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Abstract

Good buffer management is very important to the
overall performance of a database management sys-
tem. The buffer manager is the database component
which manages data buffering. This paper describes
the evolution of the buffer manager’s design-in manag-
ing the allocation of database buffers to mazimize per-
formance. We start with a discussion of the memory
hierarchy. We nezt describe the improvement of the
search scheme and the buffer replacement algorithm
used by the buffer manager. Finally, we discuss the
evolution of asynchronous prefetch and deferred write,
two important features that significantly enhance I/0
throughput. :

1 Introduction

- Commercial relational database systems are de-
signed to support large databases with applications

_ that might require a large number of I/O operations.
To maximize database performance, it is desirable to
minimize physical I/O activity and the resultant delay
to applications whenever possible. The buffer man-
ager is a component within the database which is de-
signed for this purpose.

The buffer manager controls data buffering be-
tween virtual memory and DASD (direct access stor-
age device). Data buffering provides a method to
handle the mismatch between high speed CPU and
slow DASD. The efficient movement of data between
virtual memory and DASD, is implemented through a
virtual storage space, called a buffer pool, consisting of
many buffers of equal size matching the stored geom-
etry of the data. A buffer pool contains data shared
by all applications using database systems. The buffer
manager manages the allocation of buffers in a buffer
pool to database data as needed and supplies the vir-
tual copies of database data as requested. Whenever
a page is requested, the buffer manager first searches
the buffer pool hoping to find it. If not found in the
buffer pool, a physical I/O is issued to read the page
from DASD into the buffer pool. The buffer manager
reduces the number of DASD read I/Os by caching
data which has a high probability. of being accessed
again, within the constraints of the size of buffer pool.
In addition, it reduces the latency of DASD write I/O
by deferring the externalization of committed changes
and conducting the write I/O in a batch when pos-
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sible. Thus, the overall performance of the database
system is significantly dependent on the effective im-
plementation of the buffer manager.

IBM Database 27M (DB2TM) is IBM’s relational
database system for large mainframes. This paper de-
scribes the evolution of DB2’s buffer manager design
considerations to maximize DB2 performance. Sec-
tion 2 describes how the bufféer manager maintains
the two-level storage hierarchy in a buffer pool, re-
flecting the main versus expanded memory character-
istic.  Section 3 describes the hashing scheme used
by the buffer manager to determine whether a re-
quested page is in a buffer pool. This section also de-
scribes how the buffer manager handles the dynamic
expansion and contraction of a buffer pool and its
hash table. Section 4 discusses the buffer replace-
ment algorithm. DB2 uses the Least Recently Used
(LRU) algorithm as its primary buffer replacement al-
gorithm. This section also describes the MRU (Most
Recently Used) scheme used by the buffer manager for
reference-once patterns. Section 5 discusses the asyn-
chronous prefetch feature and Section 6 discusses the
deferred write feature. Finally, Section 7 concludes
this paper.

2 Hiperpools

IBM mainframe system provides two levels of mem-
ory hierarchy: main memory and expanded memory.
Main memory is designed to be “byte-addressable”;
this means that processor instructions can operate on
any sequence of bytes as one might expect. Expanded
memory is “page addressable” only; this means that
processors are limited to a small set of instructions
which operate on the entire page and do not cross
page boundaries. One can think of expanded memory
as a place to cache data pages and provide a mech-
anism to move these pages to main memory when
needed by processors, since the time to move the data
is very short compared to-an I/O. Based on the two
level memory architecture, it provides the notion of a
hiperspace, which is an address space that is mapped
directly into expanded memory. DB2 uses two lev-
els of storage hierarchy for each buffer pool to reflect
the characteristics of the memories. The first level
is the virtual buffer pool. The operating system de-
termines whether the data is held in main memory,
expanded memory, or pageed out to the paging de-
vices (i.e. DASDs), and ensures that the page is in
main memory when DB2 references it. Data should be
paged out only in extreme memory starvation, which
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1 if (p is found in the virtual buffer pool)

2 return the found buffer;

3 else{

4 steal a buffer s from the virtual buffer pool;

5 if (s should be stored) {

6 steal a buffer ¢ from the hiperpool;

7 copy the content of s to ¢;

8 place t back to the hiperpool;

9 } .

10 if (p is found in the hiperpool) {

11 copy the content of the found buffer
% to s; .

12 place u on the free buffer set in the
hiperpool;

13

14 else

15 read p from DASD to s;

16 place s back to the virtual buffer pool;

17 return the buffer s;

18 '}

Figure 1: The handling of the buffer pool during a
page search

happens rarely. The second level is called the hiper-
pool. For each buffer pool, the hiperpool is optional.
If defined, it will be allocated from hiperspaces to
directly support the continued growth of the buffer
pool into expanded storage. For ease of reference, the
acronym “buffer pool” will be used to reference a pair
consisting of a virtual buffer pool and a hiperpool if
no distinction needs to be made between them.

A hiperpool, if defined, will be exclusively used
by the buffer manager to back up moderately ref-
erenced non-dirty database data. With this large
data cache, the number of DASD read I/O operations
can be expected to be reduced. In addition, pages
cached in hiperspace can be retrieved in microseconds
as opposed to milliseconds from disk. Hiperpools can
also give control to system programmers to limit the
amount of main memory used by DB2 buffer pools.
This control improves the overall system performance
by minimizing main memory contention among all ap-
plications running on the same system.

Figure 1 shows the procedure performed by buffer

. to create a buffer pool.

manager at the request of a page p, we assume that -

the hiperpool is defined. The buffer manager first
searches the virtual buffer pool. If p is found, a buffer
pool hit returns. Otherwise, the buffer manager steals
a buffer from the virtual buffer pool. If the stolen
buffer s, may be referenced again, buffer manager
caches the content of s to the hiperpool. Lines 6 to
8 in Figure 1 explain the details of the caching. The
procedure that performs the tasks in line 4, 6, 8, 12,
and 16, a buffer replacement algorithm, will be de-
scribed later in Section 4. o
Now the buffer s is ready for the requested page.
. The buffer manager continues to search for p in the
hiperpool. If p is not found, the buffer manager ini-
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tializes a read I/O to read the page from DASD to s.
Otherwise, the found buffer u, is copied to s. To avoid
double buffering for pages in the buffer pool, u is then
invalidated immediately and placed on the free buffer
set in the hiperpool. Finally, s is placed back to the
virtual buffer pool and a buffer pool hit returns. The
procedure needed in lines 1 and 10, a buffer search
algorithm, will be described in Section 3.2.

3 Buffer Pools Management _—

There are multiple buffer pools in the database sys-
temn. To best use available virtual storage, the buffer
manager dynamically constructs a virtual buffer pool
during the process of accessing the first table that re-
quires a particular virtual buffer pool. Conversely, a
virtual buffer pool is deleted when the buffer man-
ager determines that there is no longer any usage of
the virtual buffer pool. The buffer manager handles
the creation and deletion of a hiperpool in a similar
way. :

3.1 Dynamic buffer pool size

To avoid the problems arising from fixed-size buffer
pools, DB2 provides an online facility to set or alter
the size of a buffer pool. In a database system that
supports only fixed-size buffer pools, a buffer pool size
has to be determined before the system is started and
cannot be altered without restarting the database sys-
tem. The fixed-size limitation may abnormally end a
transaction due to unavailable buffer resources.

In early DB2 implementation, installations could
specify the minimum size and the maximum size for
each buffer pool. The two size attributes allowed
buffer pools to be dynamically expanded and con~
tracted. The buffer manager used the minimum size
At the request of a free
buffer, the buffer pool was expanded if all buffers
were held and the pool’s maximum size had not yet
been reached. In other words, the pool expansion
was driven on demand and was temporary to the
execution unit. Once the execution unit was com-
mitted/aborted, the buffer pool was contracted back
to its original size. Because the expansion and con-
traction functions involved physically acquiring and
releasing storage from the underlying operation sys-
tem, excessive use of these functions caused thrash-
ing, drastically degrading DB2 performance. Conse-
quently, DB2 required system administrators to ad-
just buffer pool minimum size to maximize DB2 per-
formance.

A time delay was proposed on contraction to re-
duce the thrashing. However, administrators pre-
ferred more direct control, resulting in DB2 dropping
support of dynamic buffer pool resizing in favor of an
operational command ALTER BUFFERPOOL provided in

the current DB2 implementation to easily set or alter.

the size of each active or non-active buffer pool.

3.2 Dynamic hash table size

DB2 uses a hashing scheme on page number and
database number to determine whether a requested
page is in the buffer pool. The buffer manager main-
tains a hash table, as shown in Figure 2, for each
virtual buffer pool and each hiperpool. A hash ta-
ble is actually a series of anchor pointers. Each an-



hash class
0 BCB BCB BCB
1
2 BCB BCB
M-} BCB BCB BCB BCB

Figure 2: The hash table for buffer search

chor pointer points to a hash class; it is either a null
pointer which indicates that there is no buffer in the
hash class, or points to a linked list of buffer con-
trol blocks. A buffer control block (BCB) contains
the address of the associated buffer and other control
information. Buffer control blocks are allocated con-
tiguously. By only looking into buffer control blocks,
buffer manager minimizes the amount of memory pag-
ing in the searching process. In addition, the hashing
scheme makes the time needed for a buffer search in-
dependent of the buffer pool size. '

The ratio of a buffer pool size to its hash table
size determines the average number of buffer control
blocks in a hash class. The average number of com-
parisons during a buffer search depends on this ratio
also. DB2 current implementation sets the number of
hash classes to the larger of 64 or 20% of the buffer
pool size. The reason for choosing 20% is based on the
fact that the probability of having more than 7 buffer
control blocks on a single hash synonym chain is less
than 5%. Furthermore, to facilitate concurrent buffer
searches for the symmetric multi-processors (SMP)
processors, DB2 sets the number of latches that con-
trol hash search to one eighth of hash classes. For ex-
ample, if a buffer pool has 1000 buffers, 200 hashing
anchor points and 25 latches will be allocated. The
ratios are empirically determined and will change over
the years based on technology shift.

As said earlier, a buffer pool can be easily expanded
or contracted via the ALTER BUFFERPOOL command.
If the new pool size after expansion (contraction) is

- significantly larger (smaller) than the current size, the
hash table size needs to be adjusted to speed up buffer
search and/or utilize virtual storage efficiently. Thus,
instead of keeping a static hash table size, DB2 dy-
namically builds a new hash table based on the ne
buffer pool size. :

DB2 has made the process of rebuilding a hash ta-
ble as transparent to applications as possible. The
primary task in the rebuilding process is the migra-
tion of entries from the old hash table to the new
one. Other systems do this by blocking access to the
buffer pool or by completely stopping and restarting
the database system. Instead, DB2 allows applica-
tions to access the buffer pool through the old hash
table and latches during the rebuilding process. The
actions taken by the buffer manager to rebuild a new
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hash table is listed below

1. Allocate a new hash/latch table based on the new
pool sige.

2. Set flag to indicate rebuilding hash table is in
progress. o : ‘

3. For each hash class of the old hash table, if the
class is valid and non-empty, all pages are re-
hashed and moved to the new hash table. The
class is then marked as invalid.

4. Once all hash anchors are being marked invalid,
mark the new hash/latch table as the primary
hash/latch table. .

5. Set flag to indicate rebuilding hash table is done.

6. Perform garbage collection on the old hash ta-
ble and latches when there are no remaining user
references.

When rebuilding hash table is in progress, a page
search will be carried out through the old hash class
latch. If the old hash anchor is invalid, buffer man-
ager continues to search the new hash table without
acquiring latch on the new hash class. Furthermore,
buffer manager always enqueues new pages to the new
hash table during this period. In order to ensure that
the old set of latches can still be used to serialize the
manipulation of a hash class for both new and old
hash tables during an expansion, DB2 requires that
the new hash table size is an integral multiple of the
old hash table size. Latches are referenced by their
ordinal number and can be resolved to the old or new
hash table by keeping appropriate state.

4 Buffer Replacement Algorithm

DB2 uses the Least Recently Used (LRU) algo-
rithm as its buffer replacement algorithm. To increase
the buffer hit ratio of frequently referenced or updated
pages, all referenced buffers are placed in a chain ma-
nipulated by the LRU algorithm. If a requested page
is found in the chain, the page is moved to the bottom
of the chain, the most recently used page. Otherwise,
a buffer is either released from the free buffer queue
or the least recently used buffer, the one on the top
of the chain, is dequeued if no free buffer is avail-
able. After being assigning to the page, the buffer is
placed back on the bottom of the chain. This mech-
anism, however, has several deficiencies when both
dirty pages (i.e. updated pages) and clean pages exist
in the chain:

e During a physical write I/O, buffer manager has
to search through the chain to find dirty pages
(i.e. updated pages that have not yet been writ-
ten back to disk). .

The implementation to deal with the case when
a free buffer is requested when the least recently
used page is dirty is sophisticated and inefficient.

4.1 Two-chain approach

To simplify the implementation but also keep a
high buffer hit ratio for frequently referenced or up-
dated pages, DB2 has implemented an approach that
uses two chains, LRU-chain and Changed Page Chain
(CPC). In this implementation, a clean page is stored
in the LRU-chain and a dirty page is stored in both
the LRU-chain and the CPC. Generally, the CPC is
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a subset of the LRU-chain. Both chains are manipu-
lated by the LRU algorithm.

When a free buffer is requested and no free buffer is
available, buffer manager always steals a buffer from
the LRU-chain. The steal operation can be described
as below: '

1. If the buffer on the top of the LRU-chain is dirty,
dequeue it from the LRU-chain. Continue with
the next buffer until a clean buffer is found.

2. Dequeue the clean buffer on the top of the LRU-
chain. Return this buffer.
The reason to dequeue a dirty buffer from the top of
the LRU-chain is because it has not been referenced
for a long period of time. On the other hand, no
change is made on the CPC to preserve the order for
writing out dirty pages.

Let the requested page be p. The following de-
scribes the handling of the LRU-chain and the CPC
during a read operation and a write operation. We as-
sume here that there is one LRU-chain and one CPC.
However, these operations can be easily extended to
a system which maintains multiple LRU-chains and
CPCs.

Read operation

case (1) p is not in the buffer pool: The buffer man-
ager either gets a buffer from the free buffer queue
or, if no free buffer is available, uses the steal op-
eration described above to steal a buffer. It next
assigns the buffer to p and places it at the bottom
of the LRU-chain. :

case (2) p is in the LRU-chain and is clean: p is
moved to the bottom of the LRU-chain. .

case (3) p is in the LRU-chain and is dirty: p is
moved to the bottom of the LRU-chain. Since p
is dirty, it must also appear in CPC. However, the
position of p in the CPC remains the same in this
situation because if p is not updated for a long time,
it is a good candidate for writing out in the next
write I/0.

case (4) p is in the CPC but not in the LRU-chain:
The buffer manager adds p to the bottom of the
LRU-chain. The reason that p is not found in the
LRU-chain is because it was dequeued in a steal
operation. Since p is referenced again, it betomes
least stealable and should be put at the bottom of
the LRU-chain. Similarly, the CPC is not changed
in this situation.

Update operation

case (1) p is not in the buffer pool: The buffer man-
ager either gets a buffer from the free buffer set or,
no free bufler is available, steals a buffer from the
LRU-chain. It next assigns the buffer to p, marks it
dirty, and places it at the bottom of the LRU-chain.
8; (t:he other hand, p is-added to the bottom-of the
case (2) p is in the LRU-chain and is clean: The
bufter manager first adds p to the bottom of the

CPC. It next moves p to the bottomn of the LRU-
chain after marking it dirty.

case (3) p is in LRU-chain and is dirty: p is moved
to the bottom of the LRU-chain. As we said earlier,
p must also appear in the CPC. The buffer manager
moves p to the bottom of the CPC.

case (4) p is in CPC but not in LRU-chain: p is
moved to the bottom of the CPC. In addition, the
buffer manager marks p dirty and adds it to the
bottom of the LRU-chain. , '

When a write I/O operation is triggered (discussed
in Section 6), a dirty page ¢ on the top of the CPC
will be dequeued and its content will be permanently
written on DASD. Depending on whether ¢ is in the
LRU-chain, the manipulation of the LRU-chain can
be discussed in the following two cases:
case (1) g is in the LRU-chain: Because write I/O is
triggered by the buffer manager based on the usage
of the buffer pool, it should not be. treated as an-
other reference to g. Therefore, ¢ is marked clean
and remains at the same position in the LRU-chain.
case (2) g is not in the LRU-chain: As we said ear-
lier, the reason that ¢ is not in the LRU-chain is
because it was not referenced/updated for a long pe-
riod of time and was dequeued 'in a steal operation.

Consequently, when ¢ becomes clean and stealable, .

it should be available for stealing sooner than any
page in the LRU-chain. Therefore, ¢ is added to the
top of the LRU-chain. : ‘ ‘ _

4.2 MRU scheme

A data access pattern where data referenced are
unlikely to be referenced again is called a reference-
once pattern. Though the LRU algorithm is good for
sequentially referencing behavior, it has an adverse
effect to the overall buffer hit ratio when encountering
a reference-once pattern. For such a pattern, the LRU

algorithm will use the entire buffer pool in a round-.

robin fashion. This situation will reduce the buffer hit
ratio for other concurrent transactions. In addition, if
the buffer pool is larger than the virtual storage, i.e.
only part of the pool can be stored in main memory
and expanded memory at the same time, the round-
robin access to the buffer pool will cause excessive
system paging activities. As a result, the performance
of the database system will be decreased.

To overcome this problem, DB2 provides the Most
Recently Used (MRU) scheme for this kind of pat-
terns. Each buffer accessed in a reference-once pat-
tern is specially marked. Because the marked buffer
will not be referenced again, the MRU scheme places
it on the top of the LRU-chain once it becomes avail-
able for stealing. In other words, the buffer will be-
come the most stealable one when it is ready for steal-
ing.

5 Asynchronous Prefetch

- Asynchronous prefetch and deferred write are two
major performance features that enhance DB2 I/O
throughput between DASD and virtual buffer pools.
For pages that will be possibly referenced later, the
asynchronous prefetch feature enables the buffer man-
ager to read ahead and fill buffers with them while
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DB2 is processing other buffers. Three prefetch func-
tions are provided: sequential prefetch, list prefetch,
and dynamic prefetch. )

5.1 Sequential prefetch

Sequentiality of access is an inherent characteristic
of many database systems. For example, the study
done by Rodriguez-Rosell [6] on the data referencing
behavior using IMS (Information Management Sys-
tem/360) [4] showed that strong sequentiality was
found in the database system. The sequential prefetch
function in buffer manager is provided for data ac-
cess which reveals strong sequentiality, such as table
scans, cluster index scans, and some DB2 utility pro-
grams. On the other hand, when non-sequential refer-
encing behavior is encountered or there is a shortage
of buffers, buffer manager will turn off this function
and utilize synchronous reading instead. For exam-
ple, in the current implementation the buffer manager
will disable sequential prefetch when the percentage
of available buffers falls below 25%.

Sequential prefetch was implemented first and used
by DB2 utilities to improve utility performance. Se-
quential prefetch enables 1/O parallelism for utilities.
While a utility job is in the middle of processing
records within a set of pages, the prefetch engine is
working in parallel to read the next set of pages. By
overlapping CPU and 1/0, it significantly reduces the
total elapsed time for I/O intensive type utilities.

The sequential prefetch was extended later and -

used to process queries that need to access data in
sequential order. The intelligent query optimizer in
DB2 can take a decision on whether to trigger sequen-
tial prefetch when choosing an access path to process
a query. Sequential prefetch is enabled on data for
table scans. For a clustered index scan, both data
and index are enabled. For a well-organized index,
sequential prefetch is also enabled on a matched or
unmatched index scan. :

In the latest implementation, sequential prefetch
is implemented as follows. The buffer manager is-
sues a sequential prefetch when a “trigger page” is
referenced. Whether a page should trigger sequential
prefetch is decided in an application PLAN or PACKAGE
at BIND time. If a read engine is available and there
are enough buffers in the pool when receiving a se-
quential prefetch, the buffer manager asynchronously
acquires necessary buffers and loads them with the
required data. By read engines, we mean the sub-
tasks which perform DASD read 1/O concurrently.
Two sets of buffers are allocated from the 4K pool
and 32K pool during a sequential prefetch. The num-
ber of buffers allocated, called the PreFetch Quantity
(PFQ), depends on the characteristics of the program
issuing sequential prefetch and the number of avail-

able buffers in a pool. For example, if the number of

available buffers is 240 in the 4K pool and 40 in the
32K pool when any SQL program issues a sequential
prefetch, 16 buffers and 2 buffers will be allocated
from the 4K pool and 32K pool, respectively. Table 1
lists the value of prefetch quantity (PFQ) in each sit-

uation.

165

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

i 4K pool
No. of buffers (V) | SQL [ Utilities
BN < 224 8 16
224 < N <1000 16 32
1000 < N 32 64
32K pool
No. of buffers (V) | SQL [ Utilities
I<N<I2 1 2
T N X100 ) v
100< N 4 8

Table 1: The value of PreFetch Quantity (PFQ) in
each situation

5.2 List prefetch

The buffer manager provides list prefetch to re-
duce I/O traffic for applications of random access with
unclustered indexes. To achieve this goal, DB2 first
stores the index entries of referenced data, instead of
reading them immediately. These indexes are later
sorted according to their RIDs (Record IDentiﬁers?,
which puts them in disk store sequence. If Multiple
Index Access Path is selected, the AND(OR) operation
on two sets of records is implemented by the intersec-
tion (union) function on the two sets of sorted RIDs.
The two sets of RIDs are consolidated into a compos-
ite list that is later passed to the buffer manager. Fi-
nally, buffer manager uses the record identifiers list to
asynchronously fetch data from DASD in one batch.

Because all index entries referenced are sorted ac-
cording to record identifiers, at most one prefetch per

data page is needed. In addition, if more than one

record identifier points to the same page, the buffer
manager only needs to read this page once. In con-
trast, those blocks of pages that are not referenced are
skipped. As a result, if the referenced data pages are
grouped closer together, fewer prefetches are needed.
Compared with the purely sequential prefetch which
may read the same page many times due to page purg-
ing, list prefetch improves DB2 performance on ap-
plications with unclustered indexes by reducing the
number of DASD read I/O operations. :

5.3 Dynamic prefetch

Dynamic prefetch is also knows as sequential detec-
tion at execution time. This feature activates sequen-
tial prefetch if buffer manager detects sequential or
near sequential access pattern for data access which
is not declared as sequential at BIND time. The buffer
manager later deactivates sequential prefetch and re-
turns to synchronous reading when the sequential ac-
cess pattern stops. Generally, this feature is bene-
ficial because it activates and deactivates sequential
prefetch as it-sees fit.

Dynamic prefetch can be applied for both index
leaf pages and data pages. The detection of sequential
access patterns usually happens on the inner table of
a nested loop join, where data is accessed sequentially.
It is-also useful for sequential access not found at BIND
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GetPage N
Initial DAS? | RequestN
4
1.,LA<-N
2. Prefetch P pages, A to A+P~-1.
3. Define PR1, PR2, and PR3.
Y
GetPage N
Disable prefetch

1. Prefetch P pages in PR3.
2. Redefine PR1, PR2, and PR3.

Figure 3: The procedure for dynamickprefetch

time due to inaccurate calculations. A
We first describe how sequential prefetch is trig-
gered the first time. A page is considered Page-
Sequential if it is within P/2 pages ahead of the previ-
ous page, where P is the prefetch quantity (PFQ) de-
cided in the installation. If a page is Page-Sequential,
DB2 determines further whether the access sequence
is Data Access Sequential (DAS). Data access sequen-
tial is defined as a sequence where M or more of the
last N pages are page-sequential. The initial data ac-
cess sequential triggers the dynamic prefetch: P pages
starting at the page being requested are loaded into
buffers. The value of M/N is a threshold defined in
DB2 to control when dynamic prefetch should be trig-
gered. In current implementation, M and N have
been set to 5 and 8, respectively. The numbers 5 and
8 are empirically derived.
Let A be the page that declares the initial data ac-

cess sequential and triggers the first prefetch. Three
fa.nges, PR1, PR2, and PR3, are defined as be-
ow: .

s A<PRlI<A+P/2

e A+P/2<PR2<A+P

e A+P<PR3< B, where B=A+2xP.
For subsequent requests, the buffer manager first

Page BM
_accessed action Status
20 read 20
30 read 30 Page-Sequential
gDPS)
42 read 42 -PS
50 read 50 PS
150 read 150
62 read 62
70 read 70 PS
76 prefetch 76 to 107  PS and DAS
88 PSin PR1
100 prefetch 108 to 139 PS in PR2
130 disable prefetch

152 read 152
160 prefetch 160 to 191 PS and another

DAS

Table 2: An example of dynamic prefetch

determines whether if a requested page is Page-

Sequential. If not, the buffer manager disables

the prefetch and keeps looking for another initial

data access sequential. Otherwise, the buffer man-

a.gfr processes the request according to the following

rules:

case 1%1) the page is in PR1: No prefetch is triggered.
Buffer manager continues to process the next page
request. o .

case (2) the page is in PR2: Prefetch for pages in
PR3 is triggered. After the prefetch, three ranges
and B are redefined: new PR1 is set to old PR2,
new PR2 isset to old PR3, and new PR3 is defined
as the page range starting at B for a length of P
pages. After the redefinition of PR3, B is set to
B 4 P. Buffer manager continues to process the
next page request with these new values.

In summary, the whole procedure of the dynamic

prefetch is shown as the flowchart in Figure 3.
For example, let P be 32. Given a sequence of

pages accessed -

20, 30, 42, 50,150, 62, 70, 76, 88, 100, 130, 152, 160

Table 2 shows how dynamic prefetch works. Column 1
gives the page requested. Column 2 records the action
taken by buffer manager. Column 3 shows the status
of the detection of the sequential access pattern.

6 Deferred Write :

The enforcement of writing dirty pages at com-
mit point in synchronous write protocols prolongs the
time to do commit operation due to write I/O delays.
Furthermore, it also stops other processes which need
to update these pages. To overcome this problem,
DB2 provides deferred write which batches write re-
quests until they can be executed more efficiently with
respect to the number of DASD I/O operations and
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disk arm movement. This is using Write Ahead Log-
ging techniques. The benefits of using deferred write
are to increase the probability of batching I/O, mini-
mize the number of write I/Os for frequently updated
pages, reduce the number of I/Os per transaction or
query, and maximize 1/O concurrency by scheduling
multiple write engines.

6.1 Deferred Write Queue

Buffer manager normally enqueues dirty pages on
the system Deferred Write Queue (DWQ). At commit
point only update logs are written to DASD. Except
during actual update, deferred writes can be initiated
prior to, during, or after phase 2 of commit [1][2]. Be-
cause of the possibility of prior-commit writes, undo
operation is provided to back out uncommitted trans-
actions due to transaction abort. Similarly, because
of the support of after-commit writes, redo opera-
tion is also provided to permanently write committed
changes in case of situations like system crash.

To facilitate the separation of different datasets
and related I/O requests, the deferred write queue
is structured as a queue of dataset related queues.
Each dataset related queue maintains a queue of dirty
pages that belong to the same database dataset.. In
contrast to deferred write queue, a dataset related
queue is also called a Vertical Deferred Write Queue
(VDWQ). During a deferred. write, a selected verti-
cal deferred ‘write queue first dequeues up to n dirty
pages. If the VDWQ is not empty after dequeuing,
it places itself back to the DWQ. n is an interval
value of DB2 and set-to 128. The dequeued pages
are asynchronously written to DASD by ‘a deferred
write engine (described later in this section). After
being successfully written, each page is marked clean
and placed in the free buffer set. However, the con-
tent of the page is retained so if this page is accessed
again before it is released from the free buffer set, no
read I/0 is required.

The deferred write queue (DWQ) was maintained
in Last-In-First-Out (LIFO) order. When the DWQ
threshold (described later in this section{) is reached,
i.e. the number of available buffers falls below a cer-
tain level, DB2 needs to select candidate VDWQs for
writing out dirty pages. It always selects VDWQs
that are newly placed.on the DWQ. For each selected
VDWQ, only n pages are dequeued and written back
to DASD. If the selected VDWQ ‘has more than n
pages, it stays on the same relative position on:the
DWQ queue and could be selected again when the
DWQ threshold is triggered again. :

For a fairness consideration and also attempt fo
balance write I/Os to different DASD devices, the
deferred write queue (DWQ) has been modified to
be managed in First-In-First-Out (FIFO) order, -as
shown in Figure 4. In addition, once a vertical de-
ferred write queue (VDWQ) is selected, it will be
placed back to the tail of the DWQ queue if it has
more than n dirty pages. This allows each VDWQ
has equal probability of being selected when the DWQ
threshold is reached." S -

The VDWQ used to be maintained in FIFO- or-
der. Thus, during a deferred -write the first n dirty
pages were dequeued. It is possible that the first n
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Figure 4: The Deferred Write Queue (DWQ)

dirty pages contain pages that may require frequent
updates. For example, a DB2 space map page is up-
dated more frequently than each individual data page
because it covers a large range of data pages. When a
write I/O is-in progress for a page, the page is not al-
lowed to be updated until the write I/O is completed.

- Therefore, it could have significant performance im-

pact to transaction performance if the deferred write
process constantly writes those hot pages to DASD.
Frequently writing hot pages also defeats the benefit
of reducing write I/O activities for database datasets.
The deferred write algorithm has been enhanced to
apply the LRU scheme to each VDWQ, instead of
managing each VDWQ in FIFO order. When a de-
ferred write is triggered, DB2 now chooses writing the
n least recently updated pages from each VDWQ.

6.2 Asynchronous write engine -

The actual operation writing dirty pages to DASD
is performed as an asynchronous task by the buffer
manager. The components designated -for this task
are called deferred write engines. The deferred write
engines operate independently and in parallel with
transaction processing to maximize I/O concurrency.
However, similar fo sequential prefetch, when the
number of available buffers falls below -a predeter-
mined level, buffer manager will temporarily suspend
deferred write and all writes will now occur synchro-
nously to the updating transaction. _

During a deferred write operation, a deferfed write
engine is dedicated for dirty pages belonging to the
same vertical deferred write queue (VDWQ). Once the
n pages are dequeued from the VOWQ, DB2 serially
initiates write I/Os in multiples of 32-page increments
under the same write engine task. The reason for
setting an upper limit (i.e. 32 pages) on each chained
write I/O request is to avoid holding up the device for
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a long period of time which may starve other tasks.
Long chained I/Os could have significant performance
impact to transactions that need to access data from
the same DASD device.

The n dequeued pages were not sorted by physical
disk address before the write I/O was initiated. Since

DB2 database pages are being physically mapped to

DASD in page number order, the device seek time
could be minimized if write I/Os are scheduled in the
page number sequence. Hence, the deferred write has

been enhanced to sort the write pending pages before

carrying out the write I/Os. This change improves not
only write efficiency but read I/O efficiency because
device queueing time is reduced.

To improve concurrency for page update, it is de-
sirable to delay buffer locking for write I/O until it
is placed on the write I/O chain. All pages dequeued
from the VDWQ were locked for write I/O before they
were passed to the write engine. As mentioned ear-
lier, a write engine will serially schedule write I/Os
for the n pages passed to it in multiples of 32-page
increment. To improve concurrency for page update,
DB2 has been enhanced to have the buffer locking
done by the write engine. The write engine will only
lock the page buffer for write I/O before it is placed
on the write I/O chain. Therefore, within a write en-
gine, at most 32 pages are locked with the write I/O
in progress.status. Once a chained write I/Q request
is completed, those pages are immediately unlocked.

DB2 supports multiple write engines which carry
out concurrent write I/Os for different VDWQs.
Though a write engine is dedicated for pages that
belong to the same VDWQ), the write engine is not
‘limited for this VDWQ only. After successfully fin-
ishing the write operation, a write engine is placed in
a queue of free engines and ready for the next assign-
ment, which may be requested by a different VDWQ.
To maximize I/0 throughput, DB2 allows the alloca-
tion of multiple write engines for one VDWQ during

a deferred write.

6.3 Trigger conditions

Several events and thresholds defined in DB2 trig-
ger deferred write. During a DB2 checkpoint or at
dataset close point, all dirty pages are permanently
written on DASD. Each VDWQ) is assigned a deferred
write engine to perform the write I/O. The thresholds
are designed to monitor the usage of the buffer. pool.
By carefully choosing their values, the thresholds can
prevent dirty pages from flooding the buffer pool, pre-
vent dirty pages in-a dataset from flooding the buffer
pool, and free buffers as soon as a shortage of available
buffers is detected. '

7. Conclusion

This paper has described the design considerations
of the DB2 buffer manager and its role in the DB2
system. When DB2 first came out twelve years ago,
the processor. memory capacity was limited and the
processor speed was much slower than today. Several
major buffer pool design decisions were made based

on the limited memory capacity. For example, the dy- -

namic buffer pool resizing feature implemented first
was designed with a small buffer pool in mind. The

temporary butter pool expansion logic was in place
to-prevent DB2 process from terminating when the
demand  for buffer resource increases as a result of
DB2 workload increases. With the large memories,
this temporarily buffer pool expansion.and contrac-
tion logic was no longer supported.

Several design changes were also made to ensure
that DB2 can grow and scale with the growth of the
processor and mermory speed. In the beginning, DB2
could only process 30 transactions a second based
on an IBM internal transaction workload. Today,
it can perform over 960 transactions per second on
the largest IBM mainframe. During the past twelve
years, there has been thirty times throughput im-
provement. For transactions, the improvement at-
tributable to DB2 has been about 2 to 3 times in
that period. The rest is due to improvements in the
hardware and in the operating system.

With the recent introduction of the S/390 paral-
lel sysplex technology [5], DB2 has been extended to
support shared data architecture across the sysplex.
Major enhancements have been added to the buffer
manager to support buffer coherency in a parallel sys-
plex environment. To support shared data, it is nec-
essary to-ensure that data cached in each DB2’s buffer
pool is known to other DB2s. The process of coordi-
nating and ensuring valid data being accessed in each
DB2’s buffer.pool is called buffer coherency. The de-
tails on extending the buffer' manager to support a
shared data architecture can be found in [3].
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