Proceedings of International Conference on Distributed
Systems, Software Engineering and Database Systems

A User Interface for an ODMG-93 Compliant Database

Liu Yi-Huang, Hong Ting-Yue, Hou Kai-Liang, Daniel J. Buehrer
Institute of Computer Science and Information Engr.
National Chung Cheng University

" Abstract
This paper describes a User Interface that
is based on a model for persistent
collections and their operations as
_implemented in an ODMG-93 [I]
compliant database. Our User Interface is
implemented using a Java* applet [2] on
the client side. This client generates
ODMG-93 based Object Definition
Language and query code that is sent
over the network to an ODMG-93
compliant database server. Besides, this
user interface also provides multimedia
Sfunctions for displaying image files and
- playing music files, and visiting WWW
Sites via their URLs.

* Java is a registered trademark of
~ Sun Microsystems, Inc.
Keywords: ODMG93, ODL, OQL,
CORBA, IDL

1. Introduction

In this paper we present a user interface
that is being implemented using a Java
applet. Java™ is a programming language

. for writing client and server applications.
When comparing Java-based interfaces

with others [3-7], one must remember that

Java-based user interfaces can run on
almost any machines, O.S, and terminal
type. _ '
One of the major advantages of Java is
that these applets can be downloaded on
demand, so that users do not have to be

68

concerned ~ with installing wvarious
applications such as database systems.
This makes it easy to develop a sequence
of database implementations, each adding
more capabilities, such as security and
backup/recovery. The most recent version
of the database 1is then loaded
automatically into the client’s machine on
demand, depending on what kind of
database the user connects to. Another
major advantage of Java is that it provides
some powerful and useful libraries such. as
the Abstract Window Toolkit, Applets, etc.
These libraries make it easy for the user to
design and implement the user interface.

Java is a particularly useful language for
writing database queries of arbitrary
complexity, since the queries are
guaranteed not to affect the client’s
machine. Java is sufficiently robust to
permit the user to write arbitrarily-
complex database applications, including
windows' operations to display the data in
a user-friendly format, but since the
extended Java query language interpreter
is an applet, it is guaranteed not to affect
other users of the client machine. The
database system on which our user
interface is based is a prototype making
use of a Java applet to generate Object
Database Manangement Group‘s (ODMG-
93) Object Definition Language (ODL). It
retrieves class information and - sends
queries by using query functions, receiving
objects, image files, audio files or URLs
through the network from a compliant

ODMG-93 database server. The user
interface consists of six important
windows: main, image, music, WWW,
ODL and query. The ODL window can
define new classes for the database. The
query window is capable of retrieving,
storing and updating persistent data in an
object-oriented format. '

The remainder of this paper is
organized as follows. In Section 2, we
describe the advantages of the object-
oriented query model over the relational

query model. In Section 3 we describe
further details of the user interface and

give an example. In Section 4, a summary
and conclusions are given.

2. Object-oriented queries
2.1 Object Definition Language

The Object Definition Language
defines the characteristics of ODL types
(which we call “classes”), including their
properties and operations. The ODMG
framework describes objects with ODL, an
extension of the CORBA IDL object
typing language. The syntax of ODL is as
follows: ’ E

interface new_type name (:
inheritance_list)
(extent extent name
key(s) key list)
{ attribute domain_type
attribute_name
relationship target path inverse
traversal_path
¥
The “extent”, “key(s)”,
“relationship” keywords are ODMG-93‘s
ODL extensions of OMG’s IDL. They
have been added to IDL to permit the
description of concepts which are often
used in database type declarations.

and

69

Joint Conference of 1996 International Computer Sy mposium

December 19~21, Kaohsiung, Taiwan, R.0.C.

2.2 Object-oriented queries vs. relational
queries

As mentioned, ODL is an extension of
IDL, the interface description language of
CORBA. IDL is used to describe object-
oriented data which is to be transmitted
via remote procedure calls. The major
problem of such CORBA-like systems is
their inability to transmit pointers via such
remote procedure calls. Such pointers are
often only meaningful for the caller, and
they are usually not useful to the callee
unless he has some way to dereference
them. One of the major problems is that
object-oriented databases are usually full
of such pointers. These are the relations
of ODMG-93 databases, and these
relations represent reference joins. In
relational databases, such join conditions
must be specified for each query, since
relational databases contain no such
pointers, and primary keys must be used to
achieve the effect of pointers.

So, for instance, in an object-oriented
database, one immediately knows which
students are advised by which professors,
which are teaching which courses, etc.
simply by using the dot notation [8] to
follow binary relationships. ODL (of
ODMG-93) extends IDL to include such
binary relationships, and it permits n-ary
relationships to be viewed as either sets,
bags, arrays, or lists. - IDL only offers
arrays and sequences, and it does not
specify how collections of complex objects
can represent binary relationships.
Moreover, it does not offer ODL's inverse
relations, which permit the binary relations
to be viewed as collections from the
viewpoint of either side of the relation.
Insertions/deletions to an ODMG-93
relation also affect the corresponding

Proceedings of International Conference on Distributed
Systems, Software Engineering and Database Systems

inverse relation. Likewise, modifications
to an inverse relation also affect the
original relation.

Asking an object-oriented query is
equivalent to selecting elements from one
or more of these binary relations by using
reference joins along with SELECT
conditions. In our model, each such
object-oriented query is given a name, and
it is assigned as a new binary relationship
from the current object(s) to the obJects
which have been selected.

Since object-oriented queries use dot
notation to express the reference joins,
they are usually quite a bit simpler than the
corresponding SQL query. Moreover,
although the pointers in object-oriented
graphs are object identifiers, when the
selected subgraphs are passed to the client
for display, the object identifiers can be
converted into subscripts of the
corresponding collections, so the object
identifiers do not need to be displayed
directly. The user-interface can use these
subscripts to do the implicit joins on
demand, selecting the subgraph which is
connected to the items that have been
chosen by the user, by either using a query
or the mouse. If the client's memory is
insufficient, then caching will have to be
handled by the database server, with the
client requesting subcollections .of the
given collections, as is currently done by

ODMG for relational databases.
Fortunately, unlike ODBC relational
databases, the object-oriented database

servers can simply write the collections to
temporary files which can be read by the
client side, and they do not have to be
further bothered by the client.

3 The user interface

3.1 An overview

70

In our user interface, there are six
important windows including the main,
ODL, query, image, music, and WWW
windows. A simple sketch of the user
interface model is shown in Figure 3.1. In
this section, we will describe the ODL
window and the Query window in more
detail, since they are the most important.

Music Window
(Image Window Wm dow] i

Main Window
User Interface
L 4
ODL Window Query Window '

Figure 3.1 User Interface model design

The ODL window (see Figure 3.2) is
used to permit the user to define a new
class for the database server. The user can
create a class either by keying in using a
keyboard or by interactively using the
mouse. The design model is shown in
Figure 3.2. The ODL window displays the
previous class definitions as well as the
new class being defined.

ODL Window

ODL

!

Define Class Window

Class Definition l

Attribute Window Relationship Window

! Attribute Definition J [Relationship De:ﬁnition]

Figure 3.2 ODL window model design

The Query window (see Figure 3.3)
permits the user to ask a query to the
database server. If the query is a name
query, then the user interface pops up the
Class window to let the user choose the
desired class or its members. If the query

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

is a query constraint, then the Select Class
window pops up to let the user select the
classes to be used in the Query Constraints
window. Whenever an error occurs, the
message window pops up automatically.
These windows are shown in Figure 3.3.

Query Window

' Llium By Name , | Query Constmin:n
7z AN

/

Class Window

Class properties

Select Class Window

List of class names

Collection Window Insert Object Window Query Constrains Window .
. Attribute names and Query text and list of all objecty *
Collection's content their datatypes content of each selected class

Subcollection Window Assign Object Window

Query Result Window

0 tistofetjess | [Listofabjecs | Retrioval Result

Object Information Window Show Information Window

eir values their values

tbjecfs attributes with] [Object's attributes with J
th

Figure 3.3 Query window model design

Person

" ISA

depts

works_on

v

Employes & —TDepartment

has_workers

controls

is_controlled_by

Dependent ﬁoj oct

Points to attribute's class

Figure 3.4 Schema Graph

71

Proceedings of International Conference on Distributed
Systems, Software Engineering and Database Systems

(extant dapendems .
)

{
attribuie String rame ;
ataibibe Sring bt
atirénse String who ;
stivibite String relation ;
3
ntesface Person
{ extent penple
keyid})

nsigned Short

thute String name ;
Firibwte Strlng birth
sttribute Set < Depenslent > depemient ;
e Unsigned Short salary;

ietioneivip Sat < Projact > veoske_on iwer

Figure 3.5 Define classes

3.2 Example

A. ODL

When the user wants to define classes,
he can first click the “ODL” button from
the Main window. The user interface will
pop up an ODL window. Consider the
schema graph shown in Figure 3.4. The
sequence of steps to define classes is
shown in Figure 3.5. The ODL window
contains the class definitions that the user
has already input but has not yet sent to
the database.

B. Query

There are two kinds of query provided
by the database, including query by name
and by query constraints.

B.1 Query By Name

72

If the user wants to view the collection
of a class, he should first click on the
“Query By Name” button from the Query
window. The user interface will pop up the
Name Query window to permit the user to
input either the class name or the class
name followed by ‘> and one or more
attribute or relation names separated by
periods. If the user inputs the class name
“Employee”, after committing the class
name to the database, the user interface
will receive this class‘s information. If the
user inputs “Employee::dependent”, then
the Collection window will receive the
information for the union of all dependents
of any employees. There are also other
functions provided in the Collection
window for adding atiributes, adding
relationships, renaming the class, renaming
the extent, remaming properties, and
inserting objects.

The user can insert an object by

clicking the Insert Object button in the
class window. The user interface will pop
up the Insert Object window (Figure
3.6). Because the class “Employee” has a
superclass “Person”, .the superclass
attributes are also shown in the Insert
Object window to permit the user
assign values. The “dependent”
attribute’s datatype is a set of objects.
The user can assign its value by clicking

Joint Conference of 1996 International Computer Symposium

December 19~21, Kaohsiung, Taiwan, R.0.C.

on its datatype and using the Assign
Object window to choose dependents to
be added. If he double clicks on the
“*10” object, then this object’s contents
are shown in the Show Information
window. If not all the objects are
defined, the user can fill in the attributes

- values and click the “New” button to add

anew object to class “Dependent”.

Figure 3.7 The collection of a class

73

Proceedings of International Conference on Distributed
Systems, Software Engineering and Database Systems

G128 65500

45/7147 76000

578116 |*

5110/35

43200

4492 85500

603/17 36800

59/1020 35560

5711118

36500

24
ikt
° |iarta
tdasia
tdaria
Huder
luder
fuder

it
it

Larny
Lasvy
Lasey

Figure 3.8 Pop up the Query Constraints window

When the user wants to view or
update the class‘s collection, he can click
on the “extent” button from the Class
window. The user interface will pop up the
Collection window which contains the
collection of all members of the class. In
the Figure 3.7, the Collection window
shows the class’s extent name, the
collection type, the current element‘s key
value, and the current element’s content.
Besides, it permits the user to view the
next or previous object‘s contents. Also it
permits the user to view the particular
object by filling in a number in the goto
field. The user can update this object’s
content after modifying the attribute‘s
value.

B .2 Query constraints

If the user wants to ask a query, he
should first click on the “Query
Constraints” button from the Query
window. The user interface will pop up the
Select Class window to permit the user to
select the classes that will be used in the

74

Query Constraints window (Figure 3.8). If
the user double clicks the class “Employee
and the class “Department” in the Select
Class window, then all the extents’
contents of class “Employee” and class
“Department” are shown in the form of a
grid in the Query Constraints window.
When the user wants to make a query,
he can input either by using a keyboard or
interactively by using a mouse. For
example, the user can first click the
attribute “name” in the class “Employee”,
and then choose a constraint “=" from the
choice of constraints (=, >, >=, <, <=),
and then click the attribuie “emp name” in
the class “Department”. Another query
constraint can be achieved by clicking the
attribute “salary” in the class “Employee”,
and then choosing a constraint “>=" from
the choice of constraints and then using a
keyboard to input 50000. After pushing
the “Ok” button to commit the query, the
Query Result window is popped up. This
contains the objects which satisfy the

query.

4. Conclusions

In this paper, a user interface for an
ODMG-93 Compliant Database was
described. The user interface is a Java
applet. This database system is a prototype
system that demonstrates a simple, easy,
and user-friendly user interface. The user
can create/retrieve data to/from a database
by means of the user interface, which then
creates ODL/query commands that are
sent through the network to the database
server. In addition, the user interface also
provides the multimedia and WWW
facilities that enable the user to view
images, listen to music, and visit WWW
sites via their URLs.

One advantage of using a Java applet
for the database front-end is that database
applications can be inserted as links into
other WWW hypermedia. Another major
advantage is that the newest version of the
database applet will automatically be
downloaded to the user‘s machine, making
it possible to create a sequence of database
implementations with more and more
features. The traditional burden of
supporting multiple versions on multiple
platforms is eliminated.

Our future work involves adding more
capabilities such as security and
performance improvements. The Java
applet improves security since database
impostors are theoretically unable to foul
up the client’s machine. However, a way
must still be found to prevent database
impostors from being able to act like a
Trojan Horse, and request the user‘s
password, thus gaining illegal access to the

database server. Another future
improvement involves using class
algebra’s sorted disjunctive normal

forms[9] to assign heirarchy to each query
result.

75

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

References

[1]Cattell, R.G.G., ed. The Object Database

Standard: ODMG-93, Morgan Kaufmann Publ,
1996.

[2] Java Home Page. http://java.sun.com/

[3] Buschek, J.J., “COMPAS Windows: A Point-
and-Click Interface to Oracle”,-in Proc. of IEEE
Conf. on Oceans Engineering for Today's
Technology and Tomorrow’s Preservation, 1994,
vol.1, pp.I/15-20. .
[4] Kao, C.H.; Evens, M., “A Windows User
Interface to Data Retrieval and Report Generation
for a Diabetic Patient Database”, Proc. Seventh
Symposium on Computer-Based Medical Systems,
IEEE Comput. Soc. Press, 1994, pp.98-103.

[5] Lam, H.; Chen, HM.; Ty,F.S.; Qiu, J.; Su,
S.Y.W., “A Graphical Interface for an Object-
Oriented Query Language”, Proc. Fourteenth
Annual International Computer Sofiware and
Applications Conference, IEEE Comput. Soc.
Press, 1990, pp.231-237.

[6] Powersoft Corp., User ‘s Guide, 1991,1994.

[7]1 Zloof M., Query By Example, IBM Systems
Journal, vol.16, no.4, 1977.

[8]Tsukamoto, M.; Nishio, S.; Fujio, M., “DOT:

A Term Representation Using DOT Algebra for
Knowledge-Bases”, Deductive and Object-
Oriented Databases, Second International
Conference, DOOD ‘91 Proceedings, 1991,
pp.391-410.

[9] Buehrer, D.J., “Class Algebra as a Description
Logic”, Description Logic ~96 Workshop
Proceedings, Boston, Nov. 2-4, 1996, Available at
http://www.cs.ccu.edu.tw/~dan/buehrer.ps .

