
The Distributed Program Reliability Analysis on Ring-Type

Topologies

環狀拓樸邏輯分散式程式可靠度分析

Ming-Sang Chang 1 Min-Sheng Lin Deng-Jyi Chen
Department of Information Department of Electric Institute of Computer
Management Engineering National Science and Information
Lunghwa University of Taipei University of Engineering National Chiao Tung
Science and Technology Technology 1, Sec. 3, University 1001 Ta Hsueh Road,
300,Wan Shou Rd., Sec. 1, Chung Hsiao E. Rd., Hsin Chu, Taiwan, R.O.C.
Kueishan Taoyuan, Taipei, Taiwan, R.O.C
Taiwan, R.O.C.
Email:changsam@ms5.hinet.net Email:mslin@ee.ntut.edu.tw Email: djchen@csie.nctu.edu.tw

1 All correspondences should be sent to MING-SANG CHANG (changsam@ms5.hinet.net)

Abstract

Distributed Computing System (DCS) has
become very popular for its high fault-tolerance,
potential for parallel processing, and better reliability
performance. One of the important issues in the design of
the DCS is the reliability performance. Distributed
Program Reliability (DPR) is addressed to obtain this
reliability measure.

In this paper, We propose a polynomial-time
algorithm for computing the DPR of ring topologies and
show that solving the DPR problem on a ring of trees
topology is NP-hard.
Keywords: Distributed Program Reliability, Minimal File

 Spanning Tree, Algorithm, Ring of Tree

1. Introduction

Distributed Computing System (DCS) has
become very popular for its fault-tolerance, potential for
parallel processing, and better reliability performance.
One of the important issues in the design of the DCS is
the reliability performance. Distributed program
reliability is address to obtain this reliability measure [1-
4].

An efficient network topology is quite important
for the distributed computing system. The ring topology
is a popular one used in high speed network. It has been
considered for IEEE 802.5 token ring, for the fiber
distributed data interface (FDDI) token ring, for the
synchronous optical network (SONET), and for
asynchronous transfer mode (ATM) networks. The ring
network has widely used in current distributed system
design.

In a ring of tree topology, a ring is used to
connect each tree topology in the network. This
architecture can be used in FDDI that consists of (1) a
tree of wiring concentrators and terminal stations, and (2)
a counter-rotating dual ring [5].

A large amount of work has been devoted to
developing algorithms to compute measures of reliability
for a DCS. One typical reliability measure for a DCS is
the K-terminal reliability (KTR) [6-8]. KTR is the
probability that a specified set of nodes K, which is
subset of all the nodes in a DCS, remains connected in a
DCS whose edges may fail independently of each other,
with known probabilities. However, the KTR measure is
not applicable to a practical DCS since a reliability
measure for a DCS should capture the effects of
redundant distribution of programs and data files. In [1-
4], distributed program reliability (DPR) was introduced
to accurately model the reliability of a DCS. For
successful execution of a distributed program, it is
essential that the node containing the program, other
nodes that have required data files, and the edges
between them be operational. DPR is thus defined as the
probability that a program with distributed files can run
successfully in spite of some faults occurring in the
edges. In reality, the DPR problem is a logical OR-ing of
Prob{K-terminals are connected}, but the computing the
conditional probabilities required could be rather nasty.

In this paper, We propose a polynomial-time
algorithm to analyze the DPR of ring topology and show
that solving the DPR problem on a ring of tree topology
is NP-hard.

2. Notation and Definitions

Notation
D=(V, E, F) an undirected Distributed

Computing System (DCS) graph
with vertex set V, edge set E and
data file set F .

FAi set of files available at node i. (Note:
F= ∪ FAi)

pi reliability of edge i

 2

qi 1−pi

H subset of files of F, i.e., H ⊆ F, and

H contains the programs to be

executed and all needed data files

for the execution of these programs

R (DH) the DPR of D with a set H of needed

files: Pr{all data files in H can be

accessed successfully by the

executed programs in H}.

Definition: A File Spanning Tree (FST) is a tree whose

nodes hold all needed files in H.

Definition: A Minimal File Spanning Tree (MFST) is a

FST such that there exists no other FST

that is a subset of it.

Definition: Distributed program reliability (DPR) is

defined as the probability that a distributed

program runs on multiple processing

elements (PEs) and needs to communicate

with other PEs for remote files will be

executed successfully.

By the definition of MFST, the DPR can be written as

R (DH)=Prob(at least one MFST is operational), or

R (DH)=Prob (MFSTj∪
j = 1

#mfst

)

 where #mfst is the number of MFSTs for a given

needed file set H.

3. Computing DPR Over a DCS with a Ring

Topology

Now, we consider a DCS with a linear structure

D=(V, E , F) with |E |=n edges in which an alternation

sequence of distinct nodes and edges (v0, e1, v1, e2, ...,

vn−1, en, vn) is given. For 1≤ i≤ n, let

Ii the FST which starts at edge ei and has the

 minimal length

Si the event that all edges in Ii are working

Qi ≡ p j∏all edge j ∈ Ii
 be the probability

that Si occurs

Ei the event that there exists an operating event Sj

between edges e1 and ei

gi the number of Ij which lies between e1 and ei

xi state of edge ei ; xi=0 if edge ei fails ; else xi=1

A the complement of event A.

It is easy to see that the DPR of a DCS with a

linear structure D with |E|=n edges, R(DH), can be stated

as Pr(En). The following theorem provides a recursive

method for computing Pr(En).

Theorem 1.

]**))Pr(1([)Pr()Pr(
1

2

1

1

1

ii
i

g

gi

nn QqEEE
n

n

−
−

+=

− −+= ∑
−

with the boundary conditions Pr(Ei) = 0 , gi=0, and pi=0,

for i ≤ 0.

Proof. See the appendix.

Before applying the Theorem 1, we use the

following procedure COMGQ to compute the values of

gi and Qi, for 1 ≤ i ≤ n, for a given linear DCS with

|E|=n edges.

Procedure COMGQ

// Given a DCS with a linear structure with the alternation

sequence of distinct nodes and edges //

// (v0, e1, v1, e2, ..., vn−1, en, vn),//

// F: the set of files (including data files and programs)

distributed in D;//

// H: the set of files that must be commu nicated each

other through the edges in D;//

// FAi: the set of files available at node vi, for 0≤ i ≤ n;

and //

// pi: the reliability of edge i, for 1≤ i ≤ n, //

 3

// this procedure computes the values of gi and Qi, for 1≤

i ≤ n.//

//h (head) and t (tail) are two indexes moving among

nodes. NFi is the total number of file i //

// between nodes vh and vt. If there exists a FST between

nodes vh and vt then flag=true //

// else flag= false //

begin

 for 2≤ i ≤ n do Qi ←0 repeat // initialize //

 p0 ←Q1← 1 // initialize //

 h←0; t←1 // initialize //

 for each file i ∈F do // initialize //

 if file i ∈FAh then NFi←1

 else NFi ←0

 endif

 repeat

 while t ≤ n do

 for each file i ∈FAt do NFi ←NFi+1

repeat

 Qh+1 ← Qh+1*pt

 flag ← true

 while flag do

 for each file i ∈H do //

check if there exists a FST between //

 if NFi=0 then flag ← false

endif //nodes vh and vt //

 repeat

 if flag then

 for each file i ∈FAh do NFi ← NFi−1

repeat

 h ← h+1

 Qh+1 ← Qh/ph

 endif

 repeat

 gt ← h

 t ← t+1

 repeat

 for 1 ≤ i ≤ n do output(gi, Qi) repeat

end COMGQ

Now, using the procedure COMGQ and Theorem

1, we are able to provide an algorithm for computing the

reliability of a DCS with a linear structure.

Algorithm Reliability_Linear_DCS(D)

// Given a DCS with a linear structure D=(V, E, F) with

|E|=n and a specified set of files H ,//

// this algorithm returns the DPR of D //

Step 1: Call COMGQ to compute the values of gi and Qi,

1 ≤ i ≤ n.

Step 2: Evaluate Pr(En), recursively using Theorem 1.

Step 3: Return (Pr(En)).

end Reliability_Linear_DCS

For step 1, the computational complexity of the

procedure COMGQ is O(|E ||F |), where |E | = n and

|F| ≥ m ax ((m ax i = 0
n (FA i), H)) since the value of h in

the inner while_loop is monotonously increasing and

doesn't exceed the value of t that is the index of the outer

while_loop. For step 2, by Theorem 1, Pr(Ei) can be

computed in O(gi−gi−1+1). Since there are n such

Pr(Ei)'s to compute, we need

another))1((1
1

+− −
=
∑ ggO i

n

i
i =)(0ggnO n −+ =

O(n) = O(|E |). Therefore algorithm

Reliability_Linear_DCS takes O(|E||F |)+O(|E|) = O(|E ||F|)

time to compute the reliability of a DCS with a linear

structure system.

Example 1:

MRG ADF IXF MRG

CAF
CAF ADF

IXF

Computer A Computer B Computer C Computer D Computer E

ADF

Computer F

Figure 1. A distributed banking system

 4

e 1 e2 e 3 e4 e5

f 1
f 2 f 3

f2 f2f3 f1

P rog ra m needs data fi les f1 , f 2, and f3 fo r i ts exec u tion .

v 0

f 4
f 4

f 4

v 1 v 2 v 3 v 4 v 5

Figure 2. The graph model for the distributed banking
system in figure 1.

Consider a possible DCS of a banking system
[4,17] shown in figure 1. Each local disk stores some of
the following information:

Consumer accounts file (CAF),

Administrative aids file (ADF), and

Interest and exchange rates file (IXF).

Management report generation (MRG) in
computers B and E indicates a query (program) to be
executed for report generation. Figure 2 shows the graph
model for this system. A node represents any computer
location and the links show the communication network.
We assume that the query MRG(f4) requires data CAF(f1),
ADF(f2) and IXF(f3) to complete its execution. Let
V={v0, v1, v2, v3, v4, v5}, E={e1, e2, e3, e4, e5}, F={f1, f2, f3,
f4} and H={f1, f2, f3, f4}. Applying the algorithm
Reliability_Linear_DCS, we get

Step 1:

 g
0 =0, // boundary condition //

 g
1=1, Q1= p

1,

 g
2=1, Q2= p2 p3 p4,

 g
3=1, Q3= p3 p4,

 g
4=3, Q4= p4 p5,

 g
5=4, and Q5=0. // I5 does not exist //

Step 2:

 Pr(E1) = Pr(E2) =Pr(E 3)=q0 Q1 = p1
 Pr(E4) =
Pr(E3)+(1−Pr(E0))q1Q2+(1−Pr(E1))q2Q3

 = p1+q1 p2 p3 p4+q1 q2 p3 p4

 Pr(E5) = Pr(E4)+(1−Pr(E2))q3Q4

 = p1+q1 p2 p3 p4+q1 q2 p3 p4+q1 q3 p4 p5.

 A ring DCS is a DCS with a circular
communication link. Each node connects two conjoining
edges with two neighboring nodes. Suppose D=(V, E , F)
be a DCS with a ring topology. By factoring theorem [9],
the DPR of D can be given as

R(DH)=peR((D+e)H)+qeR((D−e)H),
 (Eq. 1)

where

e is an arbitrary edge of D,

pe is the reliability of edge e,

qe ≡ 1−pe,

D+e is the DCS D with edge e =(u,v)
contracted so that nodes u and v are
merged into a single node and this new
merged node contains all data files that
previously were in nodes u and v, and

D−e is the DCS D with edge e deleted.

Since D−e is a DCS with a linear structure with
|E|−1 edges, its DPR reliability can be computed by the
algorithm Reliability_Linear_DCS in O(|E ||F|) time.
Note that D+e remains a DCS with a ring structure with
|E|−1 edges. We then apply the same analysis to D+e.
Recursively applying Equation (Eq.1), the ring DCS D
with |E | edges can be decomposed into, in worst case, |E|
linear DCSs. So, we have a O(|E |2|F |) time algorithm for
computing the reliability of a DCS with a ring structure.

Algorithm Reliability_Ring_DCS(D)

// Given a DCS with a ring structure D=(V , E , F) and a
specified set of files H , //

// this algorithm returns the DPR of D //

Step 1: If there exists one node in V holds all data files in
H then return (1).

Step 2. Select an arbitrary edge e of D.

Step 3: Rl ←Reliability_Linear_DCS(D−e).

Step 4: Rr ←Reliability_Ring_DCS(D+e).

Step 5: Return(pe*Rr+qe*Rl).

end Reliability_Ring_DCS

Example 2:

Consider the DCS with a ring topology shown in
Figure 3. This is the DCS shown in Figure 2 with one
edge e6 added between nodes v5 and v0.

f1

f2 f3

f4
f2

f2

f3

f4

f1

v0

v1

v2

v3

v4

v5

e1

e2

e3e4

e5

e6

Program f4 needs data files f1 , f2, f3 for its execuitn.

Figure 3. A DCS with a ring structure

Applying algorithm Reliability_Ring_DCS, we
have

R (DH)=q6 R ((D-e6)H) + p6 R ((D+e6)H)

 5

= q6R ((D -e 6)H) + p6{ q5 R ((D + e6 -e5)H)+ p5 R ((D+ e6+ e5) H)}

Since there exists one node in D+e6+e5 that holds all files
in H, we have R((D+e6+e5)H)=1. From example 1, it is
easy to see that R((D−e6)H)=Pr(E5) and
R((D+e6−e5)H)=Pr(E4). So we have

 R (DH)
= q6 (p1 +q1 p2 p3 p4 +q1 q2 p3 p4 + q1 q3 p4 p5) +
 p6 [q5 (p1 +q1 p2 p3 p4 + q1 q2 p3 p4)+p5].

4. Computational Complexity of the DPR
Problem on a Ring of Tree Topology

Complexity results are obtained by transforming
known NP-hard problems to our reliability problems [10-
14]. For this reason, we first state some known NP-hard
problems as follows.

i) K-Terminal Reliability (KTR)
 Input: an undirected graph G = (V, E) where V

is the set of nodes and E is the set of
edges that fail s-independently of each
other with known probabilities. A set
K⊆V is distinguished with |K| ≥ 2.

 Output:R(GK), the probability that the set K of
nodes of G is connected in G.

ii) Number of Edge Covers (#EC)
 Input: an undirected graph G = (V, E).
 Output: the number of edge covers for G
 ≡ |{L ⊆ E: each node of G is an end of

some edge in L}|.
iii) Number of Vertex Covers (#VC)

Input: an undirected graph G = (V, E).
Output: the number of vertex covers for G

≡ |{K ⊆ V: every edge of G has at
least one end in K}|.

Theorem 2. Computing DPR for a DCS with a star
topology even with each |FAi|=2 is NP-
hard.

Proof. We reduce the #EC problem to our problem. For a
given network G=(V1, E1) where E1={e1, e2, ...,
en}, we construct a DCS D=(V2, E2, F) with a
star topology where V2={s, v1, v2, ..., vn},

E2={ (s, vi) | 1 ≤ i ≤ n}, and F={ fi | for each

node i ∈ G}. Let FAvi= { fu, fv | if ei=(u, v) ∈ G}

for 1 ≤ i ≤ n, FAs= ∅ and H =F. From the
construction of D, it is easy to show that there is
one-to-one correspondence between one of sets
of edge covers and one FST. The DPR of D,
R(DH), can be expressed as

R(DH)=.

{ p iΠ

�for each
edge i ∈t

(1-p i)Π
�for each

edge i ∉t

Σ
�for all FST
t ∈D

}

Thus, a polynomial-time algorithm for
computing R(DH) over a DCS with a star
topology and each |FAi|=2 would imply an
efficient algorithm for #EC problem. Since #EC
problem is NP-hard, Theorem 2 follows.

Theorem 3. Computing DPR for a DCS with a star
topology even when there are only two
copies of each file is NP-hard .

Proof. We reduce the #VC problem to our problem. For
a given G=(V1, E1) where |E1|=n and V1={v1,
v2, ..., vm}, we construct a DCS D=(V2, E2, F)

with a star topology where V2=V1 ∪ {s},

E2={ei=(s, vi) | 1 ≤ i ≤ m}, and F={fi | for all

edge i ∈G}. Let FAi={ fj | for all edge j that are

incident on vi ∈ G} and H=F. From the
construction of D, it is easy to show that there
are only two copies of each file in D and one-to-
one correspondence between one of sets of
vertex covers and one FST of D. The DPR of D,
R(DH), can be expressed as

R(DH)=
 { piΠ
�

for each
edge i ∈t

(1-pi)Π
�

for each
edge i ∉t

Σ
�

for all FST
t ∈D

}

Since #VC problem is NP-hard, Theorem 3
follows.

Theorem 4. Computing DPR for a DCS with a tree
topology is NP-hard.
Proof. By Theorems 2 and 3, we can see that DPR

problem for a DCS with a star topology, in
general, is NP-hard. This implies DPR problem
for a DCS with a tree topology, in general, is
also NP-hard, since a DCS with a star topology
is just a DCS with a tree topology that has one
level branch.

Now, We use the results of Theorem 2, 3, and 4
to prove the DPR problem on ring of tree topology is
NP-hard.
Theorem 5: Computing DPR for a DCS with a ring of

trees topology even with one level of tree
is NP-hard.

Proof. Give a DCS graph D=(V, E, H) where V={s, v1,

v2, ..., vn} and E={(s, vi) | 1≤ i ≤ n} with a star
topology. We construct a DCS graph D’=(V’, E’,
H) from graph D, where

V’={ v1, v2, ..., vn}∪{(sj | 1≤ j ≤ n} and

E’ = {(sj, sj+1) |1 ≤ j < n} ∪ {(sn, s1)} ∪ {(sj, vj) | 1 ≤ j ≤
n}.

It is easy to see that D’ is a ring of tree topology
with one level of tree. If we assume all added
edges, {(sj, sj+1) |1 ≤ j < n} ∪ {(sn, s1)}, of D’ be
perfect reliability, then we have R(DH)=R(D’H)

for any given H⊆ H. By Theorem 2 and 3,
computing DPR over a DCS with a star topology
is NP-hard, thus, computing DPR over a DCS
with a ring of tree topology with one level of tree
is also NP-hard.

Theorem 6: Computing DPR for a DCS with a ring of
tree topology, in general, is NP-hard.

Proof. By Theorem 5, we can see that DPR problem for
a DCS with a ring of tree topology even with

 6

one level of tree is NP-hard. With the same
approach stated in Theorem 5, we construct a
ring of tree topology with a tree topology. By
Theorem 4, computing DPR over a DCS with a
tree topology is NP-hard, thus, computing DPR
over a DCS with a ring of tree topology is also
NP-hard.

5. Conclusions

In this paper, we investigated the problem of
distributed program reliability on ring distributed
computing systems. We propose a polynomia l-time
algorithm for computing the DPR on a ring topology. We
also propose Theorem 5 and Theorem 6 to show that
solving the DPR problem on a ring of trees topology is
NP-hard.

6. Appendix

The detailed proof of Theorem 1 is as follows.

Theorem 1.

]**))Pr(1([)Pr()Pr(
1

2

1

1

1

ii
i

g

gi

nn QqEEE
n

n

−
−

+=

− −+= ∑
−

with the boundary conditions

Pr(Ei) = 0 , gi=0, and pi=0, for i ≤ 0.

Proof.

Pr(En) = Pr(En -1 S i∪
i =g n-1+1

g n

)

 = Pr(En -1)+ Pr(En -1 ∩(S i∪
i = g n-1+ 1

g n

))

 (Eq.2)

For the term Pr(En -1 ∩(S i∪
i = g n-1+ 1

g n

)) in (Eq.2), we

have

 Pr(En -1 ∩(S i∪
i = g n-1+ 1

g n

))

= Pr(En -1 ∩S g n-1+1)+ Pr(En -1 ∩S g n-1+ 1 ∩S g n-1+ 2)

+Pr(En -1 ∩S g n-1+1 ∩S gn-1+ 2∩S gn-1+ 3)+. . .

 +Pr(En -1 ∩S g n-1+1 ∩. . .∩S g n-1 ∩S g n).

(Eq.3)

Since S i = S i + 1 ∩ {x i=1} for
nn

gig ≤≤+
−

1
1

, we

have S i ⊂ S i +1 and S i ∩ S i +1 = S i +1 . Thus,

 Pr(En -1 ∩(S i∪
i = g n-1+ 1

g n

))

= Pr(En -1 ∩S g n-1+ 1) + Pr(En -1 ∩S g n-1+ 1 ∩S g n-1+ 2)

 + Pr(En -1 ∩S g n-1+ 2∩S gn-1+ 3) +. . .

 +Pr(En -1 ∩S g n-1 ∩S g n)

=)Pr()Pr(
11

2
11

1
1

iin

g

gi
gn

SSESE
n

n
n

∩∩+∩
−−

+=
+− ∑

−
−

= Pr(Egn-1-1 ∩{x g n-1= 0}∩S g n-1+ 1)

+)}0{Pr(
12

2
1

iii

g

gi

SxE
n

n

∩=∩
−−

+=
∑

−

=)}0{Pr(
12

1
1

iii

g

gi

SxE
n

n

∩=∩
−−

+=
∑

−

Note that the events Ei−2, {xi-1=0}, and Si are disjoint

with each other. We have

Pr(Ei -2 ∩{x i -1 =0}∩S i)

= Pr(E i -2)*Pr({x i -1 =0})*Pr(S i). So

 Pr(En -1 ∩(S i∪
i = g n-1+ 1

g n

))

=)Pr(*})0Pr({*)Pr(12
11

iii

g

gi

SxE
n

n

=−−
+=

∑
−

=

]**))Pr(1([
1

2

1
1

ii
i

g

gi

QqE
n

n

−
−

+=

−∑
−

 (Eq.4)

 7

By equations (Eq.2) and (Eq.4), we obtain Theorem 1.

Reference

[1] V. K. Prasanna Kumar, S. Hariri and C. S.
Raghavendra, "Distributed program reliability
analysis," IEEE Trans. Software Eng., vol. SE-12,
pp. 42-50, Jan. 1986.

[2] S. Hariri and C.S. Raghavendra, "SYREL: A
Symbolic Reliability Algorithm based on Path
and Cutset Methods", USC Tech. Rep., 1984.

[3] A. Kumar, S. Rai and D.P. Agrawal, "Reliability
Evaluation Algorithms for Distributed Systems",
in Proc. IEEE INFOCOM 88, pp.851-860, 1988.

[4] A. Kumar, S. Rai and D.P. Agrawal, "On
Computer Communication Network Reliability
Under Task Execution Constraints", IEEE
Journal on Selected Areas in Communication,
Vol.6, No.8, pp. 1393-1399, Oct.1988.

[5] Raj Jain, "FDDI Handbook : High Speed
Networking Using Fiber and Other Media" ,
Addison-Wesley Publishing Company, 1994

[6] Jiahnsheng Yin, Charles B. Silio Jr., "K-Terminal
Reliability In Ring Networks," IEEE Trans. on
Reliability, vol. 43, no. 3, pp. 389-400,1994.

[7] Dimitris Logothetis, Kishor S. Trivedi, "
Reliability Analysis of the Double Counter-
rotating Ring with Concentrator Attachment,"
IEEE Trans. On Networking, vol.2, no.5, pp. 520-
532,1994.

[8] D.J.Chen, M.S.Chang, C.L.Yang, Kuo-Lung Ku,"
Multimedia Task Reliability Analysis Based on
Token Ring Network," 1996 Int. Conference on
Parallel and Distributed System, pp.265-272,1996.

[9] R. Kevin Wood, "Factoring Algorithms for
Computing K-terminal Network Reliability",
IEEE Trans. Reliability, Vol. R-35, pp.269-278,
Aug. 1986.

[10] A. Rosenthal, "A Computer Scientist Looks at
Reliability Computations, "in: Reliability and
Fault tree Analysis SLAM, 1975, pp. 133-152.

[11] L. G. Valiant, "The Complexity of Enumeration
and Reliability Problems," SIAM J. Computing,
vol. 8, pp. 410-421, 1979.

[12] M. O. Ball , J. S. Provan and D. R. Sh ier,
"Reliability Covering Problems," Networks, vol.
21, pp. 345-357, 1991

[13] J. S. Provan and M. O. Ball, "The Complexity of
Counting Cuts and of Computing the Probability
that a Graph is Connected," SIAM J. Computing,
vol. 12, no. 4, pp. 777-788, Nov. 1983.

[14] J. S. Provan, "The complexity of reliability
computations in planar and acyclic graphs", SIAM
Journal on Computing 15 (1986) 694-702.

[15] M.S. Lin, "Program Reliability Analysis in
Distributed Computing System", Ph.D.
Dissertation, 1994; National Chiao Tung
University, Taiwan.

[16] Min-Sheng Lin, Deng-Jyi Chen, "The
Computational Complexity of the Reliability
Problem on Distributed Systems", Information
Processing Letters 64 (1997) 143-147.

[17] D.A. Sheppard, "Standard for banking
communication system", IEEE Trans. Computer,
1987 Nov, pp 92-95.

