Proceedings of International Conference on Distributed
Systems, Software Engineering and Database Systems

Efficient Eigenvalue Computation of Symmetric Tridiagonal
Matrices on Heterogeneous Workstation Clusters*

Shen-Fu Hsiao and Kuo-Chung Chen

Institute of Computer and Information Engineering
National Sun Yat-Sen University
Kaohsiung, Taiwan
sthsiao@cie.nsysu.edu.tw

Abstract

Many computation-intensive prob-
lems require costly platforms such as supercomputers
or massively parallel computers (MPC) in order to
achieve reasonable execution speed. Recently, due to
the popularity of workstation and computer network,
workstation clusters emerge as_a low-cost alternative
of parallel and distributed computing for applications

requiring large amount of computations. This paper

utilizes heterogeneous workstation clusters composed
of various types of machines to calculate the eigenval-
ues of symmetric tridiagonal matrices, a problem fre-
quently encountered in many scientific and engineer-
wng applications. Among the parallel algorithms for
eigenvalue problems, the split-and-merge method with
Laguerre’s iteration is selected due to its inherent high
parallelism, low communication overhead and suitabil-
ity for distributed implemeniation. The computation
platform consists of clusters of non-dedicated work-
stations connected by Ethernet with PVM (Parallel
Virtual Machine) as the supporting software package.
Various heterogeneous configurations are tested and
compared to find a best machine combination given
a fized overall normalized computing power. To im-
prove the compulation efficiency, both static and dy-
namic load balancing is considered especially when the
maulti-user environment has highly uneven and time-
changing load. The experimental data shows promis-
ing results of significant speed-up compared to the se-
quential implementations.

Key words: PVM, split-and-merge algorithm, paral-
lel computing, eigenvalue problem, workstation clus-
ters, load balancing

1 Introduction

Many numerical computation problems in scientific
and engineering applications requires huge amount of
operations which usually take too much time to ex-
ecute on a single-CPU machine. The major solution
for these computation-intensive problems is through

*This work was supported by National Science Council, Re-
public of China, under Grant NSC85-2213-E-110-016

the use of costly supercomputers or massively paral-
lel computers (MPC) to reduce the total computation
time. There have been a lot of papers focusing on
implementing various parallel algorithms using these
dedicated multiprocessor computers. :

Recently, through the fast advance of VLSI and
computer network technology, the speed performance
of each single-CPU computer and the capability of the
network that connect these computers improve dra-
matically. These trends make it feasible to develop
applications using physically distributed resources as
if they were part of the same computer. Thus, dis-
tributed scientific computing using workstation clus-
ters begins to attract attention due to the popular-
1ty and availability of high performance workstations
and local area metwork [2][4]{11]{12]. Furthermore,
some network supporting software package such as

~PVM (Parallel Virtual Machine) [1] provides utility

224

to assist users easily writing distributed-computing
programs running on workstation clusters. In these
parallel computation problems, the.data communi-
cation among workstations is through the general-
purpose computer network such as Ethernet, FDDI
or ATM, contrary to that in MPC where the commu-
nication goes through the dedicated communication
channels with specific architecture [8]. Currently, the
data communication speed in MPC is much faster
than that in workstation cluster while the comput-
ing power of each composing processor in MPC 1s in
general slower than that of a single workstation espe-
cially when the workstation is becoming more pow-
erful (such as the advance from microSPARC, super-
SPARC to ultrSPARC in Sun workstation series).

Thanks to the difference of the communication la-
tency, some application problems parallelizable on
MPC may not have comparable performance when
run on workstation clusters [5]. Another difference
between MPC and workstation clustérs is that ev-
ery node in a heterogeneous workstation cluster might
have different computing speed due to different ma-
chine types. Even in homogeneous environment where
each composing node is of the same machine type,
every node may still have different computing power
since the multi-user environment allows other users to
share CPU at the same time when our parallel pro-

grams are running. The non-controllability of such
environment requires load balancing techniques to ex-
ploit more efficiently the computing resources of work-
stations. Hence, the good parallel algorithms in MPC
may not have satisfactory performance when running
on workstation clusters without taking into consid-
eration these communication and computation differ-
ences.

In this paper, workstation clusters are used to solve
eigenvalue problems of large symmetric tridiagonal
(ST) matrices, an important issue in many scien-
tific and englneenng problems. A symmetric matrix
can be reduced to an ST matrix by applying from
both sides a sequence of Householder reflection ma-
trices to zero out all the off-diagonal entries but the
first super- and sub-diagonal entries. After this pre-
processing step, the eigenvalues of the ST matrix may
be solved using many well-known methods including
parallel QR algorithm, Jacobi method, divide-and-
conquer method, and bisection method [3][7]. The
QR algorithm is ‘well suited for sequential implemen-
tation but is hard to parallehze The Jacobi method is
inherently parallel and is suitable to be implemented
on parallel computers consisting of hundred of nodes.
However, in normal workstation clusters the number
of computing nodes is rarely larger than 50, and the
Jacobi method may cause heavy communication over-
head in this environment. All the above methods have
been implemented on various parallel computers such
as CM-2, Cray YMP or nCUBE by exploiting the spe-
cial features of the target machine.

Recently, a parallel algorithm called split-and-
merge algorithm based on Laguerre’s method to com-
pute the eigenvalues of ST matrices of size 2" was
implemented on homogeneous workstation clusters
with promising results compared to those obtained
in nCUBE-2 parallel machine [10]. In this paper, we
extend the split-and-merge method to compute the
eigenvalues of ST matrices of arbitrary size on several
heterogeneous workstation clusters in order to find the
optimal workstation configuration for this ST eigen-
value problem. Special care has been exerted.in order

to reduce the communication overhead and thus in- -

crease the overall speed-up [9]. Furthermore, both
static and dynamic load balancing is considered when
the composing machines have time-changing load. A
load emulation program is developed to simulate more
realistically the load change condition in our noncon-
trollable multi-user environment.

2 Split-and-Merge Algorithm

Before describing the split-and-merge algorithm,
we first give two lemma:

Lemma 1 (Separation Property [3]) Assume
that an n x n ST matriz A

A = [Bi-1 04 6]

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

o ,31 0 0
P az P2 O 0
- 0o . - i 0
0 0 ﬂn—-2 Un—-1 ﬂn—l
0 oo 0 ﬁn—l Un

has eigenvalues A < XA < oo < Ay Another ST

mairiz A is generated from A by replaczng two off-
diagonal entries with zeros (B = 0), i.

. (A 0
a=(7 4)

where the k x k ST submatriz- Ay end (n —k) x (n—k)
ST submatriz Ay are

oy B 0
Al — ' ,31
o Pt
0 Br-1 ok
Q41 Bryr 0
Az: ﬂk+1
ﬁn—l
0 Brn-1 (6773

Let M\ < As < ... < A, be the eigenvalues ofA The
sepamtzon property states that

AX]. € (/\1,)\2), iﬂ (S ()\n—ly)\n):
/\5 € (’\i—l;Ai+1); 2 'S i S n—1.

Assuming that the eigenvalues of the two neighbor-
ing split submatrices A; and A, have been found and

sorted, then these eigenvalues \; of A can be used as
the initial approximation to find the actual eigenval-
ues A; using the Laguerre iteration to be stated below.

Lemma 2 (Laguerre’s Iteration [6])

Given an initial eigenvalue approzimation x where
i < z < Ay and the characteristic polynomial f(A
of the n x n ST matriz A, the following Laguerre’s
iteration defines two values Ly(z) and L_ (a:)

Li(z)=
z+

n

[~ £/ (n - D](n - DIEEN2 - nLE

gy

with
Ai<L_(z) <z < Li(z) £ A N

The recursive application of the Laguerre iteration
with initial value z € (A;, A;4+1) will approach the real
eigenvalues A; or A;jq ;. Let

k
2P = L5 (@) =Ty (La(- - La(z) -+),

225

Proceedings of International Conference on Distributed
Systems, Software Engineering and Database Systems

k
!B =1k (0) =TT (- L-(@)-),
then

'x(_2)<1?(_1)<m<$$)<$$)...——>/\i+1

A -

In other words, the two sequences, :I:(_k) and zgf), con-
verge respectively to A; and A;yq.

For simplicity, we assume that the initial ST matrix
A is size of 2" x 2". The split-and-merge algorithm
is illustrated in Fig. 1. During the split process, the

split process:
~ apply recursively the separation property to partition A into 2x2 split matrices
~ find the eigenvalues of all the 2x2 split matrices B
) .
merge process:
fori=1tor1
forj=! to 3!
sort the eigenvalues of two neighboring split matrices
use the sorted eigenvalues as initial approximation of Laguerre iterations
o find the eigenvalues of the larger split matrices

end
endi
split Fagm.arre merge Mo-1)thstge
iterations
L] []
’ . *]
[] .
[]]
8x8 Laguere
i‘ﬂ?ﬁ. ons nd stage

Figure 1: The split-and-merge algorithm of 2" x 27
ST matrices.

2" x 2" ST matrix is partitioned into 2"~1 2 x 2 split
matrices by applying recursively the separation prop-
erty of Lemma 1. After the split process, the eigenval-
ues of all the 2x2 split matrices are solved. During the
merge process, the eigenvalues of each pair of neigh-
boring 2% x 2¥(k =1,2,---,7 — 1) split matrices are
merged and sorted. The sorted 2**! eigenvalues are
then used as the initial approximation in Laguerre
iterations (Lemma 2) to find the eigenvalues of the
larger split matrices of size 2¥+! x 2¥*+1, Repeating
the above procedure with £ = 1,2,---,7 — 1, all the
eigenvalue of the original ST matrix A are found after
-r — 1 stages.

3 Distributed Implementations
The sequential split-and-merge algorithm is imple-
mented on workstation clusters using PVM software

which provides a unified framework to develop paral-
lel programs using a collection of heterogeneous com-
puter systems viewed as a single parallel virtual ma-
chine. The adopted PVM computing model is the
master-and-slave model where the master is in charge
of the initial task distribution and the final result col-
lection while the slaves on different machines executes
the main operations (Laguerre iterations, sorting and
data redistribution?.

Fig. 2 is a parallel version of the split-and-merge
algotithm for the case of four-machine cluster. At the

master:
« decide and assign the intial task partition to each slave (one task for one slave)
® wait for receiving the final result from every slave
slave:
o local level: — each slave ly finds all the eig of the assi| split using
) the sequential version of the split-and-merge algorithm with Laguerre iterations

e task level: — merge and sort the eig of two neighboring split
~ distribute evenly among the slaves the job of executing Laguerre iterations

— repeat the above two procedures uatil the final eigenvalues are found

T

task level.

local level

slave 4
(machine 4)

slave3
{machine 3)

slave 2
(machine 2)

slave 1
(machine 1)

Figure 2: Distributed implementation of the split-
and-merge algorithm on four machines (slaves), each
assigned a task. '

local level, each slave (task) calculates the eigenval-
ues of the assigned split matrices using the sequential
version of the split-and-merge algorithm. At the task
level which allows parallel computation, the opera-

. tions of the Laguerre iterations are distributed evenly

226

among slaves according to the number of available
slaves, as shown by the bold-faced arrows.

When the number of slaves is not power of 2, spe-
cial caution should be exercised in order to increase
the utilization efficiency of all the slave machines. Fig.
3 shows the job partition and distribution for 6 slaves.
Task1234 merged from tasks 1, 2, 3 and 4 is redis-
tributed among 6 slaves instead of 4 to avoid the idle
of the slave 5, and 6. Similarly, when the number
of slaves is 5, task12 (merged from taskl and task2
and task34 (merged from task 3 and 4) is distribute
among the 5 slave machines. Despite of the effort, as
will seen shortly, the parallelization efficiency is still
low when the number of slave machines is 5 or 9 since
the communication overhead during the data redistri-
bution is large in these cases.

3.1 Homogeneous Environment

The homogeneous environment consists of 12
SPARC2 workstations connected by Ethernet. Ta-
ble 1 lists each portion of the total eigenvalue com-

d in the lower stage

1ask123456

task1234

..-‘T

task]2 task34 task56
S R
< e AT SN o e S e J e
m’Ein' u% .]hm% dt% |j[b]tm’bh m;im m’elm g]tmﬁlu
T davel | savez slaved slave 4 slave § slave 6
(machine 1) (machine 2) {machine 3) {machinc4) (machine 5) (machine 6)

Figure 3: Distributed implementation of the spht—
and-merge algorithm on six machines with schemes
to avoid machine idling.

putation time for ST matrix of size 2000 x 2000 on
five workstations. T4 is the total execution of each
slave; T;ae is the idle time of each slave due to data
waiting; Tyt is the time spent on sorting required
before applying Laguerre iterations; Tpym is the over-
head to execute the PVM codes compared to the se-
quential implementation. The total execution time
Tiotar = TIA" + Trecy Where TiR07 is the largest ex-
ecution tlme of all the slaves and Trecy is the data
collection time of the master receiving the final re-
sults from all the slaves.

In balanced load situation 7775 is about the same
as the average of T}j4y.. However, under unbalanced
load, the difference between the largest and small-
est Tslave could be significant and the load balancing
method to be discussed in Sec. 4 will improve the ex-
ecution time. We observe that all the overhead time
portions (T;4. and Tpvm), including the communica-~
tion overhead, are negligible compared to Tyigye-

Tsequential 617.89s, Trecy = 3.13s
[slaves | Tiiave | Tidgte | Tsort | Toum |

0] 146.86] 2.68 0.6 0.04

11 14868 | 2.34 0 0.06

2 [149.20 1 2.00] 0.07] 0.05

3 || 149.73 | 3.73 0 0.05

4] 149.81 | 1.06 0] 0.06
Tiotat = TI15% +Treco = 152.94s unit: seconds

Table 1: Each portion of the slave execution time on
five workstations for 2000 x 2000 ST matrices. -

Fig. 4 is the speed-up curves for ST matrix size up
to 8000 x 8000 on 12 workstations where the speed-up
is defined as the ratio of Tsequential /Tiotat- We have
the following interesting observations:

o the speed-up basically increases proportionally to
the number of workstations.

o the speed-up for larger matrices is in general bet-
ter than for smaller ones because the commu-

227

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

G— 3000 x3000
o= 4000 x 4000

A 8000 x 8000
§ 9 1011 12

#0of SPARC2
workstations

Figure 4: Speed-up vs. number of SPARC2 worksta-
tions for various matrix size.

nication overhead of larger matrices occupies a
smaller percentage of the total execution time.

the parallel efficiency defined as the speed-up di-
vided by the number of workstations decreases as
the number of workstations increases due to the
increased communication overhead.

the better speed performance when number of
workstations is 2, 4 or 8 shows a fact that the
split-and-merge algorithm is best suited for work-
station number of power of 2 due to the inherent
binary tree data structure.

3.2 Heterogeneous Environment

The heterogeneous platform consists of various
types
of workstations including Sun SPARC2, SPARCI0,
SPARC20/51, SPARC20/61 and HP715/33 In or-
der to measure more accurately the relative comput-
ing power of the above machines, we run the sequen-
tial split-and-merge programs for various ST matrix
size on different workstations. In general, the relative
computing power may depend on the problem size and
thus we need to create a table of relative computing
speed of various types of machines for different matrix
size under experiment [5]. However, in the eigenvalue
computation of ST matrices, we observe an interest-
ing fact that the ratio of the total computation time
and the square of the matrix size is almost a constant

25000 +

20000 +

15000 |

10000 +

5000 +

Proceedings of International Conference on Distributed
Systems, Software Engineering and Database Systems

independent of the matrix size, as shown in‘Fig. 5.
The relative speed ratio (normalized with the com-

size*size/time(sec.)

A/A\A,’————A SPARC20/61

x_——-——-—x\x___,_/—x SPARC20/51

o, —9 SPARCIO

———o————o HP7I5/33

G—8—————35———F SPARC2

matrix size

1000x1000 2000x2000 3000x3000 4000x4000

Figure 5: The ratio of the square of matrix size and
the the total sequential execution time (in unit of sec-
onds) vs. the matrix size. ,

puting power of SPARC2 as 1) is listed in Table 2.
The relative computing power is used to determine

machine types || relative speed
SPARC?2 _ 1.00
HP715/33 1.70
SPARCIO0 2.20

SPARC20/51 3.08

SPARC20/61 3.91

Table 2: Normalized computing power of various
types of workstations.

€,
the job partition size on different types of machines
in order to fully exploit the computing power of each
node in the heterogeneous environment.

In the .following, we will consider the speed per-
formance of several different configurations by grad-
ually adding more machines into the whole heteroge-
neous system: The first (second) configuration series
is formed by adding machines of increasing (decreas-
ing) computing power. Fig. 6 and 7 show respectively
the execution time for matrix size of 1000 x 1000 and
4000 x 4000 on heterogeneous configuration series I
and IT where the horizontal axis denotes the accumu-
lated normalized computing power of the heteroge-
neous configuration series with up to 17 machines of
various types.

We have the following observation:

o For the same normalized system computing speed
power, the speed performance with fewer ma-

228

execution time (sec.)
140+ B sparc2+sparc2+sparc2+sparc2+sparc2+sparc2+sparc2+sparc2sparc2+sparc
+hpT15/33+sparc] O+sparc1Q+sparclO+sparc20/51+sparc20/61+sparc20/61
120+ ©-+ sparc20/61+sparc20/61+sparc20/5 T +sparclO+sparc10+sparc10+hp715/33
“ssparc2+sparc2+sparc2+sparc2 +sparc2+sparc2+sparc2 +sparc2
60T
~

] speed ratio

1000 x 1000 B sparc2esparc2esparc2esparc2esparcesparcesparc2+sparclsparcl+sparc
L +hp715/33+sparcl0+sparc]O+sparc10+sparc20/5 1 +sparc20/51+sparc20/61
ST matrices
PR O o 6lasparc20sparc2Stasparcl Osparc DssparclOehpTLSI33
+sparc2+sparc2+sparc2+sparc2+sparc2+sparc2+sparc2+sparc2

30 speed ratio

Figure 6: Execution time (a) and spee-up (b) vs. total
speed ratio for 1000 x 1000 matrix on two different
heterogeneous configuration series.

execution time {sec.)
2500+
G sparc2+sparc2+sparcl+sparc2+sparc2+sparc2+sparc2+sparc2+sparc2+sparcl
2000 +hp715/33+spatc]0+sparclO+sparctO+sparc20/51+sparc20/5 1+sparc20/61
8-~ sparc20/6 1+sparc20/61-+sparc20/5 1 +sparc] 0+sparciO+sparc10+hp715/33
+sparcl4sparc2+sparc2+sparc2+sparc2+spascl4sparc2+sparc2
1500 1
1000 -
500+
. | : | L !
' T : T ']
5 10 15 20 25 30 speed ratio
()
40004000 = sparc2+sparc+sparc2+sparc2+sparc2+sparc2+sparctsparc2+sparc2+sparc
ST matrices +hp715/33+sparclO+sparcl O+sparc] 0+sparc20/5 1 +sparc20/51-+sparc20/61
PP - 006l sparc 061 sparc20SLsparc] Ossparc L sparcl 4bgT15733
+sparc2+sparc2+sparc2+sparc2+sparc2+sparclisparc2+sparc2
07 »
.,
181 e
16¢ |
I' '
144 ;
’
121
104
8 +
64
4._
24
—
5 10 15 20 25

30 speed ratio

Figure 7: Execution time (a) and speed-up (b) vs. to-
tal speed ratio for 4000 x 4000 matrix on two different
heterogeneous configuration series.

229

Joint Conference of 1996 international Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

chines is better because the communication over-
head is roughly proportional to the number of
workstations. Hence, the first configuration
(adding machines with decreasing computing
power) has better performance than the second
one (adding machines with increasing power).
This observation tells us that we should config-
ure the heterogeneous gystem by adding faster
machines first.

e As the overall system computing speed achieves
about 30 times the power of SPARC2, the system
performance can no longer have effective speed-
up increase. The reason for such speed-up sat-
uration phenomenon is that when the total exe-
cution time drops to a quantity comparable with
the communication time, the further increase of
system computing power (and thus further de-
crease of the calculation time) is not significant
compared to the communication overhead, i.e.,
the decrease of the calculation time is offset by
the increase of the communication time. We ex-
pect that the saturation tendency of the speed-
up curve will lag for larger matrices. In other
words, larger matrices will have better speed-up
curve. One way of improving the speed-up ef-
ficiency is to use LAN network of higher speed
(such as ATM network) to reduce the communi-
cation overhead. '

4 Dynamic Load Balancing

Since network workstations support multi-user
multi-process environment, the machine load may
change dynamically in accordance with the number of
users and processes increases. In case of severe uneven
load situation, the difference between the maximum
and minimum Tijgpe Will be large and thus the over-
all speed performance will degrade significantly. The
difference of relative computing power in the heteroge-
neous environment has been taken into consideration
in Sec. 3 to implement more efficient the split-and-
merge algorithm. The task partition based on the ini-
tial computing power in Table 2 is called static load
balancing which tries to distribute the computation
job evenly among the various types of workstations.

However, the initial relative power does not neces-
sarily reflect the real computing power due to time-
changing load discussed above. In this section, we
propose a dynamic load balancing method which de-
termines the job partition by estimating the actual
load situation in each slave machine. The whole com-
putation is divided into several sequential stages de-
pending on the matrix size. The job partition in each
stage is based on the estimation of the relative com-
puting speed of all the machines in the previous stages
instead of the original CPU computing power. Fig. 8
is the job partition diagram where the master is num-
bered 0 and the slaves are numbered from 1 to 8.
The horizontal width of each slave at the task level
represents the size of the job partition at that stage.
Wider slave means higher relative computing power
(ie., lighter load or more powerful CPU) and thus
can be assigned larger job partition.

Proceedings of International Conference on Distributed
Systems, Software Engineering and Database Systems

master (0):

— wail for slaves to send back their eigenvalue results and their current computing power estimate

— sort at the task [evel the data received from slaves
- partition and distri the tasks ding to the current

slaves (1-8):
~ perform Laguerre iterations to find the cigenvalues of the split matricés
~ send back to the master the eigevalues and their current computing power estimation
- wait for the new job partition to be distributed from the master

level

Figure 8: Dynamic load balancing method with mas-
ter (0) estimating the current computing power of
slaves (1-8) and determining the corresponding job
partition.

Fig. 9 shows the execution time under nor-
mal load situation and uneven load situation for
2000 x 2000 matrix running on a heterogeneous sys-
tem composed of a SPARC10, a SPARC20/61, a
SPARC20/51, a HP715/33.and a SPARC2. The load
of the SPARC20/51 is aggravated by adding on pur-
pose a never-stop pseudo-code into the machine to
change its initial computing power. Under such un-
balanced load situation, the implementation with the
dynamic load balancing method always have better
speed performance after the SPARC20/51 is added
into the heterogeneous configuration series.

In order to simulate more practically the time-
changing load, we write a PVM load-emulation
program which randomly generates and distributes
pseudo codes among the composing machines. These
pseudo codes will stop after a prescribed time limit
and the emulation program always keep the total
number of the pseudo codes a constant which depends
on the number of machines in the configuration. Fig.
10 shows the the performance of the dynamic load
balancing method under such dynamic load situation.
We observe that employing the load balancing method
always gives better speed performance.

5 Conclusion

The eigenvalue problem of symmetric tridiagonal
matrices is solved using the split-and-merge algorithm
with Laguerre iterations, and is implemented on both
homogeneous and heterogeneous workstation clusters
for distributed computing. Some interesting observa-
tions are made from the experimental data. We tested
several heterogeneous configuration series by adding
one by one different types of machines and running
the PVM programs for each configuration. With the
same overall normalized computing power, the con-
figuration with fewer machines has better speed per-

ing power estimate of each slave

2000 x 2000 ST matrices
execution time (sec.}

300+ © static foad balancing method

W dynamic load balancing method

150+

50 4 sparcl0+ sparc20/61 + sparc20/51 (heavily loaded) + hp715/33 + sparc2

Il + + { +
T + 1 + + t T

5 10 15

Figure 9: Execution time vs. normalized comput-
ing power on a heterogeneous configuration series
composed of SPARC10, SPARC20/61, SPARC20/51,
HP715/33 and SPARC2 where the load of the
SPARC20/51 is aggravated by adding a never-stop
pseudo code.

2000 x 2000 ST matrices
execution time (sec.)

800 1 sparc2 + hp715/33 + sparc2 + sparc2 + sparc2 + sparc20/61

600 ! O static load balancing method

500 4+ ‘\‘ M dynamic load balancing method

5 10

Figure 10: Execution time vs. normalized comput-
ing power on a heterogeneous configuration series
composed of SPARC10, HP715/33, SPARC2, and
SPARC20/61 where the load of each composing ma-

chine changes with time by a load-emulation program.

230

formance due to the lower communication overhead.
A dynamic load balancing method is also adopted
in order to obtain better speed performance under
the non-controllable network-connected workstations
where the load of each machine may change rapidly
with time due to the multi-user and multi-process en-
vironment. .

References

[1]

2]

(3]

[4]

7]
[8]

(9]

[10]

(1]

(12]

A. Geist, et. al., “PVM: Parallel Virtual Ma-
chine, A User’s Guide and Tutorial for Net-
worked Parallel Computing”, The MIT Press,
May 1994.

C. Giertsen "and J. Petersen, “Parallel Vol-
ume Rendering on a Network of Workstations”,

IEEE Computer Graphics and Applications, pp.
16-23, Nov. 1993.

G. H..Golub and C.F. van Loan, “Matriz Com-
putations”, 2nd ed., The Johns Hopkins Univ.
Press, 1989.

C-K. Lee and M. Hamdi, “Parallel Image Pro-
-cessing Applications on a Network of Worksta-

- tions”, Parallel Computing, pp. 137-160, 1995.
[5]

C. N. Lee, T.-Y. Lee, S.-F. Hsiao and T.-C.
Lu, “Performance Evaluation for Parallel Com-
puting on Network Environments”, Proc. 1996
Workshop on Distributed System Technologies
and Applications, pp. 237-246, May 1996

T.Y. Li and Z. Zeng, “The Laguerre Iteration
in Solving the Symmeiric Tridiagonal Eigen-
problem, Revisited”, STAM J. Sci. Comput., pp.
1145-1173, Sept. 1994.

B. N. Parlett, “The Symmetric Eigenvalue
Problem”, Prentice-Hall Pub., 1980.

J.-T. Pfenning and C. Moll, Optimized Com-
munication Patierns on Workstation Clusters,
Parallel Computing, pp. 373-388, 1995.

V. Strumpen and T. L. Casavant, “Ezploit-
ing Communication Latency Hiding for Paral-
lel Network Computing: Model and Analysis”,
Proc. Intl. Conf. Parallel and Distributed Sys-
tems, Dec. 1994.

C. Trefftz, et. al., “A Scalable Eigenvalue Solver
for Symmetric Tridiagonal Matrices”, Parallel
Computing, pp. 1213-1240, 1995.

S. White, A. Alund and V. S. Sunderam, “Per-
formance of the NAS Parallel Benchmarks on
PVM-Based Networks”, Journal of Parallel and
Distributed Computing; pp. 61-71, 1995.

K. Zielinski, M. Gajecki, and G. Czajkowski,
Parallel Programming Systems for LAN Dis-
tributed Computing, Proc. Intl. Conf. Dis-
t.rgibuted Computing Systems, pp. 600-607, June
1994.

231

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

