Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

Debugging User-Defined Functions in RDBMS Client-Server

Environment*

2

Gene Y. Fuh! Kevin Nomura

Mike Meier® Hsin Pan®

George Wilsont

International Business Machines Corporation

Email: fuh@almaden.ibm.com
Phone: (408) 927-3113

Abstract

Many relational database systems offer a User-
Defined Function (UDF) facility which allows the user
to extend the intrinsic functionality of SQL ezpres-
sions with their own functions written in languages
such as C and C++. UDF modules are installed on
the database server where they run under a daemon
process managed by the DBMS. Normal debugging
techniques fail with UDF in the server runtime en-
vironment because client cannot readily communicate
with UDF, which runs as an asynchronous, remote,
privileged process from the client’s point of view.

Developing and testing non-trivial UDF modules
may not be viable without a ready means to debug in
this environment. In this paper we explore the fac-
tors that inhibit UDF debugging. We then present an
idea that overcomes these obstacles and develop two
variations of this idea. The self-initiated approach
can be inexpensively applied by modification of the
UDF code. We demonstrate a simple implementa-
tion of this technique which was experimented with us-
ing IBM’s DB2/Common Server relational database.
The DBMS-initiated approach has DBMS managing
the debugger invocation, with control provided through
SQL language extensions, to make debugging more
convenient and flexible for the developer of UDF. Both
approaches allow normal debugging of UDF in client-
server environment using ordinary debuggers.

Keywords: relational database management system
(RDBMS), SQL language, SQL extension, debugging,
user-defined function (UDF), client-server, stored pro-
cedure, parallel query evaluation.

* 1IBM Database Technology Institute 2Apple Computer
Inc. 3IBM Application Development Technology Institute

145

Fax: (408) 927-3215

1 Introduction

Many relational database management systems
(RDBMS) [18, 10, 19] currently offer a User-Defined
Function (UDF) [15] facility whereby the user may
extend the intrinsic functionality of SQL expressions
with their own functions written in host languages
such as C and C++. A UDF can be invoked from
any context where an SQL expression [14] is allowed..
Thus UDF provides a flexible mechanism for integrat-
ing databases with applications. Some uses of UDF
are accessing multimedia objects through multimedia
extenders [6, 9], presenting relational data through
Web gateways [17], supporting data mining applica-
tions [2, 1], and wrappering system library functions -
[8] so they can be called from SQL.

Should the UDF logic contain errors, the SQL ex-
pression in which the UDF was invoked may give in-
correct results or fail. This of course is a form of user
error since UDF semantics are specified by the de-
veloper writing UDF code not by the DBMS or the
SQL language. Although the UDF developer has the
usual responsibility for correctness, debugging UDF's
running in the client-server environment is severely
hampered by the characteristics of that environment.
We will discuss these problems and propose a solution
which makes UDF debugging as effective as normal
client application debugging.

We now describe a representative UDF run-time
environment [7] to illustrate the special problem of
debugging remote, DBMS-managed UDFs. The dia-
gram of figure 1 depicts the elements of DBMS which
directly relate to UDF debugging.

Each client connecting to the DBMS has a set of
server processes associated with it. Such a set is
shown as Agent unit in the system diagram (figure 1).
To use an already registered UDF, the client requests
its agent process to execute an SQL expression which

Proceedings of International Conference on Distributed
Systems, Software Engineering and Database Systems

Client Site. Daia Base Management System

Agent Unk 1

Reques from cilent

Cliont 1 [rgent pracass

Rasuk fom DBMS

»
m

UDF Library
ramic loaling

Requex from client
AN

Result yom DBMS

UDF process

DBMS
Conirol Unli

Agent Unh n

Agent process

Qient n

//
p

UDF process

Figure 1: Run-time environment for User-Defined
Function

contains a UDF invocation. In response, agent pro-
cess interprets the expression and returns the result
to the client.

When a UDF is installed in the server environment,
the user gives up direct control over its loading and
execution; these are now managed by DBMS. Viewed
from the client side of a transaction, the UDF appears
‘as an asynchronous, remote, privileged process. This
makes it rather difficult to target a debugger to the
UDF from the client side. The three characteristics
of special interest in this runtime environment are:

Timing: A UDF context process is created on de-
mand and the UDF library is loaded dynamitally.
Unloading occurs at the end of a transaction,
such as when a COMMIT is performed. There is
no convenient way to inform the developer when
UDF code is available for debugging. The de-
bugger cannot be attached to UDF on the fly as
process id and debugging information of UDF li-
brary cannot be known in advance.

Authorization: For security purposes, DBMS
processes usually run under a special UID so that
non-privileged users cannot attach to them.

Remote debugging: In general the developer
does not have a user account on the server ma-
chine. This makes it extremely difficult, if not
impossible, to debug UDF process on the server.
Purthermore, UDF process runs as a daemon pro-
cess with the standard I/O file handles disabled.

Therefore, run-time status of UDFs can not be
made observable by inserting printf statements.

Normal debugging methods involving interactive

‘debuggers and even “print” statements added to the

program cannot be used with these limitations. The
developer, working on a remote machine, might find it
frustrating to debug a misbehaving UDF. The reload-
ing of UDF libraries is one example of a factor of the
runtime environment that could potentially confuse
the user. The user may wonder when his code is being
refreshed, why static variables are being reinitialized,
etc. This could affect the productivity of application
development using UDF and even discourage users
from using UDF.

Relying entirely on debugging the UDF off-line, i.e.
on the developer’s machine outside the DBMS con-
text, is too limited in general. Many factors of the
environment and function inputs which trigger the
failure may be unreproducible. In general a UDF can
use any feature of the host language and be arbitrar-
ily complex, so it is very desirable that familiar de-
bugging methodologies be available to the developer.
In particular we believe the ability to easily debug a
UDF running online, that is in the environment of
the DBMS, is central to the viability of writing non-
trivial UDF modules. Online debugging support com-
plements the standalone development and testing of
UDF code by exposing behavior unique to the UDF
runtime environment and making it convenient to re-
produce the situation causing the failure. The ability
to debug UDF problems wn situ will be invaluable to
the application developer.

The remainder of this paper develops our approach
to UDF debugging in the client-server environment.
In section 2, we present a technique for debugging
UDF that resolves the problems raised above. Section
3 demonstrates a simple implementation of this idea
along with an example of its use. This idea has been
prototyped in IBM DB2/CS Version 2 [8] where its
usefulness was verified. In section 4, we refine the idea
by proposing DBMS support for UDF debugging. We
conclude in section 5.

2 Our approach

Summarizing the previous discussion, there are three
obstacles to debugging DBMS-managed UDF code
from the client side. These are the issues of timing,
authorization and remote debugging.

These issues may appear to be orthogonal at first
glance. However it turns out they are caused by trans-
planting the same methodology for developing and de-

146

bugging the UDF locally to debugging the UDF when
installed on the server and managed by DBMS. If we
try to initiate the debugger from the client side we
are then faced with having to target the debugger to
an asynchronous, remote, privileged process. But the
UDF itself is immune to these problems in an impor-
tant sense, which leads us to a solution: having UDF
initiate the debugger.

The timing problem, of trying to intercept the UDF
invocation under DBMS control, lies in the percep-
tion of the UDF process as observed by another pro-
cess. Relative to the UDF this is not a problem; UDF
process can initiate the debugger right before control
passes to the UDF code, providing the same measure
of control as local debugging. Likewise, insufficient
authorization to attach UDF process is an artifact of
the relationship between UDF and client processes. If
UDF process initiates the debugger, it only requires
permission to attach itself. '

To debug the remote process, we observe that a lo-
gin account on the server machine is not needed to
debug a server process, as long as we can have the
debugger interface brought. up elsewhere: We can use
the fact that UDF already runs on the server and have
UDF initiate a debugger in client-server mode, with
the debugger interface brought up on the application
side. For example, X-windows is sufficient for flexible
remote debugging of UDF. We can run a text debug-

“ger (gdb, dbx) by means of an xterm window with
options to display on the application’s X-server and
to run the debugger. Using a graphical debugger is
equally straightforward.

Therefore, the timing, authorization and re-
mote debugging issues reduce to the problem of ini-
tiating a debugger from UDF process for debugging
UDF code running in its own address space. There
are two approaches to achieving this: self-initiating
approach and DBMS-initiating approach We will il-
lustrate the basic idea of both approaches with a seg-
ment of C code which is executed right before the ex-
ecution of UDF code. Without loss of generality, we
assume the underlying symbolic debugger is “xldb”

{4], an IBM symbolic debugger.

In the self-initiating approach, the debugger is
“triggered” by code added to the UDF for this pur-
pose. The following section of code illustrates the
basic mechanism:

{

char debug_cmd[256];

sprintf(debug_cmd,

“x1db -a %d ~I %s —display %s

getpid(), source_path,

display, program_name);
system(debug._cmd);

sleep(5);

./'s &" 3

// synchronize w/ spawned debugger process

147

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

The first statement prepares a shell command for
invoking the “xldb” debugger. The “-a” option speci-
fies the process id of the process being debugged. The
“.I” option specifies the directory where the source file
1s located. The “-display” option specifies the remote
machine and X-windows display that the developer is
using. The last argument on the “xldb” command
line is the name of the program to be debugged.

Notice that this command is run as a background
job so that the UDF process does not have to wait for
its completion. Execution of the system call spawns
the debugger in a new process running the prepared
command; meanwhile UDF execution continues. '

The sleep call gives the debugger time to attach
back to the UDF process before UDF execution con-
tinues. UDF execution will break within the sleep
function to give the overall effect of establishing the
initial breakpoint within this section of code.

Alternatively, in the DBMS-initiating approach,
the debugger is' “triggered” from within the DBMS.
The mechanism of debugger attachment is similar to
the above. But, having DBMS manage the debugger
invocation provides more flexibility to the developer,
as we shall see later in section 4.

In both approaches, the UDF of interest can be
debugged in the usual way. We will describe a simple
implementation of this idea in the following section.

3 Implementation and example

- .
We have implemented the self-initiating [5] approach
using both “xldb” and “dbx” as the underlying sym-
bolic debugger in the context of IBM DB2/Comimon
Server version 2 running under AIX/6000. To sim-
plify the debugging process, we provide a C macro,
DEBUG_UDF, for application programmers to specify
minimum set of debugging information. The defini-
tion of DEBUG UDF is as follows:

#define DEBUG_UDF(dbg, src_dirs, display, ulst,
uarg, flag)

static int token;
token = dbf_register(dbg, src _dirs, display,
ulst, uarg);
if (token >= 0))
flag = dbf_trigger(token);
}

Argument dbg specifies the name of the debugger
executable (“dbx”, “xldb”, etc). Argument src_dirs
specifies a colon-separated list of UDF source direc-
tory names. Argument display specifies the user's X
display as machine:display-numbér. Argument ulst
specifies a colon-separated list of UDF names. Argu-
ment uarg is the formal argument of the enclosing C
function which contains the full function name of the

Proceedings of International Conference on Distributed
Systems, Software Engineering and Database Systems

LR

N
Y
)
Y
Y
N
N
N
8

L LLLLELELLLILLLLEL L L& LELEL LI LT LE L AL LA LR AL

cecrict TR T ARl

Figure 2: xldb screen when debugger instantiated

UDF being executed. Argument flag is a local “int”
variable name for holding the return code from the
“trigger” routine whose sole functionality is to bring
up the debugger.

It takes two statements to initiate the debugger.

The first statement registers the current debugging
session with the DBMS. If the name specified by uarg
1s not in any of the existing registered debugging ses-
sions, dbfregister will create a new ‘session and reg-
isters the debugging information as specified by the
arguments. A token uniquely identifying this session
will be returned as the result. If the name specified
by uarg is found in some existing session, token iden-
tifying that session will be returned as the restilt.

The second statement attempts to bring up the de-
bugger if the current process is not being traced and
no attempt was made before to bring up the debugger.

The following code fragment shows the use of this

macro to specify the initial breakpoint at entry to the
UDF:

DEBUG_UDF
(“x1db", /1
"fafs/alm/u/nomura/udf/1ib", //
"bughouse.almaden.ibm.com:0", //
“nomura .FIND_STRING", 1/
udf_func_name, i
flag); 11

if (flag != 0)
/# debugger was not brought up successfully #/

IBY x1db debugger

debugger src search path
X-svr for debugging

DBMS identifier for UDF
parameter passed from DBHS
output parameter

elss
/* debugger was brought up successfully #/

/*'Start of function body */

“db2dbfh” is a header file containing the defini-
tion of DEBUG.UDF and the function prototypes for
dbf register and dbf_trigger. The DEBUG_UDF line
in the function body of find_string registers a new
debugging session with the following debugging infor-
mation:

148

o Debugger: IBM xldb debugger.
AFS

¢ Source directories:
’/afs/alm/u/nomura/udf/lib’.

directory

e Client machine: X-windows server
house.almaden.ibm.com:0”.

(‘bug_

¢ UDF name: The UDF FIND_STRING in
schema NOMURA.

If all of this information is correct and “NOMURA
FIND_STRING” is invoked the zldb debugger will
be brought up and break at the DEBUG_UDF line. As
desired, the zldb window will be displayed on “bug-
house.almaden.ibm.com”.

We would like to comment more on the uarg and
ulst arguments of DEBUG_UDF. At run-time, uarg will
point to a string which contains the complete two-part
name of the UDF being invoked. If there are multiple
UDFs sharing the same implementation this argument
identifies the one which is being invoked. Suppose
there is another UDF “FUH .FIND_STRING” which
is also implemented by the same external function.
With the ulst argument given in the above example,
the DEBUG_UDF line will have no effect if the UDF being
invoked is “FUH .FIND_ STRING”.

To summarize the usage of our debugging support,
the UDF should be prepared as follows. Then once
the library is installed, the next invocation of the UDF
will initiate the selected debugger.

e Include the header file “db2dbf.h” in UDF source
file. :

e Add the DEBUG_UDF line as explained above to
the UDF source file where the initial breakpoint
is desired.

® Recompile with debug support activated (i.e.,
specify the -g option).

e Link UDF library with the shared library “lib-
dbf.a” which contains the functions dbf register
and dbf_trigger.

3.1 UDF debugging example

We now show an example of debugging an error in
UDF using this technique. Following is the complete
definition of a C-language UDF find string, whose
purpose is to return the position in tezt of the first
occurrence of sub_string. If sub_string does not occur
in text, the return value is 0. At run-time the DBMS
prepares and passes actual arguments to external C

function find _string viaits first two parameters, text
and sub.string. The return value is passed back to
the DBMS via the third parameter, position, and the
sixth parameter null_ind_r which indicates when the
result is null. The other parameters of find string

are unrelated to our discussion.
Here i1s the UDF source code:

void find_string

(char #*text, // The text to search
char #*sub_string, // The sub-str
long #*position, // Occurring pos. of the sub_str

short #*null_ind_it,
short *null_ind_i2,
‘short *null_ind_r,

// First input null-indicator
// Second imput null-indicator
// Result null-indicator

char sqlstatel6], // Error code issued by UDF

char *func_name, // UDF function name

char #specific_name, // UDF specific name

char *msg_text) // Msg txt returned by UDF
{

char *start, *cptrl, *cptr2;
int start_position;

/* Initialization */
start = text;
start_position,= 1;

/* Set.up new string for comparison */
try_again:

*position = start_position++;

cptrl = start++;

cptr2 = sub_string;

/* Coﬁpare sub_string with the new string */

/* The first two if-branches should be swapped */
compare:

if (*cptrl == “\0") {
/* End of text reached; not found */
*position = 0;
return;

}

else if (xcptr2 == “\07) {
/* End of sub_string reached; found */
return; v

} . :

else if (*cptrl == *cptr2) {
/* So far so good; continue comparing */
cptri++; '
cptr2++;
goto compare;

/* Comparison fails; try next string */
goto try_again;

1

The C code given above contains a couple of defects:
first, the null result indicator is not initialized, which
may cause the function to appear to return NULL;
second, it does not catch the situation where the sub-
string ends the text. Let test_table be defined with a
single column text of type LONG VARCHAR loaded

with three rows:

this is a test
this is only a test .

if this had been a real emergency it would not have worked

The UDF is now prepared for debugging. We
choose to place a breakpoint at the top of the func-
tion as illustrated by the insertion of DEBUG.UDF in
the fragment of code in the previous section. After
recompiling and installing the library, we are ready
to begin a debugging session. We run an interactive
query from the command-line processor formulated to
show the problem by searching for a string that occurs
at the end of the first text row:

149

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

N AR BRI A
H ne & : i N SIEr

S Sl

Pt L L]
RsalolnvokelaterrsptibleFuncti St

™

S raf s elen dim cqminnpmiea/nt b shindl cbring o

char »start, weptrl, cptr2;
int start_poxition;

int flag; /% for DEBEG_DBF »/

DEBUG_BDF{"x1db”, “/afs/almaden. ibm.com/u/nowara/udf/1ib", “bughouse.stl.ibe.com:0",
- “NONURA .FIND_STRING®, udf_func_nnwe, Flag);

PILIPPLFPPPIPOI I 2L PP PP I 42044

/% Iaitialization »/
start = text;
start_position = I;
smuil_ind r = 0;

/% Set up new string for comparison */

N
2y
N
2
N
X

AR SRR Seticedeudiuiaivaariatinuiniacdedtictenudanereiond

Figure 3: Ready to debug

select text from test_table
where find_string(text, “test”) <> 0

Presently an zldb debugger window appears (figure
2). The application (command-line processor in this
case) remains suspended waiting for a response from
the agent process to the SELECT query while we work
in the debugger.

The debugger is stopped two call levels below the
DEBUG_UDF line in a sleep call that is used to sus-
pend the UDF process long enough for the debugger
to spawn off and attach. The two call levels expose
the details of the mechanism for invoking the debug-
ger which are irrelevant to the UDF. By issuing two
return commands to the debugger, we reach the “log-
ical” breakpoint as shown in figure 3.

Local variables are shown in the upper left window
pane. The arguments passed to ‘the UDF from the
DBMS appear at the top; for example text points to
the first row value and sub_string points to the value
to search for, as specified in the UDF invocation. At
this point UDF debugging can proceed as normal.

Since find string incorrectly returns that “test”
does not occur within “this is a test”, we set a break-
point on the condition which decides that a substring
is not found. The breakpoint hits as shown in figure 4.
Examining the local variables, we see that everything
is actually as we would expect, having exhausted both
search and target strings, except we are about to re-
turn that the string is not found. This leads us to
realize that the order of the first two if conditions
is reversed, since this state should be considered a
substring match. We are finished debugging for now.
To end debugging, the debugger must be terminated
gracefully so the process state is restored to a runnable
condition (closing the xldb window with ALT-F4 for
example would terminate the UDF process, and a se-

Proceedings of International Conference on Distributed
Systems, Software Engineering and Database Systems

¥

X
N

Y
3

IR

rowle for Tl clring £ in ofl ctrine s
ftext: “this is a test™
sub_striag: “test”
position: —>411
ull_lnd_ ll =0

“NOKURA - .FIND_STRING"
2 "SQL340916125755150"

Yot 1bo

cptr2 = sub_string;

/% Compare sub_string with the new string
/2 NOTE: the First two if-branches should be swapped t/
cospare:
I {wcptrl = "\Q') {
/%.End of text reeched; mot found #/
& - aposition = 0;
retara;

}
else iF {ncptr2 = "\0'} (
/% End of sub_string resched; Found n/
8 cetarn;
)

else If (rcptrl w= xeptr2) {
f /% So far go good; continue comparing w/

8 T S S S 37 P Y 7S

Figure 4: Bug discovered

vere error would be reflected to the application). Se-
lecting the “xldb” exit option removes all breakpoints
and closes the debug session. Control now returns
to the application (command-line processor), and the
- query we issued resumes running.

To fix the UDF we terminate the command-line
processor so as to end the current unit of work, or
alternatively perform a COMMIT. This is a necessary

step to cause the UDF library to be reloaded upon .

the next reference instead of using the copy already
loaded into memory. We update the code and install
- the library, and we are ready to begin again.

This time for variety the “dbx” flavor of UDF debug
support is used. We set a breakpoint at the “found”
and “not found” return points and run the function
to verify the correct path is taken this time. As shown

in figure 5 this bug has been fixed.
After releasing the UDF process from debugger con-

trol with the detach command we observe that the
query output is now correct; exactly those rows con-

taining “test” are returned.

select text from test_table

where find_string(text, “test’) <> 0

TEXT

this is a test
this is not a test

2 record(s) selected.

4 DBMS extensions for UDF
debugging

More advantages can be obtained by integrating
our debugging technique into the underlying DBMS.

150

Buiting €0 utravch Jo peovoss 39489 |
Surcesatul iy ottorhed to dlsywe.
ninyg: Qimectory containing d2syse couid vt be dotermined,
Fply "mas’ comemnd te iritialize 3o path,

& Vorxian 3 1,
Type “teaip fur holy.
reoding syoclie rforastion ..,

wtrachad in slaop gt BuIFLIES

FrRETHISE {slenprindf) 8ILINCIL i
{dhx) rokuen

atuppad in gt %frw ok 1s ine 333 an File “oqicidef. o
cenoltt st roedd "wgiridh?, o

(O

atopped ©
%

3, eidins)

wn Find pirirg at line 30 in §i
“HRIRA

“udf_sirirg. e
FIND STRING®, vdf_fune pese, Flags;

ing.e"il8
fdoxt xfop ot
123 stap ok "udf sering
fdbx) cwad,
i s:owm in Find guring ot tine 18 in Fiie
3% N‘Lu Te;
1d6%) bist 39,
25 r-r»m

3¢

IS eteing.c

37 ©i st na reschull Foad w/
w

5 ¥

i sles iF {aoped mw NS

Es| 7% End of touk rewckad; not fawvd af
A2 aposition = Q;

2 roturo,

4 H

B (dbxd sleensy |

Figure 5. Bug fized

First, the intent of debugging specific UDFs can be
expressed to DBMS through an extension to existing
SQL languages. It is then unnecessary to modify UDF
source code with statements to initiate debugging, as
DBMS manages this task. Conditional breakpoint pa-
rameters can be registered with the DBMS so that the
debugger is invoked for a given UDF only when cer-
tain conditions in the encapsulating SQL statement
are met. As examples, one can specify that the tar-
get UDF is debugged only when the first argument of
the UDF is a date value greater than the current time
stamp or it is the last time that the UDF is invoked
from the underlying SQL statement. Second, existing
database authorization mechanisms can be extended
to include thé debugging operation over UDFs. In
other words, only users granted with appropriate de-
bugging privileges are allowed to debug the UDFs. In
this section, we propose an extension to the existing
SQL language and provide a variation of the technique
introduced in section 2.

4.1 SQL Language Extensions

The following grammar rules defines the syntax of the
set_debug_intent statement that we propose as an ex-
tension to the existing SQL language:

set_debug_intent_stmt ::=
SET DEBUG INTENT FOR udf_list WITH debug_intent_list
debug_intent ::

CONTROL = {0ON | OFF}
| DEBUGGER = string
| OPTIONS = string
| DISPLAY = string

| CONDITION = debugging_condition

The udf list in the first rule specifies the list of
UDFs to which the debugging intents specified in the
statement apply. There are five kinds of intent. The
CONTROL intent specifies whether the underlying
debugger should be activated when the desired UDF
invocation is encountered. The DEBUGGER intent
and the OPTIONS intent specify the name of the de-
bugger and the command line options for the execu-
tion of the debugger respectively. As suggested by its
name, the DISPLAY intent defines the location where
the output of the debugger is rendered. The CON-
DITION intent, specifies a boolean condition under
which the debugger is expected to be activated. The
condition is an SQL expression in which the tokens.
#1, #2, etc. can be used to denote parameters of the
UDF. All the debug intents are optional. The default
values are not defined and hence are implementation-
dependent.

The usage of the set. debug_zntent statement can be
best understood through examples.

SET DEBUG IRTENT FOR find_string WITH

CONTROL = ON,
DEBUGGER = °x1db”,

“OPTIONS = ‘-I /afs/almaden.ibm. com/u/fuh/udf/src N
DISPLAY = “ingrid.almaden.ibm.com:

CDNDITION = LENGTH(#1) > O AND LENGTH(#2) > 0;

The above statement instructs the DBMS to spawn
a new process running the zldb debugger on behalf
of the UDF find_string when it is invoked with non-
empty string-typed values for i{s two arguments. The
debugger window will be rendered on the machine
whose IP nameis “ingrid.almaden.ibm.com”. The fol-
lowing statement will deactivate the debugger for the
UDF find_string. As a result, subsequent invocations
of find_string will run without interruption by the de-
bugger.

SET DEBUG INTERT FOR find_string WITH CONTROL = 0FF;

4.2 Activation of the Debugger

The DBMS uses a variation of the technique described
in section 2 to attach a debugger to UDF process.
In the DBMS-initiating mode, the debugger is ”trig-
gered” by the DBMS prior to the invocation of the
UDF. The following section of code illustrates the ba-
sic mechanism:

{
char debug_cmd[256];

sprintf(debug_cmd,
Ux1ldb ~a %d -I %s -r %s -display %s %s &",
getpid(), source_path, function_name,
display, program_name);

system(debug.cmd) ;

sleep(5);

As with the self-initiating technique described in
section 2, this prepares a shell command for running

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.O.C.

the debugger as a separate process. The difference
here is the program name final argument which spec-
ifies the name of the program to be debugged.

Executing the system call spawns a new process
running the prepared command and returns to the
DBMS immediately. The sleep call keeps the running
process idle for a period of time so that the debugger -
can attach to it before the calling process proceeds
to execute the external function. As the result of ex-
ecuting this section of code in UDF process, a new
"xldb” debugger process will be brought up and the
execution will break at the first executable statement
of the external function being debugged.

5 Conclusion

Our experience with a simple implementation of

Temote debugger instantiation has shown a break-

through in debugging UDF. With a small amount
of coding overhead we easily debugged a UDF under
the DB2/Common Server run-time environment on
AIX using existing source debuggers. We have also
described how this technique can be integrated into
existing relational database management systems to
enhance the usability of the basic debugging idea. A
UDF can be targeted or withdrawn from debugging
via SQL commands without source modification, and
the DBMS can provide conditional entry breakpoints
to simplify reproducing the failure scenario.

5.1 Future works

We point out a couple of areas where the UDF debug-
ging 1dea can be applied to related problems.

Stored procedures execute on the database server in
a runtime environment similar to that of UDF. There-
fore stored procedures can be debugged using the self-
watiated method. With DBMS and SQL extensions
analogous to those proposed for UDF, we can provide
the advantages of DBMS'-zmtzated method for stored
procedures.

Debugging UDF in context of a parallel database
engine [3, 16] is another challenge. The Parallel and
Distributed Debugging Analyzer (PDDA). [13, 12, 11]
developed at IBM is a system well suited for such
a scenario. For example, PDDA can present a uni-
fied session to the user for multiple instantiations of
the same UDF code. It can also manage call frames
spanning the application code on the client and the
UDF or stored procedure code on the server. PDDA
solves the problem of remote debugging but the issues
of timing and authorization for UDF remain. The

151

Proceedings of International Conference on Distributed
Systems, Software Engineering and Database Systems

role of our UDF debugging technique is to spawn de-
bugger’s agent process which will communicate with
PDDA and acquire control of UDF execution, using
essentially the same model.

Finally, the remote debugging solution we have
presented relies on underlying support for client-
server debugging, which is commonly provided by
X-windows on UNIX-based servers. On non-UNIX
server hosts it is an additional task to develop the
remote debugging support.

References

[1] Rakesh Agrawal, Tomasz Imielinski, and Arun
Swami. Database mining: A performance per-
spective. In IEEE Transaction on Knowledge and
Data Engineering, pages 5(6):914-925, 1993.

[2] Rakesh Agrawal and Kyuseok Shim. Tightly-
Coupled Integration of Application Programs
with Relational Database Systems: Methodology
and Experience. IBM Almaden Research Center
Report, 1995.

[3] C. K. Baru, G. Fecteau, A. Goyal, H. Hsiao,
A. Jhingran, S. Padmanabhan, G. P. Copeland,
and W. G. Wilson. Db2 parallel edition. In IBM
SYSTEMS JOURNAL, Vol 84, No 2, pages 292-
322, 1995.

[4] Tim Bell. XFDB - A Symbolic Debugger for AIX
Version 2.23 for RISC System/6000. IBM High
Energy Physics European Centre, July 1993.

[5] Gene Fuh. Debugging User-Defined Functions -
User Guide. September 1994.

[6] Tri Ha and S. Terry Donn. DB2 V2 Image Exten-
der Specification. FPFS of IBM MMDB, January
1995.

[7) IBM Corporation. DATABASE 2 AIX /6000 and
DATABASE 2 0S/2 SQL REFERENCE. First
Edition, October 1993.

[8] IBM Corporation. DATABASE 2 SQL REFER-
. ENCE for COMMON SERVER - VERSION 2.
July 1995.

[9] IBM Corporation. DATABASE 2 Image, Audio,
and Video Extenders: - Administration and Pro-
gramming, June 1996. First Edition.

[10] Informix. The INFORMIX Guide to SQL: Syn-
tax, V.6.0, March 1994. Part 000-7597.

[11] Michale S. Meier, Hsin Pan, and Gene Y. Fuh.
Debugging DB2/CS client-server applications.
IBM Systems Journal, 36(1), January 1997.

[12] Mike Meier, Bob Harding, Len Lyon, Hsin Pan,
and Leslie Scarborough. pdda — the Parallel
and Distributed Dynamic Analyzer, users guide.
Technical Report ADTI-1994-001, Application
Development Technology Institute (ADTI), IBM
Software Solutions Division, San Jose, .Califor-
nia, May 1994. (also available as IBM Technical
Report STL TR 03.575.).

[13] Mike Meier, Hsin Pan, Bob Harding, Len Lyon,
and Leslie Scarborough. Parallel and Distributed
Dynamic Analyzer (PDDA) — a debugger for
client/server programs. In Proceedings of the
IBM 1994 Program Technology Forum, pages 57—
76, Yorktown Heights, New York, June 6-7 1994.
(An extended and revised version is released as
IBM Technical Report ADTI-1994-003 (STL TR
03.571), July 1994.).

[14] Jim Melton, editor. (ISO-ANSI Working Draft)
Database Language (SQL2). International Orga-
nization for Standardization and American Na-
tional Standards Institute, 1992.

[15] Jim Melton, editor. (ISO-ANSI Working Draft)
Database Language (SQL3). International Orga-
nization for Standardization and American Na-
tional Standards Institute, August 1994.

[16] C. Mohan, H. Pirahesh, W. Tang, and Y. Wang.
Parallelism in relational database management
systems. In IBM SYSTEMS JOURNAL, Vol 33,
No 2, pages 349-371, 1994.

[17) Tam Nguyen and V. Srinivasan. Accessing re-
lational databases from the world wide web. In
SIGMOD 96, pages 529-540, 1996.

[18] Oracle. Oracle 7 Server Application Developer’s
Guide, Dec. 1992. Part: 6695-70-0212.

[19] UniSQL. UmiSQL Object-Relational Database
Technology, 1996. White paper by Dr. Won Kim.

152

