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Abstract 

Distributed Computing System (DCS) has 
become very popular for its high fault-tolerance, 
potential for parallel processing, and better reliability 
performance. One of the important issues in the design of 
the DCS is the reliability performance. Distributed 
Program Reliability (DPR) is addressed to obtain this 
reliability measure. 

In this paper, We propose a polynomial-time 
algorithm for computing the DPR of ring topologies and 
show that solving the DPR problem on a ring of trees 
topology is NP-hard. 
Keywords: Distributed Program Reliability, Minimal File 

 Spanning Tree, Algorithm, Ring of Tree 

1. Introduction 

Distributed Computing System (DCS) has 
become very popular for its fault-tolerance, potential for 
parallel processing, and better reliability performance. 
One of the important issues in the design of the DCS is 
the reliability performance. Distributed program 
reliability is address to obtain this reliability measure [1-
4].  

An efficient network topology is quite important 
for the distributed computing system. The ring topology 
is a popular one used in high speed network. It has been 
considered for IEEE 802.5 token ring, for the fiber 
distributed data interface (FDDI) token ring, for the 
synchronous optical network (SONET), and for 
asynchronous transfer mode (ATM) networks. The ring 
network has widely used in current distributed system 
design.  

In a ring of tree topology, a ring is used to 
connect each tree topology in the network. This 
architecture can be used in FDDI that consists of (1) a 
tree of wiring concentrators and terminal stations, and (2) 
a counter-rotating dual ring [5]. 

A large amount of work has been devoted to 
developing algorithms to compute measures of reliability 
for a  DCS. One typical reliability measure for a  DCS is 
the K-terminal reliability (KTR) [6-8]. KTR is the 
probability that a specified set of nodes K, which is 
subset of all the nodes in a DCS, remains connected in a 
DCS whose edges may fail independently of each other, 
with known probabilities. However, the KTR measure is 
not applicable to a practical DCS since a reliability 
measure for a  DCS should capture the effects of 
redundant distribution of programs and data files. In [1-
4], distributed program reliability (DPR) was introduced 
to accurately model the reliability of a DCS. For 
successful execution of a distributed program, it is 
essential that the node containing the program, other 
nodes that have required data files, and the edges 
between them be operational. DPR is thus defined as the 
probability that a program with distributed files can run 
successfully in spite of some faults occurring in the 
edges. In reality, the DPR problem is a logical OR-ing of 
Prob{K-terminals are connected}, but the computing the 
conditional probabilities required could be rather nasty. 

In this paper, We propose a polynomial-time 
algorithm to analyze the DPR of ring topology and show 
that solving the DPR problem on a ring of tree topology 
is  NP-hard. 
 

2. Notation and Definitions  

Notation 
D=(V, E, F) an undirected Distributed 

Computing System (DCS) graph 
with vertex set V, edge set E and 
data file set F .  

FAi  set of files available at node i. (Note:  
F= ∪ FAi ) 

pi reliability of edge i 
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qi 1−pi 

H subset of files of F, i.e., H ⊆ F, and 

H contains the programs to be 

executed and all needed data files 

for the execution of these programs  

R (DH) the DPR of D with a set H of needed 

files: Pr{all data files in H can be 

accessed successfully by the 

executed programs in H}.  

Definition: A File Spanning Tree (FST) is a tree whose 

nodes hold all needed files in H. 

Definition: A Minimal File Spanning Tree (MFST) is a 

FST such that there exists no other FST 

that is a subset of it.  

Definition: Distributed program reliability  (DPR) is 

defined as the probability that a distributed 

program runs on multiple processing 

elements (PEs) and needs to communicate 

with other PEs for remote files will be 

executed successfully. 

By the definition of MFST, the DPR can be written as 

R (DH)=Prob(at least one MFST is operational), or  

R (DH)=Prob ( MFSTj∪
j = 1

#mfst

  
) 

 where #mfst is the number of MFSTs for a given 

needed file set H.  

3. Computing DPR Over a DCS with a Ring 

Topology 

Now, we consider a DCS with a linear structure 

D=(V, E , F) with |E |=n edges in which an alternation 

sequence of distinct nodes and edges (v0, e1, v1, e2, ..., 

vn−1, en, vn) is given. For 1≤ i≤ n, let 

Ii   the FST which starts at edge ei and has the 

 minimal length 

Si      the event that all edges in Ii are working 

Qi  ≡ p j∏all edge j ∈ Ii
 be the probability 

that Si occurs 

Ei  the event that there exists an operating event Sj 

between edges e1 and ei 

gi   the number of Ij which lies between e1 and ei 

xi state of edge ei ; xi=0 if edge ei fails ; else xi=1 

A   the complement of event A. 

It is easy to see that the DPR of a DCS with a 

linear structure D with |E|=n edges, R(DH), can be stated 

as Pr(En). The following theorem provides a recursive 

method for computing Pr(En). 

Theorem 1.   
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with the boundary conditions Pr(Ei)  =  0 , gi=0, and pi=0, 

for i ≤ 0. 

Proof.  See the appendix.  

Before applying the Theorem 1, we use the 

following procedure COMGQ to compute the values of 

gi and Qi, for 1 ≤ i ≤  n, for a given linear DCS with 

|E|=n edges.  

Procedure COMGQ 

// Given a DCS with a linear structure with the alternation 

sequence of distinct nodes and edges // 

// (v0, e1, v1, e2, ..., vn−1, en, vn),// 

// F: the set of files (including data files and programs) 

distributed in D;// 

// H: the set of files that must be commu nicated each 

other through the edges in D;// 

// FAi: the set of files available at node vi, for 0≤ i ≤ n; 

and // 

// pi: the reliability of edge i, for 1≤ i ≤ n, // 
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// this procedure computes the values of gi and Qi, for 1≤ 

i ≤ n.// 

//h (head) and t (tail) are two indexes moving among 

nodes. NFi is the total number of file i // 

// between nodes vh and vt. If there exists a FST between 

nodes vh and vt then flag=true  // 

// else flag= false // 

begin 

 for 2≤ i ≤ n do Qi ←0 repeat // initialize // 

 p0 ←Q1← 1  // initialize // 

 h←0; t←1  // initialize // 

 for each file i ∈F do  // initialize // 

  if file i ∈FAh then NFi←1 

   else NFi ←0 

  endif 

 repeat 

 while t ≤ n do 

  for  each file i ∈FAt do NFi ←NFi+1 

repeat 

  Qh+1 ← Qh+1*pt 

  flag ← true 

  while flag do  

   for each file i ∈H do  // 

check if there exists a FST between // 

   if NFi=0 then flag ←  false  

endif //nodes vh and vt // 

   repeat 

   if flag then 

  for  each file i ∈FAh do NFi ← NFi−1 

repeat 

   h ← h+1 

   Qh+1 ← Qh/ph 

   endif 

  repeat 

  gt ← h 

  t ← t+1 

 repeat 

 for 1 ≤ i ≤ n do output(gi, Qi) repeat 

end COMGQ 

Now, using the procedure COMGQ and Theorem 

1, we are able to provide an algorithm for computing the 

reliability of a DCS with a linear structure. 

Algorithm Reliability_Linear_DCS(D) 

// Given a DCS with a linear structure D=(V, E, F) with 

|E|=n and a specified set of files H ,// 

// this algorithm returns the DPR of D // 

Step 1: Call COMGQ to compute the values of gi and Qi, 

1 ≤ i ≤ n. 

Step 2: Evaluate Pr(En), recursively using Theorem 1. 

Step 3: Return (Pr(En)). 

end Reliability_Linear_DCS 

For step 1, the computational complexity of the 

procedure COMGQ is O(|E ||F |), where |E | = n and 

|F| ≥ m ax ((m ax i = 0
n (FA i),  H )) since the value of h in 

the inner while_loop is monotonously increasing and 

doesn't exceed the value of t that is the index of the outer 

while_loop. For step 2, by Theorem 1, Pr(Ei) can be 

computed in O(gi−gi−1+1).  Since there are n such 

Pr(Ei)'s to compute, we need 

another ))1(( 1
1

+− −
=
∑ ggO i

n

i
i  = )( 0ggnO n −+  = 

O(n) = O(|E |). Therefore algorithm 

Reliability_Linear_DCS takes O(|E||F |)+O(|E|) = O(|E ||F|) 

time to compute the reliability of a DCS with a linear 

structure system. 

 
Example 1: 

 

MRG ADF IXF MRG

CAF
CAF ADF

IXF

Computer A Computer B Computer C Computer D Computer E

ADF

Computer F

 

Figure 1.  A distributed banking system 
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e 1 e2 e 3 e4 e5

f 1
f 2 f 3

f2 f2f3 f1

P rog ra m needs  data fi les  f1 ,  f 2,  and  f3 fo r  i ts  exec u tion .

v 0

f 4
f 4

f 4

v 1 v 2 v 3 v 4 v 5

 

Figure 2.  The graph model for the distributed banking 
system in figure 1. 

Consider a possible DCS of a banking system 
[4,17] shown in figure 1. Each local disk stores some of 
the following information: 

Consumer accounts file (CAF), 

Administrative aids file (ADF), and 

Interest and exchange rates file (IXF). 

Management report generation (MRG) in 
computers B and E indicates a query (program) to be 
executed for report generation. Figure 2 shows the graph 
model for this system. A node represents any computer 
location and the links show the communication network. 
We assume that the query MRG( f4) requires data CAF(f1), 
ADF(f2) and IXF(f3)  to complete its execution. Let 
V={v0, v1, v2, v3, v4, v5}, E={e1, e2, e3, e4, e5}, F={f1, f2, f3, 
f4} and H={f1, f2, f3, f4}.  Applying the algorithm 
Reliability_Linear_DCS, we get 

Step 1: 

 g
0 =0, // boundary condition // 

 g
1=1,  Q1= p

1, 

 g
2=1,  Q2= p2 p3 p4, 

 g
3=1,  Q3= p3 p4, 

 g
4=3,  Q4= p4 p5, 

 g
5=4, and Q5=0. // I5 does not exist // 

Step 2: 

 Pr(E1 ) = Pr(E2 ) =Pr(E 3 )=q0 Q1  =  p1    
 Pr(E4)  = 
Pr(E3)+(1−Pr(E0))q1Q2+(1−Pr(E1))q2Q3  

  = p1+q1 p2 p3 p4+q1 q2 p3 p4 

 Pr(E5)  = Pr(E4)+(1−Pr(E2))q3Q4 

  = p1+q1 p2 p3 p4+q1 q2 p3 p4+q1 q3 p4 p5. 

 A ring DCS is a DCS with a circular 
communication link. Each node connects two conjoining 
edges with two neighboring nodes. Suppose D=(V, E , F) 
be a DCS with a ring topology. By factoring theorem [9], 
the DPR of D can be given as 

R(DH)=peR((D+e)H)+qeR((D−e)H),   
     (Eq. 1)    

where      
  

e  is an arbitrary edge of D, 

pe  is the reliability of edge e, 

qe  ≡ 1−pe, 

D+e is the DCS D with edge e =(u,v) 
contracted so that nodes u and v are 
merged into a single node and this new 
merged node contains all data files that 
previously were in nodes u and v, and 

D−e is the DCS D with edge e deleted. 

Since D−e  is a DCS with a linear structure with 
|E|−1 edges, its DPR reliability can be computed by the 
algorithm Reliability_Linear_DCS in O(|E ||F|) time. 
Note that D+e remains a DCS with a ring structure with 
|E|−1 edges. We then apply the same analysis to D+e. 
Recursively applying Equation (Eq.1), the ring DCS D 
with |E | edges can be decomposed into, in worst case, |E| 
linear DCSs. So, we have a O(|E |2|F |) time algorithm for 
computing the reliability of a DCS with a ring structure. 

Algorithm Reliability_Ring_DCS(D) 

// Given a DCS with a ring structure D=(V , E , F) and a 
specified set of files H , // 

// this algorithm returns the DPR of D // 

Step 1: If there exists one node in V holds all data files in 
H then return (1). 

Step 2. Select an arbitrary edge e of D. 

Step 3: Rl ←Reliability_Linear_DCS(D−e). 

Step 4: Rr ←Reliability_Ring_DCS(D+e). 

Step 5: Return(pe*Rr+qe*Rl). 

end Reliability_Ring_DCS 

Example 2: 

Consider the DCS with a ring topology shown in 
Figure 3. This is the DCS shown in Figure 2 with one 
edge e6 added between nodes v5 and v0.  

f1

f2  f3

f4
f2

f2

f3

f4

f1

v0

v1

v2

v3

v4

v5

e1

e2

e3e4

e5

e6

Program f4 needs data files f1 , f2, f3 for its execuitn.

 
Figure 3.   A DCS with a ring structure 

Applying algorithm Reliability_Ring_DCS, we 
have  

R (DH)=q6 R ((D-e6 )H) +  p6 R ((D+e6 )H) 
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=  q6R ((D -e 6 )H) +  p6{ q5 R (( D  + e6 -e5 )H)+ p5 R (( D+ e6+ e5 ) H)}   

Since there exists one node in D+e6+e5 that holds all files 
in H, we have R((D+e6+e5)H)=1. From example  1, it is 
easy to see that R((D−e6)H)=Pr(E5) and 
R((D+e6−e5)H)=Pr(E4). So we have 

 R (DH) 
=  q6 (p1 +q1 p2 p3 p4 +q1 q2 p3 p4 + q1 q3 p4 p5 )  +
 p6 [q5 (p1 +q1 p2 p3 p4 + q1 q2 p3 p4 )+p5 ]. 

4. Computational Complexity of the DPR 
Problem on a Ring of Tree Topology 

Complexity results are obtained by transforming 
known NP-hard problems to our reliability problems [10-
14]. For this reason, we first state some known NP-hard 
problems as follows.  

i) K-Terminal Reliability (KTR)  
    Input: an undirected graph G = (V, E) where V  

is the set of nodes and E is the set of 
edges that fail s-independently of each 
other with known probabilities. A set 
K⊆V is distinguished with |K| ≥ 2. 

    Output:R(GK ), the probability that the set K of 
nodes of G is connected in G. 

ii) Number of Edge Covers (#EC)  
     Input: an undirected graph G = (V, E). 
    Output: the number of edge covers for G  
                 ≡ |{L ⊆ E: each node of G is an end of 

some edge in L}|. 
iii) Number of Vertex Covers (#VC)  

Input: an undirected graph G = (V, E). 
Output: the number of vertex covers for G  

≡ |{K ⊆ V: every edge of G has at 
least one end in K}|. 

Theorem 2. Computing DPR for a DCS with a star 
topology even with each |FAi|=2 is NP-
hard. 

Proof. We reduce the #EC problem to our problem. For a 
given network G=(V1, E1) where E1={e1, e2, ..., 
en}, we construct a DCS D=(V2, E2, F) with a 
star topology where V2={s, v1, v2, ..., vn}, 

E2={ (s, vi) | 1 ≤  i ≤  n}, and F={ fi | for each 

node i ∈ G}. Let FAvi= { fu, fv | if ei=(u, v) ∈ G}  

for 1 ≤  i ≤  n, FAs= ∅  and H =F. From the 
construction of D, it is easy to show that there is 
one-to-one correspondence between one of sets 
of edge covers and one FST. The DPR of D, 
R(DH), can be expressed as  

R(DH)=. 

{ p iΠ

�for each
edge i ∈t

(1-p i)Π
�for each

edge i ∉t

Σ
�for all FST
t ∈D

}

 

Thus, a polynomial-time algorithm for 
computing R(DH) over a DCS with a star 
topology  and each |FAi|=2 would imply an 
efficient algorithm for #EC problem. Since #EC 
problem is NP-hard, Theorem 2 follows. 
       

Theorem 3. Computing DPR for a DCS with a star 
topology even when there are only two 
copies of each file is NP-hard . 

Proof. We reduce the #VC problem to our problem. For 
a  given G=(V1, E1) where |E1|=n and V1={v1, 
v2, ..., vm}, we construct a DCS D=(V2, E2, F) 

with a star topology where V2=V1 ∪  {s}, 

E2={ei=(s, vi) | 1 ≤ i ≤ m}, and F={fi | for all 

edge i ∈G}. Let FAi={ fj | for all edge j that are 

incident on vi ∈ G} and H=F. From the 
construction of D, it is easy to show that there 
are only two copies of each file in D and one-to-
one correspondence between one of sets of 
vertex covers and one FST of D. The DPR of D, 
R(DH), can be expressed as  

R(DH)=
 { piΠ
�

for each
edge i ∈t

(1-pi)Π
�

for each
edge i ∉t

Σ
�

for all FST
t ∈D

}
 

Since #VC problem is NP-hard, Theorem 3 
follows.      

Theorem 4. Computing DPR for a DCS with a tree 
topology is NP-hard. 
Proof. By Theorems 2 and 3, we can see that DPR 

problem for a DCS with a star topology, in 
general, is NP-hard. This implies DPR problem 
for a DCS with a tree topology, in general, is 
also NP-hard, since a DCS with a star topology 
is just a DCS with a tree topology that has one 
level branch.    
       

Now, We use the results of Theorem 2, 3, and 4 
to prove the DPR problem on ring of tree topology is 
NP-hard.  
Theorem 5: Computing DPR for a DCS with a ring of 

trees topology even with one level of tree 
is NP-hard. 

Proof. Give a DCS graph D=(V, E, H) where V={s, v1, 

v2, ..., vn} and E={(s, vi) | 1≤ i ≤ n} with a star 
topology. We construct a DCS graph D’=(V’, E’, 
H) from graph D, where  

V’={ v1, v2, ..., vn}∪{( sj | 1≤ j ≤ n} and 

E’ = {(sj, sj+1) |1 ≤ j < n} ∪ {(sn, s1)} ∪ {(sj, vj) | 1 ≤ j ≤ 
n}. 

It is easy to see that D’ is a ring of tree topology 
with one level of tree. If we assume all added 
edges, {(sj, sj+1) |1 ≤ j < n} ∪ {(sn, s1)}, of D’ be 
perfect reliability, then we have R(DH)=R(D’H) 

for any given H⊆ H. By Theorem 2 and 3, 
computing DPR over a DCS with a star topology 
is NP-hard, thus, computing DPR over a DCS 
with a ring of tree topology with one level of tree 
is also NP-hard. 

Theorem 6: Computing DPR for a DCS with a ring of 
tree topology, in general, is NP-hard.  

Proof.  By Theorem 5, we can see that DPR problem for 
a DCS with a ring of tree topology even with 
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one level of tree is NP-hard. With the same 
approach stated in Theorem 5, we construct a 
ring of tree topology with a tree topology. By 
Theorem 4, computing DPR over a DCS with a 
tree topology is NP-hard, thus, computing DPR 
over a DCS with a ring of tree topology is also 
NP-hard.                                                                                            

 

5. Conclusions  

In this paper, we investigated the problem of 
distributed program reliability on ring distributed 
computing systems. We propose a polynomia l-time 
algorithm for computing the DPR on a ring topology. We 
also propose Theorem 5 and Theorem 6 to show that 
solving the DPR problem on a ring of trees topology is 
NP-hard. 
 

6. Appendix 

The detailed proof of Theorem 1 is as follows. 

Theorem 1.   
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with the boundary conditions 

Pr(Ei)  =  0 , gi=0, and pi=0, for i ≤ 0. 

Proof.  

Pr(En ) =  Pr(En -1 S i∪
i =g n-1+1

g n

)

 =  Pr(En -1 )+ Pr(En -1 ∩( S i∪
i = g n-1+ 1

g n

))  

  (Eq.2) 

For the term  Pr(En -1 ∩( S i∪
i = g n-1+ 1

g n

))   in (Eq.2), we 

have 

 Pr(En -1 ∩( S i∪
i = g n-1+ 1

g n

)) 

=  Pr(En -1 ∩S g n-1+1 )+ Pr(En -1 ∩S g n-1+ 1 ∩S g n-1+ 2 )

+Pr(En -1 ∩S g n-1+1 ∩S gn-1+ 2∩S gn-1+ 3 )+. . .  

   +Pr(En -1 ∩S g n-1+1 ∩. . .∩S g n-1 ∩S g n).  

       

(Eq.3) 

Since S i  =  S i + 1  ∩ {x i=1}  for 
nn

gig ≤≤+
−

1
1

, we 

have S i  ⊂ S i +1  and S i  ∩ S i +1  =  S i +1 . Thus, 

 Pr(En -1 ∩( S i∪
i = g n-1+ 1

g n

)) 

=  Pr(En -1 ∩S g n-1+ 1 )  +  Pr(En -1 ∩S g n-1+ 1 ∩S g n-1+ 2 )

 +  Pr(En -1 ∩S g n-1+ 2∩S gn-1+ 3 )  +. . .  

   +Pr(En -1 ∩S g n-1 ∩S g n) 

= )Pr()Pr(
11

2
11

1
1

iin

g

gi
gn

SSESE
n

n
n

∩∩+∩
−−

+=
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=  Pr(Egn-1-1 ∩{x g n-1= 0}∩S g n-1+ 1 ) 
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Note that the events Ei−2,  {xi-1=0}, and Si are disjoint 

with each other. We have  

Pr(Ei -2 ∩{x i -1 =0}∩S i)

=  Pr(E i -2 )*Pr({x i -1 =0})*Pr(S i).  So 

 Pr(En -1 ∩( S i∪
i = g n-1+ 1

g n

)) 

= )Pr(*})0Pr({*)Pr( 12
11

iii

g

gi

SxE
n

n

=−−
+=

∑
−

=

]**))Pr(1([
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−
−
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  (Eq.4) 
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By equations (Eq.2) and (Eq.4), we obtain Theorem 1.

       

Reference 

[1] V. K. Prasanna Kumar, S. Hariri and C. S. 
Raghavendra, "Distributed program reliability 
analysis," IEEE Trans. Software Eng., vol. SE-12, 
pp. 42-50, Jan. 1986. 

[2] S. Hariri and C.S. Raghavendra, "SYREL: A 
Symbolic Reliability Algorithm based on Path 
and Cutset Methods", USC Tech. Rep., 1984. 

[3] A. Kumar, S. Rai and D.P. Agrawal, "Reliability 
Evaluation Algorithms for Distributed Systems", 
in Proc. IEEE INFOCOM 88, pp.851-860, 1988. 

[4] A. Kumar, S. Rai and D.P. Agrawal, "On 
Computer Communication Network Reliability 
Under Task  Execution Constraints", IEEE 
Journal on Selected Areas in Communication, 
Vol.6, No.8, pp. 1393-1399, Oct.1988. 

[5]   Raj Jain, "FDDI Handbook : High Speed 
Networking Using Fiber and Other Media" , 
Addison-Wesley Publishing Company, 1994 

[6] Jiahnsheng Yin, Charles B. Silio Jr., "K-Terminal 
Reliability In Ring Networks," IEEE Trans. on 
Reliability, vol. 43, no. 3, pp. 389-400,1994. 

[7] Dimitris Logothetis, Kishor S. Trivedi, " 
Reliability Analysis of the Double Counter-
rotating Ring with Concentrator Attachment," 
IEEE Trans. On Networking, vol.2, no.5, pp. 520-
532,1994. 

[8] D.J.Chen, M.S.Chang, C.L.Yang, Kuo-Lung Ku," 
Multimedia Task Reliability Analysis Based on 
Token Ring Network," 1996 Int. Conference on 
Parallel and Distributed System, pp.265-272,1996. 

[9]  R. Kevin Wood, "Factoring Algorithms for 
Computing K-terminal Network Reliability", 
IEEE Trans. Reliability, Vol. R-35, pp.269-278, 
Aug. 1986. 

[10] A. Rosenthal, "A Computer Scientist Looks at 
Reliability Computations, "in: Reliability and 
Fault tree Analysis SLAM, 1975, pp. 133-152. 

[11] L. G. Valiant, "The Complexity of Enumeration 
and Reliability Problems," SIAM J. Computing, 
vol. 8, pp. 410-421, 1979. 

[12] M. O. Ball , J. S. Provan and D. R. Sh ier, 
"Reliability Covering Problems," Networks, vol. 
21, pp. 345-357, 1991 

[13] J. S. Provan and M. O. Ball, "The Complexity of 
Counting Cuts and of Computing the Probability 
that a Graph is Connected," SIAM J. Computing, 
vol. 12, no. 4, pp. 777-788, Nov. 1983. 

[14] J. S. Provan, "The complexity of reliability 
computations in planar and acyclic graphs", SIAM 
Journal on Computing 15 (1986) 694-702. 

[15] M.S. Lin, "Program Reliability Analysis in 
Distributed Computing System", Ph.D. 
Dissertation, 1994; National Chiao Tung 
University, Taiwan. 

[16] Min-Sheng Lin, Deng-Jyi Chen, "The 
Computational Complexity of the Reliability 
Problem on Distributed Systems", Information 
Processing Letters 64 (1997) 143-147.  

[17] D.A. Sheppard, "Standard for banking 
communication system", IEEE Trans. Computer, 
1987 Nov, pp 92-95. 

 


