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Abstract

In relational databases, a composition requires three
operations: join, projection and duplicate elimination. An
external sort is required to eliminate duplicates in a large
file. Both join and external sort are expensive because
they incur a nonlinear /O overhead. Most conventional
composition algorithms take join and duplicate elimination
as separate operations to achieve savings on either
operation but not both. Direct composition algorithms
outperform all these algorithms by executing the
composition as a single primitive. In this paper, we show
that direct composition can even outperform its
component operation, the join operation, when there is a
high degree of duplication after join and projection
operations. This result can encourage the correct
implementation of join operation to preserve the integrity
of relational data model in real DBMSs where duplicate
tuples are usually not removed.

Keywords: Database, composition, join, duplicate
elimination.

1. Introduction
1.1 Composition Operation

Given two binary relations R(AB) and S(B,C), a
composition RoS is defined as [xc(R p<i S), where 11
is a projection and p<i is a natural join. The sizes of
relatons R and S are denoted as |R| and | S|,
respectively. Composition is a very common operation'in
computing transitive closure and other types of linear
recursions in deductive databases [9,10]. Much work has
been done on processing of transitive closure and linear
recursion [1,11,12]. Therefore, composition is an
important primitive operation for support of many
emerging new database applications and new database
models such as deductive databases, knowledge bases,
and object-oriented databases.

*  This work is supported by NSC Grant (86-2213-E-004-002).
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Figure 1. An example of composition operation. (IT'
denotes a projection without duplicate elimination.)

Three operations: join, projection, and duplicate
elimination are required to perform a composition
operation. The join and projection operations are usually
executed together, and then a duplicate elimination
operation is followed to remove all redundant tuples. In
general, an external sort is required to perform a
duplicate elimination [3]. Both join and external sort
operations are expensive in database systems because
they incur a nonlinear /O overhead. Fig. 1 shows an
example of composition executed in the described steps.

Most conventional composition algorithms that follow
the definition to process a composition in three separate
steps can achieve savings on either join or duplicate
elimination but not both. It it found in [8] that a direct
execution that process a compositon as a single
primitive not only outperforms all conventional algorithms,
it may even outperform one of its component operation,
the join.

1.2 Join vs. Composition

It is a common experience that, by executing directly, a
join operation can be more efficient than its component
operation, the cross product. Similarly, we can see that a



Proceedings of international Conference on Distributed
Systems, Software Engineering and Database Systems

direct composition algorithm may outperform its
~ component operation, the join operation. This has a very
significant implication to the real world DBMSs.

In order to reduce siginificant overhead of duplicate
elimination, most real world DBMSs do not remove
duplicate tuples in answering queries unless explicitly
specified by users. For example, the user has to specify
the "DISTINCT" modifier in a SQL query to request
duplicate tuples be removed. However, it is an essential
propetty of relational data model that every tuple in a
relation must be unique. In other words, no duplicate
tuple is allowed. This SQL flaw has been extensively
criticized by the research community because it ruins the
integrity of relational data model.

Not only join operation is implemented handicaply,
composition operation is usually implemented in a
compromised fashion too. Let's examine the following
popular SQL statement:

SELECT A, C

FROM R, S

WHERE R.B = S.B
As we can see that above operation is actually a
compromised composition, a composition  without
duplicate elimination. Because composition has been
considered a composite operation and the join operation
has been studied extensively, this type of query is always
executed as a join operation followed by a projection,
while duplicated tuples are not removed. This
compromise seriously ruins the integrity of relational data
model. The invention of direct composition can eliminate
this compromise. With comparable efficiency, duplicated
tuples will not be kept in the composition result. Of
course, the query must be rewritten into the following
format if the SQL definition is not changed:

SELECT DISTINCT (A, C)

FROM R, S

WHERE R.B = S.B

This paper will compare the performance of
composition and join operations under various conditions.
Section 2 will briefly describe various direct composition
algorithms. Analytical and experimental comparison of
join and direct composition will be given in Section 3 and
4 respectively.

2. Previous Work
2.1 Conventional Composition Algorithms

Most conventional composition algorithms take join and
duplicate elimination as separate operations to achieve
savings on either operation but not both. They can be
divided into two categories: join-saving, and sort-saving.
Join-saving based algorithms strive to reduce join
operation cost while sort-saving based algorithms: strive
to reduce duplicate elimination cost [1,2,3,8].
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A typical sort-saving based algorithm is the single-
sided composition algorithm proposed by Agrawal et al.,
which eliminates duplicates at the same time it petforms
the join-project operation [2]. Typical join-saving based
algorithms, such as sort-merge-join or hash-join
algorithms, perform join and projection together first, and
then remove the duplicates in a separate step.[4,7]. An
example is shown in Fig. 2. :
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Figure 2. An example showing a hash-join
based composition algorithm.

2.2 Direct Composition

Direct composition algorithms [8,13] take another
approach to achieve a befter performance. They do not
follow the definition of composition to process those three
component operations in sequence. Instead, they
execute composition operation directly as ‘a single
primitive such that no duplicate is generated in the
intermediate steps. This is similar to what we did on join
operations by executing join directly instead of following
the formal definition to execute cross product, selection,
and projection sequentially. .

We use the example shown in Section 1.1 to illustrate
some properties of the composition operation. Relation A
is first clustered on attribute A and S on C as shown in
Figure 3: :

It is easy to see that the entire composition operation can
be carried out by performing six smaller composition
operations: RS, RSy, R»Sy, RpSz, RxSi and
RS, Thus, RoS =\ J(ReS;). The composition of A

IYJ
with S; is referred to as cluster compaosition. It is
interesting to see that RS; produces either a single
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Figure 3. The result of clustering R on A and S on C.
tuple or null; thus, the computation effort is reduced to a

binary choice, depending on whether R;.B and S;.B
have any common value:

(i,j) Me(R) M Ts(S;)}# 2,

RieS; = ,
%) otherwise.
For instance:

H1°S1 = {(1 73)}’

RSz = {(1,4)},
R»Sy={(2,3)},

HZOSZ = {(2v4)}:

R3°S1 = Q’

RS, = &, and

RS = {(1,3), (1.4), (2.3), @4},

By making use of this property, direct composition
algorithms achieve a better performance than the
conventional implementations. In [8], several algorithms
were presented. They are bnefly described in the rest of
this section.

2.2.1 Basic Direct Composition Algorithm

The Basic Direct Composition algorithm is as follows:

(1) clustering R on A
(2) clustering S on C
(3) foreach R; {
(4) foreach §; {
(5) if ( Hg(R) M a(S)29)
(6) then write (/,f)
}

}

The overall performance of this algorithm depends on
the efficiency of the fifth step, the cluster composition for
R; and S;. The main task in this step is to determine
whether there is a common B value in A; and S; or not.
Whenever a match is found, the current cluster

*  All but one join query in Date’s famous database textbook are this
type of query [5].
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composition can be stopped immediately; thus, no
duplicate will be generated. lts worst case happens
whenever every cluster has to be read into memory
entirely where the matched values are found in their last
tuples or R; and S; have no common value.

To minimize the /O overhead in this step, a good
algorithm should strive to compare a matched B value as
early as possible. The most straightforward way is to
sort (or hash) both clusters that are to be composed and
to compare their contents tuple by tuple. An algorithm
taking this approach is presented in [8].

2.2.2 The Hot-Spot Algorithm

The hot-spot composition algorithm takes one step
further to cache thé "hot-tuples" (which will be explained
later) right in the memory, such that many S clusters
may even not be needed if their corresponding in-
memory hot-tuples are already matched to some B value

“in R.

Relation AR js first clustered on A (e.g. using hash),
and the number of occurrences of each B value is
recorded at the same time. Relation S is then clustered
on C. Any tuple of S whose B value has no occurrence
in R is discarded and is not written to any cluster of 5.

For each cluster of S, the tuple whose B value is
most irequently referenced by R is called the hot-spot
tuple of that cluster. To utilize the property that R;oS; is
a binary choice problem such that the execution can be
stopped immediately if a match on B value is found, all
hot-spot tuples are kept in memory and compared first.
Thus, there is a very good chance of finding a match
right in the memory in a cluster composition without
reading the demanded S clusters into memory. We say
that a cluster composition RjeS; has a hot-spot hit if A;
matches the hot spot tuple of S;, and a hot-spot miss
otherwise. Note that we assume that memory is large
enough to accommodate all hot-spot tuples since they
can be obtained and maintained at very little cost.
Further, more than one hot spot tuple from each S
cluster can be kept in memory if memory space is
permitted. The composition of R; with §; is briefly
described as follows:

read R; into memory;
compose A; with the hot-spot tuple of §j;
if there is a match on B value,
write (i,f) and stop;
if there is no match,
compose R; with §;.

Fig. 4 is an example depicting this algorithm.
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Figure 4. A example showing the hot-spot Algorithm.

As we can see from the above example, the tuple
(4,3) is removed from S during the clustering phase
since its B value, 4, doesn’t exist in IIzg A. Only four out
of six cluster compositions, A0S, RS, R»S;, and
R85, are executed. All of them are executed without
reading their corresponding S clusters since they all
have a hot-spot hit.

By implementing the composition operation as a
primitive, much /O can be saved by composing R with
in-memory hot-spot tuples first. Further, if a cluster of S
needs to be brought into memory, the tuple reading can
be stopped immediately when a match on a B value is
found; not only are the remaining /O operations, but the
duplicate elimination is completely eliminated since no
duplicate is produced in the first place. That is, this
algorithm eliminates duplicate elimination entirely by not
producing any duplicate.

3. Analytical Comparison

In this section, we compare join and direct composition
algorithms analytically. The details of the experimental
results will be presented in next section. We only
consider the /O cost, which is the dominant cost in most
database applications. The /O cost measured is the
number of tuples read and written.

3.1 Join Operation

There are many joining algorithms such as nested-loop,
sort-merge, and hash joins [4,8]. Basically, join is a
quadratic complexity operation since every tuple A has
to compare with every tuple of S. One good way to
improve its efficiency is to cluster (i.e. hash) both R and
S based on the joining attribute, B, such that only the
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tuples in the same cluster (i.e. bucket) need to be
compared. The complexity is reduced from | R [x| S |
to 3| R | x| S| Sort-merge and hash joins are typical
examples. Since hash join is one of the best joining
algorithms, we choose to compare with hash join.

3.2 Assumptions

Because join and composition are two different
operations, it is not easy to have a strictly fair
comparison. In this paper, most assumptions are made in
favor of join-when a compromise is necessary. Assume
that the source relations R and S are initially resident in
disk, and that the final results need to be written back to
disk. Let [ T| and | T | be the respective sizes of the
join and composition resuits, the duplication factor f is
then definedas | T|/| T |. Let | M| be the number of
tuples that can fit into memory. We further assume that

each cluster generated in the hash operation of a hash

join can fit into the memory. Therefore, the joining
operation between two clusters can be performed right in
the memory. No /O overhead is incurred. This
assumption may not be accurate. However, the
performance analysis obtained based on this assumption
represents an upper bound of the hash join algorithm.

3.3 Analytical Performance Estimation

Assuming the average number of pages each cluster
(hash bucket) has is p, then the total O cost for hash-
join operation, then, is:

cost of clustering R and S,

+ cost of joining A and S clusters,

+ cost of writing T,

=2|R|+2|5]|
+|RI+ 1S +MpA(IRI/IB|x|S|/IB])
+ | T

=3|R| +3|S| +|T|
+Mp*(| RIZIB x| S1/]B]),

where Ay is a filtering parameter (0 £ A < 1),
indicating the ratio of the cluster pairs that are needed to
be joined to the total cluster pairs. It is one if all cluster
pairs must be joined. In the clustering phase, each
relation has to be read once for clustering and each
cluster needs to be written back to disk after clustering.
Therefore, - the cost for clustering is 2| R| +2|8 1.
Relevant clusters (ITz A;\I1g S; # @) are joined together
cluster by cluster. The cost of joining R clusters and S
clusters depends on the size of each cluster and the size
of memory. It is a function of | R|/|B|x|S|/|B|.p
is an empirical coefficient between zero and | B |2 In
the best case, each relation is read into memory only
once in the cluster joining phase. '



The total I/O cost for the hot-spot compositions is:
cost of clustering R and S,
+ cost of reading A clusters,
+ cost of reading unmatched S clusters,
+ cost of writing out result relation,

=2|R| +2| S|

+ | R
+h(1-W) (| RI/IM )| S|
+ | T /A

= 3|R| +@+2(-W(RI/IM) S|+ [T/,

where f is the duplication factor (thus, | T |/f is the size
of composition result), p (0 <p<1) is the hit ratio, the
average ratio of matched clusters to the total S clusters,
per R cluster; and A (0 < A, < 1) is the average fraction
of a S cluster that is read. The total I/O cost for cluster
composition, then, is: A(1-w)(| R'[/IM|)*|S|.

The best case happens when the hot-spot hit ratio, p,
is one. In other words, the hot-spot tuples of all S
clusters match to every R cluster. A small A, value can
also lead to good performance. One good way to reduce
. is to sort S clusters according to the the descending
order of - occurring frequency of B value in A.
Nevertheless, further research is needed to balance the
extra overhead for sorting and the saved overhead in I/O
reduction. :

As we can see from above analysis that the
performance of direct composition is comparable with
hash join. The best case of hot-spot direct composition
outperforms the best case of hash join by a small margin
of | S|. This is because all S clusters will not be read
into memory for hot-spot hit. Nevertheless, since many
parameters such as , Ay, Ap, p, f, are all empirical data,
it is necessary to execute these algorithms in real
databases to obtain a more realistic comparison.

4. Experimental Performance
Comparison

In this section, the hot-spot composition algorithm is
evaluated against the hash-join algorithm based on the
simulated database defined by the Set Query Benchmark
[6]. Different from the TPC benchmark, the Set Query
Benchmark is specially designed for testing the
performance of databases in decision support
environments, rather than OLTP. environments. We
envision that the composition operation is the most
popular in decision support environments.

‘4.1 Experiments

in this experiment, we focus on the sensitivity of the
following three parameters on the overall performance.

1. size of relations;
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cardinality of the domain of attribute B;
cardinality of the domain of attribute A, and C;

duplication ratio (f), the tuple ratio of joining resuit
and composition resuit;

The experiment is running on a lightly loaded HP755
system running Unix operating system. The overall
execution time is measured.

4.1.1 Data Generation

The two operand relations, R and S, are subsets of the
SET database. The values of attributes A, B, and C are
drawn from the following four different integer domains,
1-1000, 1-100, 1-25, and 1-10 as shown in table 1.

Table 1. Domains of simulated relations.

Domain Name Range
K1000 1-1000
K100 1-100
K25 1-25
K10 1-10

In each experiment, A and S are first defined. by
selecting A, B, and C attributes from the defined domain
(K1000, K100, K25, K10). Each defined relation is
materialized by randomly drawing values from the
domain of its attributes and is materialized into seven
different sizes: 1000 tuples to 7000 tuples stepped by
1000 tuples. (Because of duplicated tuples must be
removed in the generated relations, the actual size of a
generated relation may be fewer than the designed size.)
To obtain a statistical stable performance measurement,
each pair of relations is generated 10 times with different
random seeds and is fed into hash join and composition
operations. We choose to use uniform distribution to
obtain a performance lower bound of the hot-spot
algorithm which prefers skewed distributions to the
uniform distribution. . Finally, all possible definitions of A
and S are simulated to observe the sensitivity of the
desired parameters in various conditions.

4.2 Experimental Results
4.2.1 Sensitivity to the Size of Relations

As we already know, the complexity of hash-join is
nonlinearly proportional to the size of joining relations.
Hot-spot composition performs better than hash-join
when the size of relations are large.

Further, it is interesting to see that, like joining
algorithm, the hop-spot composition prefers the smaller
relations to be the first relation and the larger one to be
the second. This is because R clusters are always read
into memory -while S clusters may not be the case.
Further, a smaller R cluster can prevented nested loop
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for composing two clusters from happening. The result is
shown in Figure 5.

4.2.2 Sensitivity to the Joining Attribute

Both hash-join and hot-spot composition are sensitive to
the cardinality of the domain of joining attributes. Hash-
join prefers a larger cardinality because it reduces the
size of each cluster. (In general, joining many pairs of
smaller clusters is more efficient than joining fewer pair
of larger clusters due to the linearization of quadratic
complexity. ) ‘

On. the other hand, hot-spot composition prefers a
smaller cardinality because it leads to a denser B
attribute and has a larger chance to find a match on B
value between two composing clusters. It is less
sensitive to the cardinality of joining domain as compared
to that of non-joining domain as shown in next section.
This is depicted in Figure 6(a) and 6(b).

Further, it is interesting to see that the execution time
of hot-spot algorithm may not always monotonically
increase with the size of original relations. This is
beacuse, in some certain range, the larger the relation,
the higer the spot-spot hit ratio. In the future, we wili
further investigate this phenomenon.

4.2.3 Sensitivity to the Non-Joining Attribute

Both hash-join and hot-spot composition are very
sensitive to this parameter. Both of them prefer a
smaller cardinality. For hash-join, a smaller non-joining
attribute size will reduce the joining overhead in the
bucket joining process. For hot-spot composition, it
needs to perform a composition for every possible pair of
R and S clusters. A smaller number of clusters lead to
fewer number of cluster compositions. Different from join
operation where the time complexity is quadratically
proportional to the size of clusters, the execution time of
cluster composition does not directly proportional to the
size of clusters since execution can be stopped
immediately after finding a match of B value on both
clusters. This result is shown in Figure 7.

4.2.4 Sensitivity to the Duplication Factor

As we expected, the composition performs better when
the duplication factor is high. This is consistent with the
results found in [8]. There is no general threshold on
which the composition is always better than join. Further
analysis and simulation experiments are needed to have
more useful conclusion.

4.2.5 Comparison of Join and Composition

In average, the composition is three times slower than
hash-join over all 302 simulated cases. About one third
out of the simulated cases (102/302), the performance of
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hot-spot composition is within 150% of the hash-join
algorithm. About one quarter (71/302) cases, the
composition are better. The following cases are observed
in the experiment:

1. Hot-spot composition performs better when the
domain cardinality of attribute A is small and that of
attribute C is large.

2. Hot-spot composition performs better when the
size of relations are large.

3. Hot-spot composition performs better when the
duplication factor is high.

5. Concluding Remarks

The composition operation is an important primitive
operation in deductive databases. Direct composition
algorithms that process composition as a single primitive
have been proved to. be more efficient than the
conventional approaches that process composition as
three separated steps: join, projection, and duplicate
elimination. In this paper, it has been shown that direct
composition not only produce no duplicate, it may even
outperform its component operation, the join. Within a
very broad range, the performance of direct composition
is comparable with join operation.

Because join and compositon are different
operations, it is not appropriate to replace join with
composition. Instead, many join operations in the real
world are actually compromised compositions. They are
implemented as a join {0 reduce 1/O overhead for
duplicate elimination. The results presented in this paper
will encourage practitioner stop using join operation as a
compromised composition. Not only the performance
may be better, the integrity of relational data model can
be preserved.
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