in this figure) cuts message arcs twice and
therefore its cost becomies higher than those with
less message arcs. Thus, the cut is no longer the
minimum cut in the reduced flow network and we
will get the wrong answer for the minimum cut
cost. '

. Since the maximum cut problem is intractable, it
is not efficient to derive the maximummn consistent
cut by directly reducing it to the maximum cut
problem.

In this subsection, we propose a new technique,
called normalization, to solve the above problems el-
egantly. The key of the normalization technique is
to shift the costs of message arcs to internal arcs in
order to clear the costs of message arcs to zeros with-
out changing any consistent cut cost. The normaliza-
tion operation repeats the following primitive opera-
tion until each message arc cost S, is zero:

1.
2.

Find a message arc an,, = (v;,v;) with S, # 0.

Add S,,, into the cost of each arc a on the process
internal path with v;, where v; — a.

Add —S,,, into the cost of each arc a on the
process internal path with v;, where v; — a.

4. Clear the cost of arc a, to zero (that is, add
—Sa.,, into the cost of arc ap,).

Figure 6 illustrates arc costs before and after nor-
malization. It is easy to observe from the figure
that any cut cost doesn’t change after normalization.
Lemma 3 will prove this.

Lemma 3 Let G' be normalized from event graph G
as described above. The cost of each consistent cut of
G equals to the cost of the corresponding cut of G'.

Proof. It suffices to prove that for each primitive
normalization operation, no consistent cut cost is
changed. Consider a primitive operation normaliz-
ing a message arc @, from vertex v to v’. For each
consistent cut, there are three ways to cut across arcs

Proceedings of International Conference on Distributed
Systems, Software Engineering and Database Systems

11 11
11 i1
14 ‘14
—_—
normalize arc
with cost §

Figure 6: Normalizing an arc.

in the two process internal paths with v and v/. Let
the consistent cut cut across arc a in the internal path
of process P with v and arc a' in process P’ with v’.
There are only three cases (as illustrated in Figure 6):

1. Assume a — v and o’ — v'. The cut cost ob-
viously is not changed because all arc values are
not changed.

2. Assume v — a and a’ — v'. In this case, the
value S, increases by S,, while S, decreases
to zero. Therefore, the total cut cost is still the
same.

3. Assume v — a and v/ — a’. In this case, the
value S, increases by S,,, while Sy/ decreases by
Sa,,. Therefore, the total cut cost is still the
same.

From above, the total cut cost is still the same for
all cases. That is, for all consistent cuts, their cut

costs are still the same. D

3.3 Minimum and maximum consistent
cuts .

Based on the normalization techniques, we will
show in this subsection that we can easily derive the
minimum and maximum consistent cut costs of an
.event graph even with negative arc costs. We will first
derive the minimum consistent cut cost in an event
graph and then the maximum consistent cut cost.

In order to derive the minimum consistent cut in
an event graph, we will take the following steps:

1. Normalize the event graph.

2. For each internal arc a, add M into S;, where
M = max(|S,|) for all internal arc cost S,.

3. Use the method in Subsection 3.1 to derive the
minimum consistent cut.

We illustrate changes of the event graph for each step
in Figure 7. Figure 7(a) is the original event graph.
Figure 7(b), 7(5, and 7(d) are the reduced flow net-
wor{':s after the first, second and third step, respec-
tively. :

Figure 7: Example of deriving minimum consistency.
cut: (a) the original event graph, (l}e[the graph after
Step 1, (c) the graph after Step 2 (M = 13), and (d)
the graph after Step 3.

The operation in the first step does not change any
consistent cut cost. The operation in the second step
has two effects: (1) increase each consistent cut cost
by a fixed number pM because a consistent cut must
cut across exactly p internal arcs (whose costs each
increases by M) and some message arcs (whose costs
are zeros by normalization), as mentioned in the pre-
vious subsection; (2) make all arc cost non-negative.

. Due to the first effect, the minimum comnsistent cut

in the original graph is still the minimum consistent
cut in the new graph. Due to the second effect, we
can use the method described in Subsection 3.1 to de-
rive the minimum consistent cut. From Subsection
3.1, the minimum cut is the minimum comnsistent cut
in the graph after step 2, which is also the minimum
consistent cut in the original graph.

In order to derive the maximum consistent cut cost
in an event graph with negative arc costs, we simply
need to change the second step as follows.

e For each internal arc a, change S, to M — S,
where M = max(|Ss|) for all internal arc cost

a-

This operation has two effects: (1) each consis-
tent cut cost K in the original event graph becomes
pM — K; (2) all arc costs are non-negative. Thus,
the maximum consistent cut in the original graph will
become the minimum consistent cut.. We illustrate
changes of the event graph after Step 2 and Step 3.in
Figure 8.

222

Figure 8: Example of deriving maximum consistency
cut: (a) the graph after Step 2 (M = 13) and (b) the
graph after Step 3.

4 Discussions

Traditionally, researchers in [3, 9] can only derive
the minimum consistent cut cost with non-negative
arc costs. In this paper, we propose a new and ele-
gant technique, called normalization, by which we can
easily find the minimum and maximum consistent cut
cost of an event graph without limiting arc costs to
non-negatives. -Our results can be extended to the de-
tection of bounded global predicates [9]. This is useful
for a control system (e.g., a dynamic load balancing
system) whose consistent cut costs should be bounded
in a range. _

The algorithms for the minimum and maximum
consistent cut problems described in Subsection 3.3
basically consist of three operations: the normaliza-
tion operation, the cost modification operation, and
the maximum network flow operation. For the nor-
malization operation, since each message arc cost are
added into some internal arc costs, the time complex-
ity is at most O(m?), where m is the number of arcs.
Note that since this time complexity is not the dom-
inant part, we will omit the discussion for optimiza-
tion in this part. For the cost modification opera-
tion, since it only changes each arc cost, the time
complexity is only O(m). For the maximum net-
work flow operation, we can use the fastest max-flow
algorithm, the preflow-push algorithm [8] that runs
in O(nmlog(n?/m)), where n is the number of ver-
tices. In our problem, since each vertex (correspond-
ing to an event) in an event graph has only at most
three incident arcs, two internal arcs and one mes-
sage arc. Therefore, m = O(n) in an event graph and
the time complexity for the preflow-push algorithm is
O(n%logn). Thus, the time complexity for detection
of bounded global predicates is O(n?logn) in total.

References

[1] L. Bouge. Repeated snapshots in distributed sys-
tems with synchronous communication and their
implementation in csp. Theoretical Comput. Sci,
49:145-169, 1987.

(10]

[11]
[12]
[13)

[14]

(15]

223

[8]

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

[2] K:M. Chandy and L. Lamport. Distributed snap-
shots: Determining global states of distributed
systems. ACM Trans. Comput. Syst., 3(1):63-
75, February 1985.

[3] C.M. Chase and V.K. Garg. Efficient detection
of restricted classes of global predicates. In The
9th International Workshop on Distributed Algo-
rithms, September 1995.

[4] R. Copper and K. Marzullo. Consistent detection

of globla predicates. Sigplan Notices, pages 167—
174, 1991.

L.R. Ford and D.R. Fulkerson. Maximal flow
through a network. Can. J. Math., 8:399-404,
1956.

V.K. Garg and B. Waldecker. Detection of
weak unstable predicates in distributed pro-
grams. IEEE Tran. Parallen and Distributed Sys-
tems, 5(3):299-307,- March 1994.

M.R. Garey, D.S. Johnson and L. Stockmeyer,
Some Simplified NP-complete graph problems,
Theor. Comput. Sci., 1:237-267.

A.V. Goldberg and R.E. Tarjan. A new approach
to the maximum-flow problem. Journal of the
ACM, 35(4):921-940, October 1988.

(3]

[6]

[7

[9] B. Groselj. Bounded and minimum global snap-
shots. IEEE Parallel and Distributed Technology,
pages 72-83, November 1993.

L. Lamport. Time, clocks and the or.deriﬁg of
events in a distributed system. Communic. ACM,
21(7):558-565, July 1978.

N. Plouzeau M. Hurfin and M. Raynal. Detect-
ing atomic sequences of predicates in distributed
computations. In Proc. of ACM/ONR Workshop
in Parallel and Distributed Debugging, pages 32—
42, May 1993. .

C. Ghezzi M. J azayeri and D. Mandrioli. Funda-
mentals of Software Engineering. Prentice-Hall,

B.P. Miller and J. Choi. Breakpoints and halting
in distributed programs. In Proc. of the 8th In-
ternational Conference of Distributed Computing
Systems, pages 316~323, July 1988.

C.E. Leiserson T.H. Cormen and R.L. Rivest. In-
troduction to Algorithms. The MIT press, 1989.

L.C. Wu. Multilist Scheduling: A New Parallel
Programming Model. PhD thesis, School of Com-

puter Science, Carnegie Mellon University, July
1993.

