Joint Conference of 1996 international Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

Constraint Maintenance for Replicated Databases

Keith Kuan-Shing Lee', San-Yih Hwang®, Y. H. Chin', and Shu-Chin Su Chen®
1 Department of Computer Science, National Tsing Hua University, Taiwan, R.O.C.

2 Department of Information Management, National Sun Yat-Sen University, Taiwan, R.O.C.

3 Institute of Computer and Information Engineering, National Sun Yat-Sen University, Taiwan, R.O.C.

Abstract

In this paper we investigate the issues of maintaining con-
sistency in e distributed environment that allows data replica-
tion but does mot require sirict consistency between the repli-
cated data items. Under such an environment, a different di-

vergence constraint can be specified between the primary copy -

and a replicated copy of each data item. Both full and par-
tial replications are considered. Moreover, we address differ-
ent consistency requirements imposed by sysiem: consistency
maintained by either following explicit integrity constraints or
ezecuting transactions serializably. Different aliernatives on
maintaining the required consistency are proposed, and the
tradeoffs between them are also discussed. Finally, we point
out some consistency constraint maintenance pitfalls which are
usually easy to be neglected by the system administrator under
a partial replication environment.

1 Introduction

Data replication has long been used in a distributed system
to improve availability and performance. A number of database
vendors have released various replication server products that
support data replication in a distributed environment [7]. In
such an environment, the same data may be replicated at mul-
tiple sites for quick data access and for high data availability.

Currently, the internet provides access to a very large num-
ber of information sources. However, there still exist some chal-
lenges for global information systems [11]. The challenges are
to provide easy, efficient, robust and secure access to informa-
tion of various types. We believe that replication is an effective
way to deal with these challenges. If we can successfully main-
tain consistency constraints under replication environment, we
can provide easy and correct access to the needed information
globally. Because of above reasons, it is important to main-
tain consistency constraints in a correct manner. For example,
in the real world, Oracle’s symmetric replication [5] uses even-
tual mutual consistency as a correctness criterion. However, for
some applications, this correctness criterion may be too strict,
resulting in low availability and performance. In this article, we
propose various correctness criteria of constraint maintenance
under different replication environments.

This paper explores constraint maintenance under two dif-
ferent replication environments, namely full replication and
partial replication. In a full replication environment, secondary
sites contain the same data objects that exist at the primary
site. Note that all up-to-date data are stored at the primary
site, and users can specify the extent of the data stored at the
secondary sites to which it can diverge from that at the pri-
mary site. So, transactions issued to a site only access local
data. On the other hand, in a partial replication environment,
secondary sites can contain only part of the data objects stored
at the primary site. So, transactions issued to a site may have
to access data stored at another site.

In addition, this paper explores various problems in main-
taining both divergence constraints and integrity constraints
under the two replication environments. Divergence con-
straints, which describe how much a replica can diverge from its
up-to-date value, are specified by the user and enforced by the
system. Integrity constraints, for another, are used to main-
tain database consistency at a site. There are various types
of divergence specifications for coherence conditions proposed
in the literature [1, 13, 10]. These specifications specify the al-
lowed difference between the primary copy and some secondary
copies of the same object in terms of value, time lag, and others.
For example, Alonso et. al. proposed four types of coherence
conditions: delay, version, arithmetics, and period [1]. A delay
condition indicates when an update operation should be applied
to the specified secondary copies after the primary copy is up-
dated. A version condition specifies the maximum difference
between the secondary copies and the primary copy in terms of
versions. An arithmetics condition enables a user to set a max-
imum difference for which the values of the specified secondary
copies can diverge from the value of the primary copy. With
respect to period conditions, a user can specify a period upon
which the values of the primary copy and the secondary copies
must be synchronized. '

In our previous work [9], we have shown that the method of
Replication with Divergence constraint has better performance
than the traditional Replication with Consistency method un-
der almost all circumstances. In this paper, we further study
the effect of integrity constraint in the replicated database sys-
tem employing replication with divergence. To our best knowl-
edge, no papers have ever considered both divergence con-
straints and integrity constraints in a single framework. This
is an interesting and important problem since the goal is to
improve the system performance and to maintain the system
consistency simultaneously in a replicated database.

We assume that there exist some integrity constraints that
must be maintained at all sites in the system at all times, even
in the presence of divergence on the values of replicated copies.
For the purpose of discussion, we use arithmetic inequalities as
integrity constraints in our examples. It has been shown that
arithmetic inequalities are sufficient for representing integrity
constraints in many cases [2]. Intuitively, the constraint en-
forcement in a system that contains both integrity constraints
and divergence constraints can be briefly described as follows:

1. Ezecute an update transaction at the primary site.

2. Then, check the associated constraints as follows:

(a) if any integrity constraint is violated then rollback,
(b) else check divergence constraints. .

(c) if any divergence constraint is violated, then prop-
agate the update values to the specified secondary
sites.

183

Proceedings of International Conference on Distributed
Systems, Software Engineering and Database Systems

That is, after successfully executing an update transaction
at the primary site, the primary site will satisfy all integrity
constraints, while the secondary site conforms to the diver-
gence constraints. However, even though the integrity con-
straints hold at the primary site, it may or may not hold at
the secondary sites. We describe the problems by the following
example. Note that we use Max(z) = b to represent that the
maximum value difference between the primary copy and the
secondary copy of an object z is b. :

Example 1: Con51der two objects z, y and the mtegnty
constraint + y < 10. z isa replica of object £ and y is a
replica of object y. We assume that the divergence constraint
on the values of z is Maz(z) = 3 and that of y is Maz(y) = 1.
Initially, the values of these objects are as follows:

z=6 1"’ =6
y=4 y =4

An update transaction decreases z by 2 at the primary site.
Because of Maz(z) = 3, the system does no need to propagate
this effect to the secondary site. The resultant database state
is as follows: ,

r=4 T = 6
y=4 =4

In this case, the integrity constraints hold at both sites:
z+y < 10and z +y’ < 10. Next, a second update transaction
increases y by 2. Because of Maxz(y) = 1, this change made
to the database state at the primary site must be immediately
reflected at the secondary site. The resultant da.ta.base state is

as follows:

r=4 m} =6
y=6 y =86

In this case, the integrity constraint holds at the primary
site, but it does not hold at the secondary site. =]

It is clear from Example 1 that, without any control, the
consistency at a secondary site may be violated.. This paper
defines various correctness criteria for consistency under differ-
ent environments and proposes algorithms for enforcing them.

The contributions of the paper are as follows.

1. We investigate constraints maintenance on a replicated
database environment in detail.

. Two constraints enforcement algorithms are given under
a full replication environment.

. When integrity constraints in the system are not given
explicitly, we define a correctness criterion and propose
an approach for enforcing the correctness.

. We point out some consistency constraint maintenance
pitfalls which are usually easy to be neglected by the
system administrator under a partial replication environ-
ment.

The rest of the paper is organized as follows. In Section 2,
an architecture of data replication environment is given. We
describe in detail our constraint maintenance methods under
a full replication environment in Section 3. In Section 4, we
represent constraint maintenance under a partial replication
environment. The paper ends with some conclusions in Section
5.

2 Architecture of data replication en-

vironment

We consider a data replication environment where a set of
database servers are interconnected via a network to provide
aggregate database services. We assume that each server is

- capable of storing and manipulating a fix amount of data. In
addition, we assume that each server contains local constraint

154

Fig..1. Database Server Clustering Architecture

manager which is responsible for maintaining consistency con-
straint to ensure the correctness on the execution of transac-
tions. However, a user on the local site can issue a query or an
update request based on the entire data set to the local server.
If the required data resides entirely on the local server, this re-
quest may be completely served locally. Otherwise it has to be
shipped to other servers for processing. We call such a system
loosely coupled distributed datadase system since each database
server is able to operate independently. A loosely coupled dis-
tributed database system is typically a shared nothing environ-
ment which is an efficient scheme for providing high availability
[3]. A shared nothing environment is such that each server owns
its private disks and main memory, and all the servers are inter-
connected via a local- or wide-area network. Many commercial ’
systems, such as Teradata's DBC/1012 [14] and Tandem’s Non-
Stop SQL [8] and research prototypes GAMMA [6] and BUBBA
[4] make use of this environment. Its architecture is depicted
in Figure 1.

We consider two types of replication under such an envi-
ronment, namely full replication and partial replication. Each
database server contains two part of data, namely local data
that is only used at a local site and shared data that can be
replicated to others sites. In a full replication environment,
the shared data is completely replicated to the other database
servers. However, in a partial replication environment, only
part of share data is replicated to the other database servers.

There are two ways to-maintain the consistency between
the secondary copies and the primary copy of an object:
synchronous and asynchronous. For synchronous approach,
changes made to the database state at the primary site are
immediately reflected at the secondary site. For asynchronous
propagation, the changes made to the database state at the pri-
mary site are propagated to the secondary sites asynchronously.
That is, the data at the primary site is firstly updated; the
update of the data at secondary sites, if any, is conducted off-
line. In general, synchronous approach usually incurs more
communication overhead than asynchronous approach, because
it needs to send more synchronization information among dif-
ferent sites. That is, synchronous approach take more start up
time to negotiate among sites before transmission. It has been
shown that asynchronous approaches improves performance as
well as system availability [12, 3, 9]. For this reason, we choose
asynchronous propagation method, which can batch many re-
quests before transmission, to further improve the system per-
formance.

3 Constraint maintenance under a full

replication environment

In this section, we study various policies for managing con-
straints on the replicated data. For each policy, we also discuss
the trade-offs between constraint checking overhead at the sec-
ondary site and the amount of propagation data at the primary
site in a full replication environment. We will describe three
distinct approaches. First two explicitly maintain consistency
constraints, while the last one implicitly maintains consistency
constraints by the system.)

For the purpose of the exposition, we assume a system con-
sists of two sites, one is the primary site , and the other is the
secondary site, with respect to some set of data. The primary
site stores a set of up to date data, and the secondary site stores
a set of replicated data. we use a lower case alphabet (e.g., z) to
denote a data object at the primary site and the alphabet plus

a prime (e.g., :cl) to represent the corresponding data object at

the secondary site.)

3.1 Maintaining consistency constraints
explicitly _

In this section, we consider an environment where the con-
sistency constraints at a site are given explicitly. As described
in Section 1, arithmetic inequalities are used for illustration.

We propose two approaches to maintaining explicitly con-
sistency constraints: method A, which maintain consistency
constraints at both sites, and method B, which maintain con-
sistency constraints only at the primary site. Before we describe
these two methods in detail, we define the correctness on the
database state.

Definition [correctness of database state]. A database
state refers to the values of all data objects in the system at a
particular point in time. If a database siate satisfies (1) diver-
gence constraints between the primary site and the secondary
site and (2) integrity constraints at the primary site, and (3)
integrity constraints at the secondary site. We call the database
state, after executing a series of transactions, to be correct.

Although the values of objects stored at the primary site
and their replicas at the secondary site may be different at any
given moment of time, they are considered correct (and satisfied
by the users) if the above-mentioned three conditions hold.

3.1.1 Method A

For method A, integrity constraints are maintained at both
sites. For example, the system maintains two identical consis-
tency constraints z + y < 10 and z + yl <10, at the primary
site and the secondary site, respectively. That is, constraint
z + y < 10 is for checking the integrity constraint at the pri-
mary site and constraint z’ + yl < 10 is for checking the in-
tegrity constraint at the secondary site. If the execution of an
update transaction violates the integrity constraint at the pri-
mary site, then the system rolls back the current database state
to its original consistent state. Further, if the execution of an
update transaction violates the divergence constraint between
the primary data and the secondary data , then the system
need to propagate the effect to the secondary site. After the
execution of the propagated update transaction, if the integrity
constraint at the secondary site is violated, the system need to
propagate more object data from the primary site to the sec-
ondary site. That is, at the secondary site, when some integrity
constraints are violated, some missing updates must be further
propagated to restore the consistency. The algorithm of con-
straint maintenance for method A is listed in Figure 2.

The enforcement of consistency constraints for method A
can be accounted in three steps. Firstly, the database server
at the primary site verifies the legibility of an update request.

155

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

Method A
{Let P stand for the primary site.}
{Let S stand for the secondary site.}
{Let IC stand for the set of integrity constraints.}
{Let DC stand for the set of divergence constraints.}
Begin
While (1) do
Begin

Accept an update O; at P;

Execute O; at P;

If O; violates IC after the update

Then Rollback and Exit;

If O; violates DC after the update

Then
Begin -~
Propagate the updated data to S;
Repeat

Let VIC be IC violated after the
propagation at S;
Let X be the set of data that are in
VIC but yet to be propagated;
IfX#£90
Then Propagate X from P to S;
Until VIC = ¢;
End
End
End

Fig. 2.
Method A

If, after update, some integrity constraints at thie primary site
are violated then this update must be rolled back and this al-
gorithm stops. Secondly, the database server at the primary
site checks the related divergence constraint. If any divergence
constraint is violated then the updated data is propagated from
the primary site to the secondary site (i.e., refresh the data at
the secondary site). - Thirdly, after executing the propagated
update operations, the database server at the secondary site
confirms the integrity constraints at the site. If any integrity
constraint is violated then propagate the updated object’s data
involved in the violated integrity constraints frorn the primary
site to the secondary site. If the propagated objects cause more
integrity constraints being violated at the secondary site, then
propagate more updated object’s data from the primary site to
the secondary site. This procedure continues until no integrity
constraint is violated.

Example 2: Consider four objects w, z, y, and 2z, and three
integrity constraints z —y < 5,y -~z < 5, and r —w < 5. The
integrity constraints are maintained at both sites. We assume
that the divergence constraint of w, z, y, and z is Maz(w) =
5, Maz(z) = 5, Maxz(y) = 5, and Maz(z) = 3 respectively.
Initially, the database state is as follows:

w=0 'u/:O_
z=0 ‘T’:=0
y=0 y =0
z=0 2 =0

Suppose a series of incoming update transactions increase w
by 5, increase z by 5, increase y by 5, and increase z by 5. For
the first three transactions, because Maz(w) = 5, Maz(z) = 5,
and Mez(y) = 5, the system does not need to propagate the
effect to the secondary site. But, because Maz(z) = 3, the
system needs to propagate the value of object z to the secondary
site. The resultant database state is as follows:

w=25 ull=0
z=35 :z:l=0
y=25 y =0
z=25 zl=0

Since the integrity constraint z — y < 5 is violated at the

Constraint Enforcement Algorithm for

Proceedings of International Conference on Distributed
Systems, Software Engineering and Database Systems

secondary site, the object ¥ needs to be propagated from the
primary site to the secondary site. After that, the integrity
constraint y — r < 5 is then violated at the secondary site,
and the object z needs to be propagated from the primary
site to the secondary site, too. After the propagation of ,
another integrity constraint £ — w < 5 is in turn violated at
the secondary site. Thus, the object w needs to be propagated
from the primary site to the secondary site, too. The resultant
database state is as follows:

w=25 uI)=5
=35 3:/:5
y= y’=5
z=25 z = a]

In this example, the final database states at both sites are
correct. However, at the secondary site, we must check in-
tegrity constraints and perform data propagation three times.
If there are many secondary sites, the checking overhead and
the propagation traffic may be heavy. Suppose there are M
secondary sites and each secondary site maintains the same set
of N integrity constraints, the total checking overhead has to
be MN in the worst case. Moreover, the data propagation re-
quests needed to restore the consistency of the database state
at a secondary site may be a lot. In the next section, we will de-
scribe an approach that only maintain consistency constraints
at the primary site, which reduces a large amount of checking
overhead at secondary site, and lessen the propagation traffic.
This approach is called method B.

3.1.2 Method B

For method B, integrity constraints are maintained at the pri-
mary site only. If an update transaction violates some integrity
constraints at the primary site, then database state is rolled
back to the original consistent state before the execution of the
transaction. If the update transaction causes the divergence
constraint of some replicas being violated, then the values of
some objects need to be propagated to the secondary site. Note
that the set of propagated objects contains all the objects that
violated the divergence constraints, among others. The algo-
rithm of constraint maintenance for method B is listed in Figure
3.

The enforcement of consistency constraints for method B
can be accounted in three steps. Firstly, the algorithm exe-
cutes an update operation at the primary site. If some in-
tegrity constraints are violated after the update, the update
operation is rolled back, and this algorithm stops. Secondly,
the algorithm checks the related divergence constraints. If any
divergence constraint is violated, then the updated data must
be propagated from the primary site to the secondary site. In
addition to the newly updated data, some other data objects
may have to be propagated together. In order to determine
which objects need to be propagated, the algorithm checks the
integrity constraints at the primary site by using transitive clo-
sure rules to find all the related objects which are related to
the violated divergence constraints’ object. Note that any up-
dated objects that are yet to be propagated and related to
the to be propagated object directly or indirectly via some in-
tegrity constraints have to be propagated. The reason why
we need to propagate all the objects that are related to the
violated divergence constraints’ object at the same time is to
avoid the potential violation of the integrity constraints at the
secondary site. Note that we can use Depth First_Search to re-
place Find_Transitive_Closure procedure. The time complexity
of Depth.First.Search procedureis O(e), where e is the number
of connected edges in a graph.

Example 3: Consider four objects w, z, y, and 2, and
three integrity constraints z—y < 5,y —~z < 5,and z — w < 5.

156

Method B
{Let P stand for the primary site.}
{Let S stand for the secondary site.}
{Let IC stand for the set of integrity constraints.}
{Let DC stand for the set of divergence constraints.}
Begin
While (1) do
Begin
Accept an update O; at P,
Execute O; at P;
If O; violates IC after the update
Then Rollback and Exit;
If O; violates DC after the update
Then.
Begin
Let T be the set of data involved in O,;
Find.Transitive_Closure(T);
IfFT#8
Then Propagate the current value of the
updated objects in T from P to S;
End
End
End

Find_Transitive_Closure(X)
Begin
Let VIC’ be IC that involve some data in X;
Repeat '
’
VIC=VIC ;
X = the set of data involved in VIC;
vIC' = IC that involve some data in X
Until VIC = VIC';

End
Fig. 3. Constraint Enforcement Algorithm for
Method B

Integrity constraints are maintained at the primary site only.
We assume that the divergence constraints on w, z, y, and z
are Maz(w) = 5, Maz(z) = 5, Maz(y) = 5, and Maz(z) =3
respectively. Initially, the datab?,se state is as follows:

w=0 'uli=0
r=0 :L‘l=0
y=20 y =0
z2=0 z/:0

Suppose a series of incoming update transactions increase w
by 5, increase z by 5, increase y by 5, and increase z by 5. For
the first three transactions, because Maz(w) = 5, Maz(z) = 5,
and Maz(y) = 5, the system does not need to propagate the
effect to the secondary site. But, because Maz(z) = 3, the sys-
tem needs to propagate the value of object z to the secondary
site. Before propagating, Find_Transitive_Closure({z}) is in-
voked and return {z, y, z, w}. The reasons are that object z
is involved with the integrity constraint z — y < 5 and object y
is involved with the integrity constraint y — z < .5 and finally
object z is involved with the integrity constraint z — w < 5.
Thus, the database state of these four objects are propagated.
So, the resultant database state is as follows:

w=25 ulzl=5
z=35 l‘l=5
y=35 y =5
z=235 zl=5 [m]

In the above example only one round of data propagation is
performed, in contrast to Example 2, where four rounds of data
propagation are needed by using Method A. However, Method
B may potentially introduce more (unnecessary) data to be
propagated, as illustrated by Example 4.

Example 4: Consider four objects w, z, y, and z. We
assume that the initial settings of the integrity constraints and

the divergence constraints are the same as the above example.
So, we have the following initial database state:

w=0 u[zl =0

z=0 z = 0

y=0 y =0

z=0 Z =0

Suppose a series of update transactions increase w by 1, in-

crease x by 2, increase y by 3, and increase z by 4 sequentially.
Because Maz(w) = 5, Maz(z) = 5, and Maz(y) = 5, the sys-
tem does not need to propagate the effect to the secondary site
for the first three transactions. However, because Maz(z) = 3,
the last transaction will cause the propagation of (at least) the
value of object z to the secondary site. Moreover, due to the
presence of the integrity constraints z —y < 5, y —z < 5, and
z—w < 5, the object value of y, x, and w have to be propagated
to the secondary site together with the object value of z. After
propagation, the database state is as follows:

w=1 u’)I =1

r=2 T = 2

y=3 y =3

z=4 z =4 a

In this example, the database state is correct. However,

in this case, the object value of y, z, and w doesn’t really
need to be propagated, because the integrity constraints at the
secondary site still hold even without the propagations. Only
the object value of z needs to be propagated. Thus, method B
may introduce extra propagations, as compared to method A.

1t is the advantage of this method that there is no need
to maintain integrity constraints at the secondary site. As a
whole, there exist trade-offs between constraint checking over-
head at the secondary site and the amount of propagation data
for method A and B. We compare the two methods in the fol-
lowing section.

3.1.3 Comparisons of method A and B

In the following, we deal with the trade-offs between method
A and method B. There are two factors that affect the perfor-
mance. First, integrity and divergence constraint checking may
incur local processor checking overhead. Second, information
transfer will incur communication overhead. In a loosely cou-
pled distributed database system as described in section 2, we
assume that the communication cost is the dominant factor,
compared to the processing cost.

We define the communication cost (ComCost) by the fol-
lowing equation,

ComCost = Tstartup + Tunit X NumberofUnit,

where Tstartup is the communication start up time before
transmission. Tyni¢ is the transmission time per communica-
tion unit.

Next, we describe the communication cost of method A
and B. Let M and N be the volumes of propagated data us-
ing method A and B, respectively. N must be greater than or
equal to M. Let K be the rounds of propagation caused by an
update for method A. Let the communication cost of method
A and B be ComCost, andLComCostg, respectively.

ComCostA = (Tstartup+Tunit X %) XK =Kx T_,pa,r“‘p-f-
Tunit x M

ComCostg = T.!ta.rtup + Tunit X N

If K, the rounds of propagation caused by an update for
method A, is.significant and M and N, the volumes of prop-
agated data using method A and B, are close, method B is
better; otherwise, choose method A.

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

3.2 Maintaining consistency constraints
implicitly

In this section, we consider a transaction processing envi-
ronment where consistency is enforced by transactions. That
is, integrity constraints are not given explicitly, but the exe-
cution of transactions ensures consistency. A transaction is a
sequence of reads and writes against a database. The execu-
tion of transactions in conventional applications satisfies two
properties: atomicity and serializability. The atomicity prop-
erty means the sequence of reads and writes in a transactionis
regarded as a single atomic action against the database. That
is, a transaction either brings the~database state into a new
consistency state or does nothing. The serializability property
means that the effect of concurrent execution of more than one
transaction is the same as that of executing the same set of
transactions one at a time. At the primary site, the execution
of transactions satisfies these two properties. However, at the
secondary site, merely satisfying these two properties may not
be desirable. Since the secondary site stores replicas of some
data at the primary site, there must exist some desirable rela- .
tionship between the data stored at both sites. Later we will
discuss the relationship between the data stored at both sites.

3.2.1 Notation

Let T;, 1 <:<m+ 1', be an update transaction that updates
to one or more of objects 1,...,Zn. We assume the database
server at the primary site ensures serializability in its execu-
tion of transactions. Let T7,7%,...,Tm be the transactions
executed at the primary site but yet to be propagated to the
secondary site. Without loss of generality, let the serialization
order of these transactionsbe Ty — Tp — ... — T Let Ty
be the next update transaction at the primary site that violates
divergence constraints. Then some transactions in {77, T3,...
\Tm+1} need to be propagated to the secondary site to keep
the database state consistent at the secondary site consistent.
Obviously, we need to propagate to the secondary site some
execution effect that is already applied to the primary site.
Exactly what to be propagated is an issue that need to be con-
sidered. The following example illustrates the effects of propa-
gating different types of information.)
Example 5: We assume that the initial database state Sy
is {x =0,y = 0, z = 0,w = 0}. There are a series of update
transactions: Tj:update(x,y), T»:update(w), T3:update(z,w),
and Ty:update(y,z). Suppose each update operation incre-
ments every mentioned data object by one. For example, up-
date(x,y) will increase both x and y by one. The execution
order is Ty, T2, T3, and Ty at the primary site. We assume
that both T and T3 satisfy divergence constraints, but T
and Ty do not. The divergence constraints are as follows:
Maz(z) = 0,Maz(y) = 3,Maz(z) = 1, and Maz(w) = 3.
After executing T, T, T3, and T, the database state S; at
the primary site is {x = 1,y = 2,z = 2, w = 2}. There are two
alternatives to update the database state at the secondary site:

1. Pass the operations of updated transactions:
a.) Executing the update transactions T and Ty at
the secondary site in order, then the system brings the
database state to {z = 1,y = 2,z = 1,w = 0}.
b.) Executing the update transactions T3, T2, T3, and Ty
at the secondary site in order, then the system brings the
database state to {z = 1,y = 2,z = 2,w = 2}.

2. Pass the data that is updated by the transactions violating
some divergence constraints.
The database state at the secondary site becomes {z =
1,y =2,z = 2,w = 0}.

1587

Proceedings of International Conference on Distributed
Systems, Software Engineering and Database Systems

We don't consider method 1.a to be correct. After executing _

Ty, Tp, T3, and Ty the correct change of database states at the
primarysiteare{z =1,y =1,z =0,w=0},{z=1,y=1,2 =
Obw=1},{r=1y=1lz=1lw=2},and{r =1,y =2,z =
2,w = 2}. By applying method 1.a, the resultant database
state at the secondary site is {z = 1,y = 2,z = 1,w = 0},
which is not any of the above database states. Although T»
and T3 may be propagated to the secondary site later, the final
state will be different. Since the execution of {T1, T, T3, T4}
and {T1, T4, T2, T3} may yield different results. Similarly,
method 2 results in a database state that is not any of the
previous states in which the primary site has ever been. So,
only method 1.b brings the database state to a consistent state
of both the primary and the secondary site. - [m}

3.2.2 Definition of correctness

If the database is in a consistent state before executing the
transaction, it will be in a consistent state after the complete
execution of the transaction, assuming that no interference with

other transactions occurs.

T T T T,
Sp 8 =28 = ... B S,

Let So denote the initial database state before executing
any transactions. We assume that transactions are executed in
the order of T1,T5,...,Tm. The execution of T3,1 < 1 < m,
brings the database state from S;_; to S;. At any time, the
database state S at the primary site and the database state
S; at the secondary site maintain the relationship ¥ < I. That
is, the database state at the secondary site is the previous or
current database state at the primary site.

Definition [correctness of transaction execution]. Let
P stands for the primary site and S stands for the secondary
site. Let T stands for any time point and § stands for any
period of time. The database state at. the secondary site can
be previous database state at the primary site at some time.
However, the final database state at the secondary must be the
same as the database state at.the primary site at certain time.
So, an execution of transactions at the primary and secondary
site is correct, if

36 > 0 s.t.DatabaseState(P,T — §) = DatabaseState(S, T)

We use an example to explain the correctness of transaction
execution..

Example 6: Consider the same initial databasestate, trans-
actions, and divergence constraints as in Example 5. After ex-
ecuting T1, Ty, T3, and T4, the database state changed at the
primary site are:

S1={z=1y=1,z=0,w =0},
S ={r=1y=1z=0,w=1},
S3={z=1y=1,z=1,w =2}, and
Sy={z=1y=2,2=2,w=2}.

After executing the update transaction T} at the primary
site, the database state is S; at the primary site and the sec-
ondary site. After executing the update transaction T, at the
primary.site, the database state is S; at the primary site and S
at the secondary site. After executing the update transaction
T3 at the primary site, the database state is S3 at the primary
site and S; at the secondary site. After executing the update
transaction T4 at the primary site, the database state is Sy at
both the primary site and the secondary site. ’ a

3.2.3 Issues and problems

As described in Section 2, we use asynchronous propagation
method to improve the system performance on maintaining
the secondary copy. In this section, we will discuss what to
propagate and when to propagate. These two issues must be

carefully considered to ensure the correctness and efficiency of
the system.

What to propagate

"We consider two kinds of environments. One allows ad-hoc

transactions and the other allows only predefined transactions.
In an ad-hoc transaction processing environment, we can group
the effect of all unpropagated transactions into one big trans-
action and send it to the secondary site for execution. Al-
ternatively, we can group the effect into a sequence of smaller
transactions, and send them to the secondary site for execution.

Gluing a set of transactions to one big transaction will intro-
duce some problems. Firstly, a2 long-duration transaction will
hold more resources during execution of this transaction. Sec-
ondly, the possibility for deadlocks is dramatically increased,
which will bring down the system performance and increase
the possibility for abortion and restart. However, there are
advantages for this approach. It may eliminate duplicate op-
erations appeared so far. For example, sippose an object is
updated several times before propagation, all the updates can
be reduced into a single update operation. This will reduce ex-
ecution time at the secondary site after propagation. Moreover,
the big transaction will reduce the total communication time.

In a predefined transaction processing environment, only a
finite types of transactions are allowed. An example is the
banking system, where only Withdraw, Deposit, Transfer and
Balance are provided. Under such an environment, we can use
commutativity to switch the order of unpropagated transac-
tions and group a set of adjacent transactions in to a single
transaction. Two transactions 77 and T3 are said to be com-
mutative if and only if, for any system state .S, the following
two conditions hold: 1) the states that result from the execution
sequences T7;73 and T5;T) applied to S are not distinguishable,
and 2) both 77 and T have the same return values in both ex-
ecution sequences. For example, two Deposit transactions on a
bank account are commutative and can therefore be admitted
concurrently. We can use this activity to reduce the amount of
propagation data.

Example 7: A bank provides the predefined transactional
operations as described above. Tnitial execution at the primary
site are

1. Deposit(X, 100): one deposit $100 to an account X.

2. Withdraw(Y, 200): one withdraw $200 from an account
Y.

3. Deposit(X, 300): one deposit $300 to an account X.

4. Withdraw(Y,lOO): one withdraw 3100 from an account
Y.

We can apply the commutative law to switch the execution
order of operations and then merge some operations to create
a shorter list of transactions to be submitted to the secondary
site.

Commutativity phase:
Deposit(X,100)
Deposit(X,300)
Withdraw(Y, 200)
Withdraw(Y, 100)
Merging phase:
Deposit(X,400)
Withdrew(Y, 300)
As a result, only two transactions are propagated to the sec-
ondary site. [m]

188

When to propagate

For some types of divergence constraints,e.g. version and arith-
metics, the propagation of updated effect occurs only when an
update arrives and this update violates some divergence con-
straints. For other types of divergence constraints, e.g. delay
and period, the propagation of update effect is triggered by a
timer. Moreover, the updated effect must be applied to the
secondary site before the deadline. A formula can be derived
to determine when to propagate a set of transactions. We as-
sume that communication lines are of no failure. That is, the
transmission time is countable. Let the current unpropagated
transactions be Ty, T2, ..., T;, and X be a set of data items
that are updated by these transactions and have some timing
constraints. Let z denote the data item in X that has the earli-
est deadline. Suppose tp_ is the deadline for z, and the current
time is tcurrent. Transaction T1, T, ..., T; are propagated if
the following formula holds,

tp, — tcurrent — (tgroup + (tstartup + tunit X
NumberofUnit) + tezecution) < €

where tgroup denotes the time to group a series of trans-
actions to be a sequence of transactions and eliminate some
duplicate operations. As described in previous subsection, the
subformula (tstartup+tunit X Numbero fUnit) accounts for the
total communication time for transmitting these transactions.
terecution Stands for the transaction execution time at the sec-
ondary site. € is a threshold. & should be set big enough to
account for the variation of the calculation but not too big to
cause extra propagation. .

- In summary, the processing steps of transaction propagation

are the following:

1. Determine the propagation time point, according to the
above formula.

2. Group a series of transactions into a sequence of transac-
tions, and eliminate some duplicate operations.

3. Assemble these transactions into some packages for trans-
mission.

4. Transmit these packages through network.

5. Disassemble these transmitted packages into a sequence
of transactions.

6. Execute these transactions.

Step 1 to step 3 are processed at theAprimary site. Step 4 is
a communication step. Step 5 and step 6 are processed at the
secondary site.

4 Constraint maintenance under a

partial replication environment

The main difference between full and partial replication en-
vironment is that at the full replication environment transac-
tions only access local data, but at the partial replication envi-
ronment transactions may access data that are not local. Thus,
the constraint maintenance under a partial replication environ-
ment is more difficult than that under a full replication envi-
ronment. That is, we must maintain not only local consistency
constraints but also the constraints that involve remote site’s
data. For simplicity, we only deal with the explicit integrity
constraints rather than the implicit integrity constraints at a
partial replication environment. Besides, we will describe an
approach on how to maintain constraints under such an envi-
ronment.

There are some observations under a partial replication en-
vironment. When we load more secondary copies to a site, not
only more divergence constraints but also additional integrity
constraints are introduced. We illustrate the pitfalls for main-
taining consistency constraintsin the following example. At the

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

same time, we use this example to explain how the constraint
enforcement algorithm work step by step. The algorithm of
constraint maintenance for Partial Replication is listed in Fig-
ure 4.

Example 8: At the primary site, namely site 1, we have
three object z, ¥, and z. Assume that the initial database state
is {z = 5,y = 5,z = 5}. Without loss of generality, we assume
that site 2 contains :z:’, site 3 contains y’, and site 4 contains
z. Initially, z = z, 'yl =y, and 2 =z Suppose there is
an integrity constraint among z,y, and 2 such as {r +y + 2z <
16} which is expressed as IC(z,y,z). The transaction is T1:
{Write(z,5,4), Write(y, 5,4), Write(z,5,7)} at site 1. Note
that, Write(z, oldz, news) means write object z and replace
old value of z with new value of z.

User must maintain an integrity constraint using “if
IC(z,y,z) then commit else abort”. We assume that after ex-
ecuting write operation the system does not need to propagate
the effect to the secondary site. That is, the divergence con-
straints are satisfied. So, after Write(x,5,4) we must ensure
that IC(z,y,2) and IC(xl,y,z) are maintained. That is, the
database server at site 1 maintains the additional integrity con-
straint set IC' ‘= {wl +vy+2z < 18}. Note that B involved with
O; is object = and E is objects {y, z}. IC(B',E) = IC(:L'I, Y, 2)
is not in IC' = @. This processing step is marked as line num-
ber 1 in Figure 4. - .

Similarly, after Write(y,5,4) we must ensure that
IC(z,y,2) and ¢’ = {x/ +y+ 2z < 16, x+y’ + 2 < 16} are
maintained. Finally, after Write(z, 5, 7), Ic'is {x'+y+z < 186,
x+y+z/ < 16}. This processing step is marked as line number
2 in Figure 4. Additionally, if the update operation violatés the
divergence constraints, then the database server will propagate
the current value of the updated object from site 1 to the sec-
ondary site. This processing step is marked as line number 3
in Figure 4. o

In general, after executing retrieval operation at the sec-
ondary sites the system does not need to maintain integrity
constraint explicitly. So, if we do not maintain the above con-
straints at site 1, then some errors will occur at site 2, site 3,
or site 4 when user execute the retrieval operation at the cor-
responding site. For example, at site 4 suppose a user places
Read(z,y, z) operation. ‘While z can be found in the local site,
2 and y must be transmitted from site 1. Thus, the values read
by this operations will be (z,y, zl). This is why IC(z,y, z/)
needs to be maintained at site 1.

The goal of this enforcement algorithmis to automaticly de-
tect what set of integrity constraints we need to maintain. In
general, there are two propagation approaches. One is only to
propagate the violated object’s value and another is to propa-
gate the values of all updated objects which belong to the iden-
tical integrity constraint. Both approaches will bring about the
changement of the integrity constraints set. We choose the first
approach in this algorithm for simplicity.

5 Conclusions

In this paper, we first discussed a system architecture for the
data replication environment. Then we discussed the issues of
constraint maintenance under the full and partial replication
environment.

In a full replication environment, we have studied three dis-
tinct approaches for managing constraints in this form of repli-
cation. First two explicitly maintain consistency constraints.
One maintains consistency constraints at both primary and sec-
ondary sites, and the other maintains consistency constraints
only at the primary site. The trade-offs between constraint
checking overhead at the secondary site and the amount of
propagation data at the primary site for these two methods

159

Proceedings of International Conference on Distributed
Systems, Software Engineering and Database Systems

Partial_Replication()

{Let P stand for the primary site and S stand for the secondary
site.}

{Let B stand for the current updated object.}

{Let B' stand for the corresponding data object at the secondary
site.}

{Let E stand for the objects which belong to the identical integrity
constraint associated with object B, but don’t contain object B.}
{Let IC stand for the set of integrity constraints.}

{Let IC' stand for the additional integrity constraint set which is
dynamicly managed by this algorithm.}
{Let DC stand for the set of divergence constraints.}
Begin ’
!
IC =20;
While (1) do Begin
Accept an update O; involving an
object B at P;
Execute O; at P;
If O; violates IC after the update
Then Rollback and Exit;
1: ¥ IC(B', E) is not in IC’
Then IC' = IC' +IC(B’, E);
2: If O; violates some integrity constraints in ICI
Then Begin)
Propagate the current value of the relative
violated object(s) in the same violated
integrity constraint(s) from P to S;
1¢' = I¢ - the violated integrity constraint(s);
End
3: If O; violates DC after the update
Then Begin
Propagate the current value of the
updated object B from P to S;
¢’ =1¢’ — 1¢(B', B,
End
End
End

Fig. 4. Constraint Enforcement Algorithm under a
Partial Replication Environment

have been discussed. The third one is applied to an environ-
ment where consistency is maintained by the (serializable) ex-
ecution of transactions. We have defined the correctness of
transaction execution at the secondary site. In addition, we
have studied various issues and problems of transaction exe-
cution about what to propagate and when to propagate. We
have considered two kinds of environments. One allows ad-hoc
transactions and the other allows only predefined transactions.

In a partial replication environment, we have studied some
consistency constraints maintenance pitfalls which are usually
easy to be neglected. We have also proposed an algorithm for
constraint enforcement in this environment.

References
[1] R. Alonso, D. Barbar, and H. Garcia-Molina. Data caching
issues in an‘information retrieval system. ACM Transaction
on Database Systems, 15(3):359-384, 1990.

[2] D.Barbara-Milla and H. Garcia-Molina. The demarcation pro-
tocol: A technique for maintaining constraints in distributed
database systems. The International Journal on Very Large
Data Bases, 3(3):325-355, 1994.

[3] A. Bhide, A. Goyal, H-I Hsiao, and Anant Jhingran. An
efficient scheme for providing high availability. In Proc. of
ACM SIGMOD Int’l. Conf. on Management of Data, pages
236-245, 1992.

[4] G. Copeland, W. Alexander, E. Boughter; and T. Keller. Data
placement in bubba. In Proc. of ACM SIGMOD Int'l. Conf.
on Management of Data, 1983.

[5] D. Daniels, L. B. Doo, A. Downing, C. Elsbernd, G. Hall-
mark, S. Jain, B. Jenkins, P. Lim, G. Smith, B. Souder, and
J. Stamos. Oracle’s symmetric replication technology and im-
plications for application design. In Proc. of ACM SIGMOD
Int’l. Conf. on Management of Data, 1994.

[6] D. DeWitt, S. Ghandeharizadeh, D. Bricker, H. Hsiao, and
R. Rasmussen. The gamma database machine project. In
Proc. of ACM SIGMOD Int’l. Conf. on Management of
Data, 1988. :

[7] A.Gorelik, Y. Wang, and M. Deppe. Sybase replication server.
In Proc. of ACM SIGMOD Int’l. Conf. on Management of
Data, 1994.

[8] Tandem Database Group. Nonstop sql, a distributed, high-
performance, high-reliability implementation of sql. In Work-
shop on High Performance Transaction Systems, 1987.

[9] S. Y. Hwang, Keith K. S. Lee, and Y. H. Chin. Data replica-
tion in a distributed system: A performance study. In Proc. of
the 7th Int’l Conf. and Workshop on Database and Expert-
System Applications, 1996.

[10] R. Lenz, T. Kirsche, and B. Reinwald. Aspect - specifying
consistency requirements for replicaed data. In Proc. of the
7th Int’l Conf. on Parallel and Distributed Computing Sys-
tems, 1994.

{11] A.Y.Levy, A. Silberschatz, D. Srivastava, and M. Zemankova.
Challenges for global information systems. In Proc. of the
20th Int’l Conf. on Very Large Data Bases, 1989.

[12] Christos A, Polyzois and Hector Garcia-Molina. Evaluation
of remote backup algorithms for transaction processing sys-
tems. ACM Transaction on Database Systems, 19(3):423-
449, 1994.

[13] M. Rusinkiewicz, 'A. Sheth, and G. Karabatis. Specifying
interdatabase dependencies in a multidatabase environment.
IEEE Computer, 24(12):46-51, Dec. 1991.

{14] Teradata:. DBC/1012 Database Computer System Manual
Release 2.0. Teradata Corp., 1985. Document No. C10-0001-
02. '

160

