Proceedings of International Conference on Distributed
Systems, Software Engineering and Database Systems

A Parallel Recursive H/V Partitioning-Method for Mapping Unstructured
Finite Element Graphs on Processor Meshes’

Ching-Jung Liao, Chin-Feng Lin, and Yeh-Ching Chung*

Department of Information Engineering
Feng Chia University, Taichung, Taiwan 407, ROC
Tel : 886-4-4517250 x2706 Fax : 886-4-4515517
Email : cjliao, cflin, ychung@pine.iecs.fcu.edu.tw

Abstract

To efficiently execute a finite element modeling
program on a distributed memory multicomputer, we
need to distribute the tasks of a finite element graph to the
processors of a distributed memory multicomputer as
evenly as possible and minimize the communication cost
of processors. In this paper, we present a parallel
recursive H/V (Horizontal/Vertical) partitioning method
to efficiently map unstructured finite element graphs on
processor meshes. Given an unstructured finite element
graph and an m x n processor mesh, this method tries to
balance the computation load and ‘minimize the
communication cost simultaneously by recursively
applying the horizontal/vertical partitioning method to
divide the unstructured finite element graph and the
processor mesh into two subgraphs and two sub-
processor meshes, respectively, until all sub-processor
meshes contain one processor. To evaluate the
performance of the parallel recursive H/V partitioning
method, we have implemented the proposed method on
simulated processor meshes along with the nearest-
neighbar mapping method [17]. Five unstructured finite
element graphs are used as test samples. The simulation
results show that the proposed method outperforms the
wearest-neighbor mapping method for all test samples.

Keywords: Unstructured finite element graphs, processor
meshes, mapping, partitioning.

1 Introduction

In parallel computing, it is important to map a
 parallel program on a parallel computer such that the total
execution time of the parallel program is minimized. In
general, a parallel program and a parallel computer can be
represented by a task graph and a processor graph,
respectively.. For a task graph, nodes represent tasks of a

parallel

‘task allocation problem.

program and edges denote the data
communication needed between tasks. The weights
associated with the nodes and edges represent the
computation and the communication cost, respectively.
For a processor graph, nodes and edges denote processors
and communication channels, respectively. By using the
graph model, the mapping problem can be treated as the
In the task allocation problem,
we try to distribute the tasks of a parallel program to the
processors of a parallel computer as even as possible and
minimize the communication cost among processors.
Since the task allocation problem is known to be NP-
completeness [9], many heuristic methods were proposed
to find satisfactory sub-optimal solutions [7-8, 13-14, 16].

The finite element method is widely used for the
structural ‘'modeling of physical systems [15]. 'In the
finite element model, an object can be viewed as a finite
element graph, which is a connected and undirected graph
that consists of a number of finite elements. Each finite
element is composed of a number of nodes. The number
of nodes of a finite element is determined by an
application. Due to the properties of computation-
intensiveness and computation-locality, it is very
attractive to implement the finite element method on
distributed memory multicomputers [2-3, 11-12].

In the context of parallelizing a finite element
modeling program that uses iterative techniques to solve
system of equations [2-3], a paralle]l program may be
viewed as a collection of tasks represented by nodes of a
finite element graph. Each node represents a particular
amount of computation and can be executed
independently. In each iteration, a node needs to get
data from other nodes in the same finite element before
the next iteration can be performed. To -efficiently
execute a finite element modeling program on a
distributed memory multicomputer, we need to distribute
the tasks of a finite element graph to the processors of a
distributed memory multicomputer as evenly as possible

" ! The work of this paper was partially supported by NCHC of R.O.C. under contract NCHC-86-08-021.

2 Correspondence addressee.

232

(the load balancing criterion) and minimize the
communication cost of processors (the minimum
communication cost criterion).

Many finite element graph mapping methods have
been addressed in the literature. In [5], a pairwise
interchange method was proposed to map finite element
graphs on a finite element machine. This approach
assumes that the number of nodes of a finite element
graph is fewer than or equal to the number of processors
of a finite element machine. An initial mapping is
generated by assigning node 7 of a finite element graph to
processor i of the finite element machine. Then, the
pairwise interchange heuristic is applied to minimize the
communication cost of processors.

Berger and - Bokhari [4] proposed a binary
decomposition method to partition a non-uniform mesh
into modules so that each module has the same amount of
computation load. These modules were then mapped on
meshes, trees, and hypercubes. This method does not try
to minimize the communication cost.

- In [6], a two-way stripes partition mapping and a
greedy assignment mapping algorithms were addressed.
The two-way stripes partition mapping tries to minimize
the communication cost by assigning a node and its
neighbor nodes of a finite element graph to the same
processors or neighbor processors of a hypercube. Then
a load transfer heuristic was performed to balance the
computation load of processors. The greedy assignment
mapping tried to minimize the communication cost and
balance the computation load simultaneously.

Grama and Kumar [10] presented .scalability
analysis of three finite element graph partitioning
strategies, namely striped partitioning, binary
decomposition, and scattered decomposition. The
analysis was performed by using the Isoefficiency metric,
which helps in predicting performance of these schemes
on a range of processors and architectures.

In [17], a nearest-neighbor mapping approach was
proposed to map planar finite element. graphs on
processor meshes. This approach uses the stripes
partition (stripes mapping) strategy to minimize the
communication cost of processors and then uses the
boundary refinement heuristic to balance the computation
load of processors. However, the boundary refinement
heuristic does not guarantee the balancing of the
computation load.

Williams [18] proposed three parallel load
balancing algorithms, orthogonal recursive bisection,
eigenvector recursive bisection, and a simple parallel
simulated annealing, to deal with the load imbalancing
problem of a solution-adaptive finite element program.
The performance analysis shows that the time to execute
orthogonal recursive bisection is the fastest and the

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung,. Taiwan, R.0.C.

executing of parallel simulated annealing is time
consuming. But the mapping produced by simulated
annealing saves of 21% in the execution time of a finite
element mesh than the mapping produced by orthogonal
recursive bisection.

In this paper, we propose a parallel recursive H/V
(Horizontal/Vertical) ‘partitioning ‘method to efficiently
map unstructured finite element graphs on processor
meshes. Given an unstructured finite element graph and
an m x n processor mesh, this method tries to balance the
computation load and minimize the communication cost
simultaneously by recursively applying the
horizontal/vertical partitioning method to divide the
unstructured finite element graph and the processor mesh
into two subgraphs and two sub-processor meshes,
respectively, until all sub-processor meshes contain one '
processor. To evaluate the performance of the parallel
recursive H/V partitioning method, we have implemented
the proposed method on simulated processor meshes
along with the nearest-neighbor mapping method [17].
Five unstructured finite element graphs are used as test
samples. The simulation results show that the proposed
method outperforms the nearest-neighbor mapping
method for all test samples. : .

The paper is organized as follows. The
definitions and terminology used in this paper will be
given in Section 2. In Section 3, we will present the cost
model of mapping unstructured finite element graphs on
processor meshes. The' parallel -recursive H/V
partitioning method will be described in details in Section
4. In Section 5, the performance evaluation and

- simulation results will be presented. The _éonclusions

233

and future work will be given in Section 6.

2 Preliminaries
2.1 Finite Element Graphs

The finite element method is widely used to solve
partial differential equations by using either a direct or an
iterative approach. In the finite element model, an
object can be viewed as an finite element graph, which is
a connected and undirected graph that consists of a
number of finite elements. The shape and the number of
nodes of a finite element are determined by applications.
In this paper, we consider the mapping of two-
dimensional finite element graphs on processor meshes.

Definition 1: In an finite element graph, two nodes
node(x) and node(y) are adjacent if (node(x), node(y)) is
an edge of the finite element graph.

Definition 2: In an finite element graph, two nodes
node(x) and node(y) are neighbors if node(x) and node(y)
are in the same finite element

In Figure 1, an example of a 21-node finite element

Proceedings of international Conference on Distributed
Systems, Software Engineering and Database Systems

graph consisting of 24 finite elements is shown.

Figure 1. An example of a 21-node FEG with 24 finite
elements (the circled and uncircled numbers denote the
finite elémen’_c numbers and node numbers, respectively).

2.2 Processor Meshes

In a processor mesh, processors are arranged into a
two-dimensional lattice. ~ Figure 2 illustrates a two-
dimensional mesh. Processors in the boundary of a
mesh is called boundary processors. For those
processors other than boundary processors in a mesh are
called internal processors. '

Definition 3: Two processors are adjacent
processors in a mesh if there is a link between them.

Definition 4: Two processors are neighbor
processors in a mesh if they are adjacent processors or
one processor is in the northeast, or the northwest, or the
southeast, or the southwest of the other. ’

To represent the processors of a mesh, we use the
row-major labeling method.. Given an m x n processor
mesh, when the row-major labeling method is applied,
processor in the ith row and the jth column is labeled as
P, where i=1tom,j=1ton, and k= (i-1) x n+ (j-1).
For example, the processor in the second row and the

_ third column of the processor mesh shown in Figure 2 is
labeled as P, when the row-major labeling method is
applied. In Figure 2, the adjacent processors of Py are Py,
P, P,,and P,,.. The neighbor processors of P; are P, P,,
P;, Py, Py, Pyy, Py, and Py,

PP 7]

(LN (1,2) (1,3) 14 (L,5)

N R e LR e Ll i
@.n 2,2) 2.3) 24 2.5

PP P {7 7]
3.0 3.2) 3.3 (3.4) 3.5

Figure 2. A 3 x5 mesh.

“communication cost since

* 3 The Cost Model of Mapping Unstructured Finite

Element Graphs on Processor Meshes

To map an N-node unstructured finite element
graph on an M = m x n processor mesh, we need to assign
nodes of an unstructured finite element graph to
processors of a processor mesh. There are M mapping
ways. The execution time of an unstructured finite
element graph on a processor mesh under a particular
mapping MAP; can be defined as follows:

Tyu(MAP)) = Mm@ { Ty MAP;, P)) + Toomn(MAP;, P}, (1)

where T,,(MAP)) is the execution time of a parallel finite
element program on a processor under mapping MAP;,
Toomp(MAP;, P)) is the computation cost of processor P;
under mapping MAP;, and T.pm(MAP, P;) is the
communication cost of processor P; under mapping MAP;,
where i=1,.., M andj=0, ..., M-1.

The cost model used in Equation 1 is assuming a
synchronous mode of communication in which each
processor goes through a computation phase followed by
a communication phase. Therefore, the computation
cost of processor P; under a mapping MAP; can be
defined as follows:

Tcomp(mP i P j) =8 x loadl(P j) X‘ Tlask: (2)

where S is the number of iterations performed by a finite
element method, load(P;) is the number of nodes of an
unstructured finite element graph assigned to processor P,
and Ty is the time for a processor to execute a task.

In our communication model, we assume that
every processor can communicate with all other
processors in one step. This assumption is valid for
most of state-of-the-art parallel computers using the
wormhole routing techniques. In general, it is possible
to overlap communication with computation. In this
case, Tom(MAP;, P;) may not always reflect the true
) it would be partially
overlapped with computation. However, Tomm(MAP;, P))
should provide a good estimate for the communication
cost. Since we use synchronous communication mode,
T oomm(MAP;, P;) can be defined as follows:

Tcomm(AMPi) Pj) = S X (5)(TA‘emp + ¢ X Tc), (3)

where S is the number of iterations performed by a finite
element method, & is the number of processors that
processor P; has to send data to in each iteration, T, is
the setup time of the I/O channel, ¢ is the total number of
data that processor P; has to send out in each iteration,

234

and T is the data transmission time of the /O channel per
byte.

Let T,, denote the execution time of an
unstructured finite element graph on a processor mesh
with one processor. The speedup of a mapping MAP; is
defined as

T. seq

SpeedUp(MAP) = ————
peedUpMAR) = o AP

)

The objective of mapping an unstructured finite element
graph on a processor mesh is to minimize the execution
time or maximize the speedup of a finite element
modeling program, that is, min{T,,(MAP)} or
max{SpeedUp(MAP))}, where i 1, From
Equation 1, we know that the processor with the maximal
summation value of the computation cost and the
communication cost determines the execution time of a
finite element modeling program on a processor mesh
under a particular mapping. There are three ways to
minimize the execution time of a finite element modeling
program on a processor mesh.
~ Method 1 : Fitst minimize the communication cost,

then balance the computation load.

Method 2 : First balance the computation load,
then minimize the communication cost.

Method 3 : Minimize the communication cost and
balance the computation load simultaneously.

eeey

4 The Parallel Recursive H/V Partitioning Method

Given an N-node unstructured finite element graph,
G, and an M = m x n processor mesh, H, the parallel
recursive H/V partitioning method tries to balance the
computation load and minimize the communication cost
simultaneously by recursive applying the
horizontal/vertical partitioning method to divide the
unstructured finite element graph and the processor mesh
into two subgraphs and two sub-processor meshes,
respectively, until all sub-processor meshes contain one
Processor. '

Initially, all nodes of a finite element graph are in
processor P,. If m > n, then a horizontal partitioning
method is applied. For the processor mesh, the
horizontal partitioning method divides the processor mesh
into two sub-processor meshes H, and H,, where H, and
H, have [m/2] x nand [m/2] x n processors, respectively.
For the unstructured finite element graph, the horizontal
partitioning method divides the unstructured finite
element graph into two subgraphs, G, and G,, where G,
and G, have m/2/ m x N and N — (Lm/2]/ m x N) nodes,
respectively. To divide G into G, and G,, nodes of G are
first labeled by using the horizontal stripe labeling

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

method. The horizontal stripe labeling method is
performed as follows:

Step 1. Initially, let the value of label be 1.

Step 2: Let WL be the set of nodes in G without
labels. For those nodes in WL with the minimal y
coordinate, find node node(s) that has the minimal x
coordinate and label node(s) as label. ‘ ‘

Step 3: For those nodes that are neighbors of
node(s), find the node node(r) that has the minimal y
coordinate. If there are more than two such nodes,
choose one of them randomly.

Step 4: If the x coordinate of node(?) is greater than
that of node(s), then node(f) is labeled as label. Let
node(s) be node(f) and continue Step 3. Otherwise, goes
to Step 5.

Step 5: Increase the value of label/ by 1. For those
nodes that are neighbors of nodes with label label~1,
label them as label. Continue Step 5 until no more
neighbor nodes can be found.

.. - Step 6 : If there are nodes without labels, increase
the value of label by 1. Continue Step 2.

After each node in G is labeled, nodes with label 1
are assigned to G,. If the number of nodes assigned to
G, is less than Lm/2] / m x N, nodes with label 2 are
assigned to Gy, and so on, until the number of nodes
assigned to G, is equal to |m/2]/ m x N. Nodes that are
not assigned to G, are assigned to G,. After G is divided
into G, and G,, G, and G, are assigned to H, and H,
respectively, that is nodes of G, and G, are assigned to
processors P, and P;, respectively, where k = Lm/2] x n.

If m < n, then a vertical partitioning method is
applied. For the processor mesh, the vertical
partitioning method divides the processor mesh into two
sub-processor meshes H, and H,, where H, and H, have m
x Ln/2] and m X [n2] processors, respectively. For the
unstructured finite element graph, the vertical partitioning
method divides the unstructured finite element graph into
two subgraphs, G, and G,, where G, and G, have | n/21/ n
x Nand N — (/2] / n x N) nodes, respectively. To
divide G into G, and G,, nodes of G are first labeled by
using the vertical stripe labeling method. The vertical
stripe labeling method is similar to the horizontal stripe
labeling method and is performed as follows:

Step 1: Initially, let the value of label be 1.

Step 2: Let WL be the set of nodes in G without
labels. For those nodes in WL with the minimal x
coordinate, find node node(s) that has the minimal y
coordinate and label node(s) as label.

Step 3: For those nodes that are neighbors of

‘node(s), find the node node() that has the minimal x

235

coordinate. If there are more than two such. nodes,
choose one of them randomly.
Step 4: If the y coordinate of node(?) is greater than

Proceedings of International Conference on Distributed
Systems, Software Engineering and Database Systems

that of node(s), then node(f) is labeled as label. Let
node(s) be node(t) and continue Step 3. Otherwise, goes
to Step 5.

Step 5: Increase the value of label by 1. - For those
nodes that are neighbors of nodes with label /abel-1,
label them as label. Continue Step 5 until no more
neighbor nodes can be found.

Step 6 : If there are nodes without labels, increase
the value of labe/ by 1. Continue Step 2.

After each node in G is labeled, nodes with label 1
are assigned to G,. If the number of nodes assigned to
G, is less than [#/2] / n x N, nodes with label 2 are
assigned to G,, and .so on, until the number of nodes
assigned to G, is equal to [#/2] / n x N. Nodes that are
not assigned to G, are assigned to G,. After G is divided
into G, and G,, G, and G, are assigned to H, and H,,
respectively, that is nodes of G, and G, are assigned to
processors P, and P, respectively, where k= Lnr2].

After a horizontal/vertical partitioning method is
applied once, processors P, and P, continue applying the
horizontal/vertical partitioning method on nodes assigned
to them recursively until all sub-processor meshes contain
one processor. The algorlthm is given as follows.

algorithm_parallel H/V - partitioning(P, G, H, m, n, n,
N)
/* Initially, P;=Pyand v’ =n. */

1. if ((m=1) && (n= 1)) then exit.

2. For each processor, if (my_rank=P;) {

3. if(m>n)then {

4. Divide H into two sub-processor meshes H,
and H,, where H, and H, have Lm/2] x n and
[mi2]xn processors, respectively.

s. Divide G into two subgraphs G, and G, by
using the horizontal partitioning method,
where G, and G, have Lmi2)/ m x Nand N -
(Lm/2]/ m x N) nodes, respectively.

6. k=i+lmi2]lxnw. N,=Lmi2]/mxN.
Ny=N—(m/2)/ m x N).
7. doall {
8. parallel H/V partitioning(P;, G,, H,,
Lm/2), n, »’, N,).
9. parallel_H/V _partitioning(P;, G,, Hs,

[mi2], n,n, N).}

10. } /* end of then part */

11. else {

12. Divide H into two sub-processor meshes H,
and H,, where H, and H, have m x Ln/2] and m
x| n/2 | processors, respectively.

13. Divide G into two subgraphs G, and G, by
using the vertical partitioning method, where

G,and G, haveln/2)/nxNand N- (n/21/
n x N) nodes, respectively.

14, k=i+ln2l N, =ln2l/nxN.

, =N-(n2]/ nxN).

15. -doall {

16. parallel H/V partitioning(P;, G,, H,,
m, |_n/2J, n’, N)).
17. parallel H/V partitioning(P,, G,, H,,

m, n2], n, Ny}
18. } /* end of else part */
19.}
end of parallel H/V _partztzonmg

In algorithm parallel H/V partitioning, initially
we assume that an N-node unstructured finite element
graph G and an M = m x 1 processor mesh H are given.
Lines 7 to 9 and 15 to 17 form two doall clauses.
Statements in doall clauses are executed in parallel.
Lines 1, 2, 3, 4, 6, 11, 12, and 14 take constant time.
Lines 5 and 13 take O(V) time. Lines 8, 9, 16, and 17
are recursive calls. The depth of the recursive calls is
O(logm+logn). Lines 8 and 16 take O((logm-+logn)xN)
time. The recursive calls of lines 9 and 17 involve data
communication between processors P; and P;. The total
time to perform data communication is O((logm+logn)x
Tyenp + NXT,), where T, and T, are the setup .time and
data transmission time per byte of the I/O channel,
respectively. Lines 9 and 17 take O((logm+logn)xN +
(logm+logn)xTyu, + NxT,) time. The time complexity
of algorithm parallel H/V_partitioning is O((logm-+logn)
xN + (logm+logn) x Ty, + N x T).

5 Performance Evaluation and Simulation Results

Since we do not have a processor mesh, we
simulate a processor mesh on a SP2 parallel machine. In
a SP2 parallel machine, the interconnection network used
is a crossbar network. Therefore, it is quite easy to
embed a processor mesh on a SP2 machine using the row-
major labeling method. We have implemented the
parallel recursive H/V partitioning algorithm (H/V) on
simulated processor meshes along with the nearest-
neighbor mapping (NNM) method proposed in [17].
The proposed algorithm is written in C and MPI
communication primitives and the nearest-neighbor
mapping algorithm is written in C.

In dealing with the unstructured finite element
graphs, the distributed irregular mesh environment
(DIME) [19] is used. DIME is .a programming
environment for doing distributed calculations with
unstructured triangular meshes. The mesh covers a two-
dimensional manifold, whose boundaries may be defined

236

by straight lines, arcs of circles, or Bezier cubic sections.
In also provides functions for creating, manipulating, and
refining unstructured triangular “meshes. Since - the
number -of nodes in an unstructured triangular mesh
cannot over 10,000.in DIME, in this paper, we only use
DIME to generate the initial test samples. From the
initial test samples, we use our refining algorithms and
data structures to generate the desired test samples. The
five test samples used for the performance evaluation are
simple, letter, hook, font, and truss. The shapes of the
five test samples are shown in Figure 3. = The number of
nodes and elements for each test sample are shown in
Table 1. For the presentation purpose, the number of
nodes and the number of finite elements shown in Figure
3 are less than those shown in Table 1.

To compare the performance of the proposed
method with the nearest-neighbor mapping method, nodes
of the test samples are first distributed to processors of
processor meshes using both methods. Then, the
computation for each processor is carried out. In our
‘example, the computation is to solve Laplaces’s equation
(Laplace solver). The algorithm of solving Laplaces’s
equation is similar to that of [1]. Since it is difficult to
predict the number of iterations for the convergence of a
Laplace solver, we assume that the maximum iterations
executed by our Laplace solver are 1000.

Table 2 shows the execution time of the test
samples on processor meshes under both mapping
methods. According to Equation 4, we can calculate the
speedups of the test samples under both mapping methods.
The speedups show that the proposed method
outperforms the nearest-neighbor mapping method for all
the cases. The main reason is that the nearest-neighbor
mapping method needs to maintain the neighbor mapping
property. According to [17], a mapping is called a

neighbor mapping if any two neighbor nodes in a finite

element graph are assigned to the same processor or two
neighbor processors of a processor mesh under the
mapping. Since the nearest-neighbor mapping needs to
maintain the neighbor mapping property, the nodes may
not be equally assigned to each processor. This will
result in a load imbalancing situation, that is, increase the
overall computation time. In our method, nodes are
guaranteed to evenly distributed to each processor.
Therefore, the speedups produced by our method are 10%
~ 25% better than those of the nearest-neighbor mapping
method for most of the cases.

6 Conclusions and Future Work

To efficiently execute a finite element modeling

program on a distributed memory multicomputer, we

need to distribute the tasks of a finite element graph to the

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

processors. of a distributed memory multicomputer as
evenly as possible and minimize the communication cost
of processors. In this paper, we have presented a
parallel recursive H/V (Horizontal/Vertical) partitioning
method to efficiently map unstructured finite element
graphs on processor meshes. Given an unstructured
finite element graph and an m x n processor mesh, this
method ftries to balance the computation load and
minimize the communication cost simultaneously by
recursively applying the horizontal/vertical partitioning
method to divide the unstructured finite element graph
and the processor mesh into. two subgraphs and two sub-
processor meshes, respectively, until .all sub-processor
meshes contain one processor. The cost model of
mapping finite element graphs on processors meshes were
also described. To evaluate the performance of the
parallel recursive H/V partitioning method, we have
implemented the proposed method on simulated processor

_meshes along with the nearest-neighbor mapping method

[17]. Five unstructured finite element graphs were used
as test samples. The simulation results show that the
proposed - method outperforms the nearest-neighbor
mapping method for all test samples. ,

In this paper, we only consider the mapping of
two-dimensional finite element graphs on processor
meshes. In the future, we will explore the methods of
mapping three-dimensional finite element graphs on
distributed memory multicomputers.

References :

I. LG. Angus, G.C.Fox, J.S. Kim, and D.W. Walker,
Solving Problems on Concurrent Processors, Vol. 1,
N. J.: Prentice-Hall, 1990.

2. C. Aykanat, F. Ozguner, S. Martin, and SM.
Doraivelu, "Parallelization of a Finite Element
Application Program on a Hypercube
Multiprocessor," Hypercube Multiprocessor, pp. 662-
673, 1987

3. C.Aykanat, F. Ozguner, F. Ercal, and P. Sadayaooan,
"Tterative Algorithms for Solution of Large Sparse
-Systems of Linear Equations on Hypercubes," IEEE
Transactions on Computers, Vol. 37, No. 12, pp.
1554-1568, 1988

4. M.J. Berger and S.H. Bokhari, "A Partitioning
Strategy for Nonuniform Problems on
Multiprocessors," IEEE Transactions on Computers,
Vol. C-36, No. 5, pp. 570-580, 1987.

5. S.H. Bokhari, "On the mapping problem," IEEE
Trans. on Computers, Vol. C-30, pp. 207-214, 1981.

6. Y.C. Chung and S. Ranka, "Mapping Finite Element
Graphs on Hypercubes," The Journal of
Supercomputing, Vol. 6, No.3, pp. 257-282, 1992.

237

Proceedings of {nternational Conference on Distributed
Systems, Software Engineering and Database Systems

7.

_ Partitioning Approaches

10.

11

13.

14,

F. Ercal, J. Ramanujam, and P. Sadayappan, "Task
Allocation onto a Hypercube by Recursive Mincut
Bipartitioning,” Journal of Parallel and Distributed
Computing, 10, pp. 35-44, 1990.

F. Ercal, J. Ramanujam, and P. Sadayappan, "Cluster
to Mapping Parallel
Programs onto a Hypercube," Parallel Computing, 13,
pp. 1-16, 1990. ~

MR. Garey and D.S. Johnson, Computers and
Intractability, A Guide to Theory of NP-
Completeness. San Fraricisco, CA: Freeman, 1979.
A.Y. Grama and V. Kumar, "Scalability Analysis of
Partitioning Strategy for Finite Element Graphs: A

Summary of Results," Proceedings of
Supercomputing'92, pp. 83-92, 1992.
S. Hammond - and R. Schreiber, "Mapping

Unstructured Grid Problems to the Connection
Machine," Technical Report 90.22, RIACS, October

" 1990.
12.

H. Jordan, "A special purpose architecture for finite
element analysis," Proceedings of International
Conference on Parallel Processing, pp. 263-266,
1978.

B.W. Kernigham and S. Lin, "An Efficient Heuristic
Procedure for Partitioning Graphs," Bell Syst. Tech.
1., Vol. 49, No. 2, pp. 292-370, February 1970.

S. Kirkpatrick, C.D. Gelatt, and M.P. Vecchi,
“Optimization by Simulated Annealing," Science, Vol.
220, pp. 671-680, May 1983. '

15.

16.

17.

18.

19,

L. Lapidus and C.F. Pinder, Numerical Solution of
Partial Differential Equations in Science and
Engineering, New York: Wiley, 1983.

H. Muhlenbein, M. Gorges-Schleuter, and O. Kramer,
"New Solutions to the Mapping Problem of Parallel
Systems: The Evolution Approach," Parallel
Computing, 4, pp. 269-279, 1987.

P. Sadayappan and F. Ercal, "Nearest-Neighbor
Mapping of Finite Element Graphs on Processor
meshes," IEEE Transactions on Computers, Vol. C-
36 No. 12, pp. 1408-1424, 1987.

R.D. Williams, "Performance of Dynamic Load
Balancing Algorithms for Unstructured Mesh
Calculations," Concurrency Practice and
Experience, Vol. 3(5), pp. 457-481, October 1991.
R.D. Williams, "DIME: A User's Manual," Caltech
Concurrent Computation Report C3P 861, Feb. 1990.

Table 1. The number of nodes and elements of the test

samples.
Samples #node #element
. Simple 50019 . 99003
Letter 84895 167625
Hook 64212 126569
Font 76336 151368
Trucs 46751 91968

Table 2. The execution time of the test samples on processor meshes under both mapping methods.

Samples Algorithms Processor meshes .
(nodes) 1Xx1]2x3]7x2[3x5{9%x2[4X5[5X6]4X38
Simple H/V 66.103 | 13.714 | 6.086 | 5.73 | 4.985 | 4.541 | 3.186 | 2.94
(50019) NNM 66.193 | 15.638 | 7.029 | 6.881 | 5.816 | 5.332 | 3.29 3.13
Letter H/V 100.701] 18.943 | 8.597 | 8.121 | 7.868 | 6.394 | 4.953 | 4.544
(84895) NNM__ |100.701] 20.836 | 10.449 | 9.841 | 9.177 | 7.709 | 5.078 | 5.017
Hook H/V 74.784 | 13.920 | 6.142 | 5.699 | 4.759 | 4.383 | 3.068 | 3.003
(64212) NNM 74.784 | 15.636 | 6.815 | 6.337 | 5349 | 4.848 | 4.003 | 3.596
Font H/V 94.198 | 17.924 | 8.581 | 8.346 | 7.313 [6.844 | 3.849 | 3.639
(76336) NNM 94.198 | 18.868 | 9.363 | 9.928 | 8.721 | 7.025 | 4.402 | 4119
Truss H/V 54.607 | 9.910 | 4.008 | 4.039 | 3.367 | 3.036 | 2.485 | 2.299
(46751) NNM 54.607 | 11.580 | 5.032 | 4.772 | 4.055 | 3.645 | 3.034 | 2.685

Time unit : second

238

Joint Conference of 1996 International’ Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

4
N
PR ST %
OO S ;
N s A VTA
RO
ROZ0%0%
N

00
OO DK
s A A0SO ZON VAN ANV %
S AN
Vnwmmymmyggg%&mym AN
N ‘

NINANKIA
R XIS
e RSO
RO
SRXXXXLL

'(2) Simple (2850 nodes, 5493 elements)

7 /
2 s
o0 H
= 2 :
S —,~
ok 5%
K i 0
K
SET
K
o
S
vmﬂ
KA
\ZA é X
N4 X
Q X

(¢) Hook (1849 nodes, 3411 elements) (d) Font (5648 nodes, 10992 elemehts)

VAN
KX

AN
\vZ Vv

A\
(VAR YAS
45 é«&""‘“

NP DIN

(€) Truss (7325 nodes, 14024 elements)

Figure 3. The test samples.

239

