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Abstract

Conventional robot force control schemes are basically
model-based methods. However, it is very difficult to
obtain ezact modelling of robot dynamics and there are
various uncertainiies in the contact environment. In
this paper, we propose a reinforcement learning control
approach to overcome these drawbacks. We used arti-
ficial neural network (ANN) as the learning structure,
and applied the stochastic real-valued (SRV) unit as the
learning method. Firstly, simulations of force track-
tng control of a two-link robot arm were carried out to
verify the control design. The results show that even
without the information of the robot dynamic model
and environment states, operation rules for simultane-
ous controlling force and wvelocity can be achieved via
repetitive exploration. However, the learning speed was
quite slow. Therefore in practical control applications,
our approach is to enhance the performance optimiza-
tion. We propose to combine a conventional controller
with the reinforcement learning strategy. Finally, ez-
perimental results are presented to demonstrate the
proposed method.

1 Introduction

Industrial robots are used widely in factories for
welding, painting and material transfer. Attempts are
now to put them to more difficult tasks such as as-
sembling, grinding and deburring. In all these opera-
tions, the robot must come into physical contact with
the environment and the inclusion of force informa-
tion in the control of robot motion is therefore nec-
essary. A number of force control schemes have been
proposed [6,9]. These force control schemes almost all
assume that the dynamic model of the manipulator
and the environment states (shape and stiffness) are
known for the designer. However, this is not always
true in practice. Therefore, these model-based control
schemes have two problems in common: 1) the un-

70

certainty of the dynamic modeling of the manipulator
and 2) the uncertainty of the environment states.
Learning control is a control method which can
achieve desired control performance when a priori in-
formation of the system is unknown or incompletely
known. In this approach the performance is improved
by iterative practicing. Song and Chu [11] had used
reinforcement learning for force tracking of an indus-
trial robot. Under no infbrmatipn about the environ-
ment states, satisfactory force tracking results were
obtained under environment variations. But in that
experiment the learning controller did not learn the
dynamics of the manipulator. To have a complete so-
lution’ of the problem, we propose in this paper a rein-
forcement learning control design which not only learn
the environment states but also the dynammics of the
manipulator. Nevertheless, the learning speed would
be very slow, it would be very difficult to apply the re-
inforcement learning scheme for real-world problems.
For practical applications, we propose alternatively a
strategy to combine a conventional PID controller with
the reinforcement scheme to achieve performance op-
timization under load disturbance. The rest of this
paper is organized as follows. In section 2, we intro-
duce the reinforcement learning control structure. In
section 3, a controller design based on SRV unit is de-
scribed. Section 4 presents simulation results. Practi-
cal experimental results are presented in section 5 to
demonstrate the possibility of reinforcement learning
in real-world applications. We conclude in section 6.

2 Reinforcement learning

Barto[2] pointed out that reinforcement learning es-
sentially involves two main issues: 1) how to translate
an overall performance evaluation of series of control
actions into immediate performance evaluation of the
individual control actions, and 2) how to update the
controller based on the immediate evaluations. In this
study, because the controller is immediately provided



with a performance evaluation for each chosen con-
trol action from the environment and these evaluation
signals are directly used to improve the control perfor-
mance, we will focus on the second problem.

Fig. 1 is the basic reinforcement learning concept.
At time step t, the controller receives a vector of state
inputs z(¢) from the environment X C R" , where
R is the set of real numbers. The controller provides
an output y(t) € Y C R™ based on the current con-
trol law y(z). The critic evaluates the output y(t) in
the context of input z(t) and sends to the controller
an evaluation signal r(t) € R. The evaluation sig-
nal is called reinforcement. The reinforcement r(t) is
determined by the critic according to an external re-
inforcement function r(z(t), y(t)) € N. It is assumed
that there exists an unique function y*(z) that op-
timizes the reinforcement over the input space. The
function y*(z) is called the optimal law. Hence the
objective of the reinforcement learning is to learn the
optimal controller. In order to improve the perfor-
mance, it is necessary to acquire the gradient of the
reinforcement function in terms of control actions for
adjustment of the controller’s parameters. Since the
function of the reinforcement is unknown to the con-
troller, reinforcement learning algorithms are acquired
to have an approach to estimate the gradient of the re-
inforcement value. Werbos [13] divided reinforcement
learning algorithms into two main approaches to find
the gradient: 1) direct approach and 2) indirect ap-
proach. In this paper, we chose the direct approach
as our learning method. We introduce it in the next
section.

3 Control design for robot
force tracking

In the direct approach, the controller actively ex-
plores the control action space and finds gradient in-
formation of the reinforcement function by comparing
reinforcement values in the control space. It is often re-
ferred to as stochastic reinforcement learning. In early
direct approaches, such as learning automata[8] and
the associative reward-penalty algorithm[3], the con-
troller only has discrete action spaces. It can not sat-
isfy many practical control applications that require
continuous control signals. A stochastic reinforcement
learning algorithm for learning function with contin-
uous outputs was proposed by Gullapalli[5]. The al-
gorithm is based on the stochastic real valued (SRV)
unit. It contains two parts. The two parts simultane-

ously learn in real-time. Random actions that might

lead to better performance must be tried. In order
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to enable the exploration, the output of unit 1 p is
treated as mean of the desired stochastic action. The
output of unit 2 is an estimation of the expected value
of the reinforcement signal, which is used to compute
the standard deviation o. This can be interpreted
as a search-extent for a better action. The random
search is accomplished by taking the normal distri-
bution N (g, o) for each input. A normal distributed
random variable a is produced. An output function f
maps a to the control output y. Fig.2 shows the robot
force tracking control design based on stochastic rein-
forcement learning. Since the original SRV structure is
for single output learning element, we put two of them
in parallel to learn respectively the joint 1 torque and
joint 2 torque. Because single performance evaluation
is required, there is only one reinforcerment predictor
(unit 2). The learning algorithms of unit 1 and unit 2
are discussed below. '

3.1 The learning element

Unit 1 is the learning element. In general, its output
can be expressed as:

y(k) = N[W, z(k)] (1)

where N, represents the controller network, W is the
weight matrix. Our aim is to obtain optimal control
actions in terms of the critic 7, therefore the weight
parameters are adjusted by:

wk +1) = w(k) + Aw(k) (2)

and
N ar(k+1)
w(k)

r(k + 1) Ou(k)
ou(k)y Ow(k)

Aw(k)

)

where « is the learning rate, w is an element of W.
Because the system model is unobtainable, therefore
we can not have the derivative of critic r relative to
the mean p, (%:(%)Q), Gullapallifs] proposed a ran-
dom search approach to solve this problem. Suppose
the system critic is a valve between 0 and 1, and the

smaller the better performance, then we have:

Or(k + 1) (a(k) — u(k))
ou(k) o (k)

If the actual critic is smaller than the predicted critic,
or when #(k) — r(k + 1) > 0, the direction of search-
ing is correct, so the mean value p(k) is adjusted to-
ward a(k). Conversely, if the actual critic is larger
than the predicted critic, then p(k) is adjusted away

= (k) — r(k +1)) (4)
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from a(k). Standard deviation ¢ can be treated as
search amount; when 7 is smaller, then the system
performance is better, and the control action is closer
to the ideal value, so the search amount should be
smaller, in other wards, the standard deviation o be-
comes smaller. This means the function s linking 7
and o should be a monotonically increasing function
of #.

3.2 The reinforcement predictor

Unit 2 predicts(tracks) the evaluation feedback. An
ANN, for instance, can be used for this purpose. The
predicted critic can be expressed as:

#(k) = N[V, z(k)] (5)
Where N, represents the critic network, [z(k),7] is
the input-output pair at time instant k, V is the
weight matrix of the ANN. The method of least mean
squre(LMS) is usually used as the learning rule for ad-
justing the weight parameters. The cost function is

B =3Ik 1) — () (©)
k

The updating rules are:

vk +1) = v(k) + Av(k) (7)

and

o (k)

Bo(k) = B(r(k +1) = #(B) 5703

+ AAu(k —1) (8)
where 3 is the learning rate, A is the momentum con-
stant added to speed-up convergence, which are posi-
tive and less than one; v is an element of V.

The SRV unit only solves the problem of reinforce-
ment learning. It is non-associative. In practice, mem-
ory is an important element in learning control de-
sign. The learning controller must remember the cor-
rect mapping of the input and output variables via
learning. There are many structures for associative
memory, such as boxes system][7], cerebellar model ar-
ticulation controller (CMAC)[1], artificial neural net-
works(ANN) and fuzzy-neural networks. In these ap-
proaches, boxes system and CMAC approaches require
proper partition of the input space, and fuzzy-neural
network structure requires the set-up of the fuzzy rules
and membership functions[12]. ANN have been used
for associative memory in many applications. Any
nonlinear mapping can be accomplished by a three
layered- feedforward network if the hidden layer unit
is adequate. The generalization property makes ANN
popular, we adopted it as the learning structure and
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train it by error-backpropagation algorithm[10]. Fig.
3 shows the ANN structure used in the reinforcement
learning controller. It has two hidden layers. Each
hidden layer has 12 processing elements. There are
six inputs for the ANN: force error, velocity error, an-
gular position of joint 1 and joint 2 (6, 83), angular
velocity of joint 1 and joint' 2 (6; and 63). The control
actions are the torques for the two joint motors. The
activation functions of neuron f; and neuron f; are

1

fi(z) = falz) = T3

(9)

The activation functions f3 and f4 are

2
fa@) = (1= 1) x 6 (10)
falw) = (1= 1%-@-) % 3. (11)

The functions s;and sy are linear function

s1(z) = s2(z) = 0.15z. (12)

4 Simulation results

To verified the proposed design, computer simula-
tions for force tracking control of a two-link robot arm
have been carried out. The SCARA type robot manip-

ulator has two parallel links. The length and mass of

each link are: §y = 0.4m,l, = 0.3m,m; = 15kg, my =
3kg. We assumed the environment can be modeled as
a stiffness. In other words, the normal force is pro-
portional to the difference between environment sur-
face position and set-point position of the end-effector.
Under the condition of no prior information about the
robot model and environment, the controller was set
to learn the relationship between the dynamics of the
robot arm and the environment stiffness. The dynamic
model used in these simulations is described below.
For a robot manipulator with two parallel-link (with-
out gravity terms), we have:

T=M(©)O+V(0,0) (13)

where M(O) is the inertial term, and V(©,©) is the
nonlinear term:
M(©) =

|

V(0,0) = [

l%mz + 2l lamy cos 8, + lf('n’n -+ mz)

l%mg + lilymg cos by l%mz

(14)

-—mzlllzﬂ'zzsin 92 - 2m211129‘10'2 sin 92 }

(15)

Tnzlllze.lz sin 02

l%mz + lilamg cos 82



In Cartesian coordinate system, the dynamics equa-
tion can be expressed as:

f = M:(0)+V:(0,0) (16)

where
= JT(O)r
M,(0) = JT(O)M(©)J"1(8),
Vx(0,0) I T©)(V(,0) - M(0)J~1(8)J(0)0).

In the simulations, the desired contact force and ve-
locity were: Fg = 1.0N, V3 = 5em/s respectively. The
reinforcement signal was

Va—V)
pa=)
If r=1, the failure signal would be recognized for safety
reason, preventing the damage of the tool. The system
would reset to initial condition(f; = 45°,0; = —45°)
as this occurred. The stiffness of the contact environ-
ment was 100 N/m. We have tested the control design
using two environment configurations: 1) a line path
of 50cm and 2) a circular path of 8cm radius. Only
the results of circular path, which is more difficult to
track, are presented here. Fig. 4 shows the time when
the robot arm had moved before the failure occurred.
Note that the robot was set to move 10 seconds. Fig.
5 and Fig. 6 show force and velocity response respec-
tively. Fig. 7 shows the trajectories of joint 1 and joint
2. From the above simulation results, it can be seen
that the ANN controller have learned the dynamic re-
" lationship between the robot manipulator and the en-
vironment. However, the learning speed is slow. This
is a great problem in practical applications.

r = mas(1.0, %(1 FamF |+ (17)

5 Proposed approach

For demonstrating the possibility of using reinforce-
ment Jearning control scheme in real-world applica-
tions, and taking structure safety into consideration,
we propose a new control strategy and apply reinforce-
ment learning to performance optimization. It is sim-
ilar to the idea of Franklin[4]. Fig. 8 is the control
block diagram. Conventional PID controllers are im-
plemented to control the two-link robot arm to track
a desired trajectory with satisfactory performance. It
is well known that there exists nonlinearity and uncer-
tainties in robot tracking control. Furthermore, load-
disturbance will deteriorate the performance. We pro-
posed this control scheme to improve the tracking per-
formance by adding an on-line learning controller. To
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eliminate the interference between the PID controllers
and the learning controller, we design the inputs of
learning controller to include e(k), e(k-1), e(k-2), u(k-
1), 0 and 6, where e(k), e(k-1), e(k-2) and u(k-1) are
also the inputs of the PID controllers. It is desirable
that the learning controller estimates the output of the
PID controllers and compensates an adaptive torque.
Fig. 9 shows the experimental setup. The laboratory-
made two-link SCARA type manipulator was powered
by two direct-drive motors. The control scheme was
implemented on a dSPACE DSP controller card. Two
experiments have been conducted for verification of
the proposed control scheme.

5.1 Experimental results of one-link

manipulator

In this experiment, only the second link was used.
The trajectory for this link was given below:

180° x kT x 2, if kT < 0.5
g -] 180°, if 0.5 < kT < 1.0
47) 180°—180° x (kT —1)x 2, if1.0<kT < 1.5
0°, if 1.5 < kT
(18)
82 = foq + 64T (19)

where T is the sampling period, which was 1ms; k
is sampling instance; 64 is the desired angular veloc-
ity; 6,4 is the goal value-of previous time step. In
the experiments, we verified only the position track- .
ing. Force control was not implemented. The ANN
had one hidden layer with 10 processing node. The
critic was

| 0a—0 |
= 20
1.5 (20)
The PID controller was designed as follows:
U(S) 1
——= =K, + Ki=+ K 21

U(k) Uk — 1)+ K, (e(k) — e(k — 1)) + K;e(k)

+Ky(e(k) — 2e(k — 1)+ e(k —2))  (22)
where K; = K;P, K; = %, k is the sampling instant.
A set of controller coefficients, K, = 3.0, K; = 0.005,
K; = 1.5 were set to give satisfactory performance.
Then we added a 3kg load as disturbance to the sys-
tem, the system response oscillated. Fig. 10 shows the
experimental result after 100 training iterations. It can
be seen from the figure that the learning controller not
only eliminated the disturbance but also demonstrated

faster rise time. Fig. 11 shows the comparison of the
position error before and after learning.
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5.2 Experimental results of two-link
manipulator

In this experiment, the two-link manipulator was
commanded to follow a desired trajectory given below:

64 = —90° X cos(180°kT’) (23)

In this case, the coefficient K; = 0, therefore we have

ues) _
TG = Ko+ KaS. (24)
U(k) = Kpe(k) + Ky(e(k) —e(k—1))  (25)

We set K, :(?) and K; :((1):2) to obtain satisfactory
responses. In the experiments, during 0° < 6; < 15°,
we added a 20N.m noise torque to motor 1, and during
0° < 65 < 15°, we added a 5N.m noise torque to
motor 2. The Fig. 12 shows the experimental results
of tracking performance after 180 training iterations.

6 Conclusions

In this paper, we proposed a reinforcement learn-
ing control strategy, which was tested for robot ma-
nipulators. In the simulations, the controller learned
the robot dynamic model and the environment states
by reinforcement learning method. The uncertainty
problem is solved , because the controller has the on-
line learning capability. However, the learning speed is
slow for complex nonlinear dynamics of robot manipu-
lation in compliant motion. To be more practical, the
reinforcement learning scheme is combined with a con-
ventional PID controller to obtain faster convergence
speed of learning, while improving the system perfor-
mance. In the experiments, we have demonstrated the
capacity of reinforcement learning to eliminate load
disturbance applied to robot manipulators. In the fu-
ture, more efficient learning structure needs to be fur-
ther investigated to increase the convergence of the
learning phase.
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