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Abstract

In this paper, we address the issue of efficient exe-
cution of aggregate functions in resolving data incon-
sistency in multidatabases. We proposed two meth-
ods to oplimize the execution of aggregate functions in
the context of resolving data inconsistency. The first
method is to localize the execution of selections by the
help of key value transfer. Due to the reduction of
the qualified tuples in the local databases, the commu-
nication overhead and the postprocessing at the query
site are minimized. The second method is to maintain
the mazimal and minimal values of related attributes.
This information helps the localization of the selec-
tion of some aggregate functions. The effectiveness of
these methods s carefully studied and is measured in
terms of the ratio of reduced data.
Keywords: Data Inconsistency,
tions , Query Optimization

Aggregate Func-

1 Introduction

In a multidatabase system, each preexisting local
database is designed and maintained independently.
Usually, a real world entity may be stored in more
than one local databases at the same time. It is pos-
sible that a set of values of an attribute, each records
the value of the attribute of an entity in its local
database, do not match. This phenomenon is called
data inconsistency in this paper. Data inconsistency
may be categorized as a problem of semantic hetero-
geneity [1]. Resolving data inconsistency is crucial in
building a multidatabase system.

To resolve data inconsistency, Chen et al. proposed
to use probabilistic partial values [2] [3] . In their
model, an attribute with inconsistent data is modeled
as a discrete random variable. The attribute may take
on any of the possible values with a predefined prob-
ability. They developed a set of extended relational
operators for querying relations containing probabilis-
tic partial values. Agarwal et al. proposed to use

*This work was supported by National Science Council, Re-
public of China, under Grant NSC85-2213-E-011-010

flexible relations [4] for resolving data inconsistency.
They also developed a relational algebra for querying
flexible relations which contain inconsistent data.

Yet another interesting approach was proposed by

- Dayal [5] [6], and is drawing a lot of attentions re-
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cently. Dayal proposed to integrate databases with
inconsistent data in two steps. First, an outerjoin [7]
is performed over a set of base relations (the relations
corresponds to the same real world entity type). The
second step is to apply aggregate functions over the
attributes of the resultant relation to derive a seman-
tically consistent global view.

For Dayal’s approach to be really applicable,
efficient execution of queries involving aggregate
functions! is crucial. Dayal proposed several tactics
for efficient execution of some aggregate functions.
However, in our opinion, for most aggregate func-
tions, their efficient execution strategies are not fully
addressed.

In this paper, we propose two methods for the ef-
ficient execution of the aggregate functions. In the
first method, we use the strategy of key value transfer
to make it possible to distribute selection operations
of a query to local databases. The second method is
to maintain the current maximal and minimal values
of an attribute. We then use these information to
localize the execution of selection operations.

The rest of this paper is organized as follows. In
Section 2, we briefly describe Dayal’s approach. In
Section 3, we propose two methods to optimize the
execution of aggregate functions. In Section 4, we
analyze the effectiveness of these methods. Finally,
we draw some conclusions in Section 5.

1t is noted that we study the execution of aggregate func-
tions in the context of resolving data inconsistency, and should
be distinguished from executing aggregate functions in SQL
statements.
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2 Resolving Data Inconsistency Usin
Aggregate Functions :

In [5] [6], Dayal proposed to use aggregate func-
tions ncluding maz, min, sum, average, chooseany,
etc. to resolve data inconsistency. Here, we briefly
restate his basic idea. First, the definitions of aggre-
gate functions, taken literally from [5], are shown in
Figure 1.

Suppose X3 and X7 be two inconsistent values and X is an
aggregated value, then,

X1, of Xo=mnull
X - X2, if X1 =null
MATEE =Y maw(X1, X2), of X1 # null and Xz # null
null, otherwise

min, sum and avg are defined in a similar way.

X1, if X1 # null and Xo = null

v X2, if X2 # null and X7 = null

chooseany : X = ¢ ¥ o1 X, if X = X1 and all not null
null, otherwise

Figure 1: Definition of aggregate functions

2.1 Global View Definition Using Aggre-
gate Functions :

For resolving data inconsistency, a global view is
created based on the relations (i.e. base relations)
of the local databases. First, an outerjoin [7] is ap-
plied on the base relations to derive an intermediate
view. Then, appropriate aggregate functions are ap-
plied on the common attributes of the view to derived
an integrated global view. The whole process can be
illustrated by the following example.

Ezample 1: Suppose we have two base relations,
EMP1 and EM P2, as shown in figure 2(a). Rela-
tion EM P1 consists of attributes 1D, name, age and
salary. While relation EM P2 consists of 1D, name,
age and salary. Note that these two relations pos-
sess some different attributes and, therefore, are not
union compatible. To obtain a global view, we first
apply an outerjoin on EM P1 and EM P2. The inter-
mediate view is shown in figure 2(b). The next step is
to define the attributes of the integrated global view
in terms of aggregate functions. In this example, we
use aggregate function chooseany for ID, chooseall for
name, maz for age and sum for salary.

The reasons are as follows. For simplicity, we as-
sume that the same entity (e.g. an employee) has
unique key value; and ID is the key attribute of the
two base relations. For the ID attribute, no data
inconsistency exists, therefore, chooseany is appropri-
ate in this case. For the name attribute, it’s possible
that an employee uses different names in two local
databases, and we are interested in both of his names
(i.e., chooseall). For the age attribute, we usually
choose the greater one (i.e., maz) because some local
database may forget to add one on an employee’s age
at the end of a year. For the salary attribute, we
choose sum which reflects that an employee may have
two jobs, each will earn him a salaries, and we are in-
terested in the employee’s total salary. The integrated
global view is shown in figure 2(c).
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ID1 | namel | agel | salaryi
001 Tom 36 25,000
002 | John 32 27,000
EMP1 003 | Mary 30 30,000
004 | Jack 30 40,000
005 | Remy 22 24,000
((ID2 | name2 age2 | salary2
001 | W. Tom 35 30,000
003 | L. Mary 31 30,000
EMP?2 004 | A. Jack 28 38,000
009 | W. Polo 26 | 27,000
011 | W. King 36 | 33,000
(a) Two base relations
ID1 | name!l | agel | salaryl | ID2 name2 | age2 | salary2
001 Tom 36 25,000 001 W. Tom 35 | 30,000
002 John 32 27,000 null null null null
003 | Mary 30 30,000 003 L. Mary 31 30,000
004 | Jack 30 40,000 004 A. Jack 28 38,000
005 | Remy 22 24,000 null null null null
null aull null |, null 009 | W. Polo 26 27,000
null null null null 011 | W. King 36 33,000
(b) Result of the outerjoin
ID namel | name2 age | salary
001 | Tom W. Tom 36 | 55,000
002 | John | mu 32 | 27,000
003 | Mary L. Mary 31 | 60,000
004 | Jack A. Jack 30 | 78,000
005 | Remy null 22 -| 24,000
009 null W. Polo 26 27,000
011 | nun W. King | ~36 | 33,000

(c) The integrated view (EMP)

Figure 2: Global view definition using aggregate functions

We deem that Dayal’s approach is interesting be-
cause it allows a user (or a DBA) to define the most
appropriate rules (for the need of the user) in resolv-
ing data inconsistency. Furthermore, aggregate func-
tions are semantically rich and flexible when used in
resolving data inconsistency.

2.2 Query Execution with Aggregate
Functions

When a query is posed on a global view, the
query must be modified and transformed into sev-
eral subqueries. Each subquery contains only base
relations or intermediate relations. Query execu-
tion on a global view containing aggregate func-
tions should be optimized to prevent excessive com-
munication overhead. Dayal proposed several tac-
tics, such as distribution of selection and semiouter-
join [5] to reduce the communication overhead. A
query containing aggregate functions can be executed
efficiently using these tactics.. For example, con-
sider two base relations EM P1(ID, weightl, agel)
and EMP2(ID,weight2,age2). A global view
EMP(ID,weight,age) is defined on EM Pl and
EMP2, where the age attribute is defined to be
maz(agel,age2). When a global query

Uage>30(EMP) .
is posed to the system. It can be transformed into
two subqueries:

Uagel>3o(EMP1) and O'Gg»ez>30(EMP2). -

After the subqueries are performed by the local




databases, the results from the local databases are
integrated into the final result. Note that in this ex-
ample, instead of transferring all the tuples of both
EMP1 and EM P2 to the query site, we distribute
the corresponding selection formula to EMP1 and
EM P2 respectively, and transfer only those tuples
that are qualified for the query. It is to be noted that
not all selection formulas can be safely distributed.
Figure 3 summarizes the cases in which distribution
of selection is possible. '

aggregate function selection formula
A<c| A=c ] A>¢

chooseany S S S
max N T1 S
min S T2 N
swm N N N
avg N N N

T1:A; >c

T2:A;<c

where 7 € {1,2,...,n}

Figure 3: Dayal’s Rules for Distribution of the Selection For-
mula

In Figure 3, AOc is a selection formula, where A
denotes an attribute name, © is comparison operator
(including <, =, and >), and c is a constant. An ”S”
entry indicates that distribution of the selection for-
mula can be performed safely without any change to
the formula — a case called full local selection in [5].
For example, if we want to get the employees whose
maximum ages are greater than c. We only need to se-
lect locally the employees whose ages are greater than
¢, and transmit the tuples to the query site. An ”N”
entry indicates that no distribution is possible. 71
and T2 means that distribution is possible only when
the selection formula is changed according to T'1 or
T2[riespective1y — a case called partial local selection
in [5

Taking T1 for an example, assume that attribute A
is defined based on A; in one site and A, in another
site. Then, a query oa4-. can be transformed into
0'4126 and aA?ZC'

The tactic of distribution of selection is beneficial
because it can be implemented with little effort. How-
ever, in most cases, this tactic does not work; that is,
no full or partial local selection is possible. For exam-
ple, the selection formula:

O'(weight1+wez’gh12)/2>50(EMP)
cannot be distributed according to Figure 3. The only
way of executing this selection is to transfer all the
tuples of EM P1 and EM P2 from the corresponding
local sites to the query site. The focus of this paper is
to explore methods to make distribution of selection
possible for all the entries in Figure 3.

3 Distribution of Selections with Ag-
gregate Function

In this section, we present two methods to make
distribution of selection possible for selections with
all kinds of aggregate functions.
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3.1 Method 1 : Key value transfer

As mentioned before, data inconsistency happens
when two tuples match on their key attribute values
but have conflicting values for some common non-key
attributes. The main idea of key value transfer is to
provide the query site with the key values of all tuples.
These key values are used to prune the tuples that are -
not qualified for the selection condition.

For example, consider two base relations EM P1
and EM P2 as in Figure 2, where age is defined as
maz(agel, age?). The selection formula

aage:SO(EMP)
can be distributed as

Oage1=30 EMP].) and Ta ez:go(EMPZ),
if the key values of agel > 3(§from EMP1 and age2 >
30 from EM P2 are also transferred back to the query
site. A tuple with agel = 30 in EMP1 while has a
corresponding tuple with age2 > 30 in EAL P2 will be
pruned by the key value of the corresponding tuple
from EM P2. This is because the tuple with agel =
30 in EM P1 is unqualified by its corresponding tuple
which has age2 > 30 in EM P2, due to the semantics
of the aggregate function maz.

Figure 3 can be modified to Figure 4 using the key
value transfer method. This method can be expressed
as follows: Suppose that R; contains all tuples se-
lected from site ¢, and K; contains all key values trans-
ferred from site . Then the reduced relation R! of R;
can be derived by

R, = R; — Semijoin(R; , UjziK;),
where K; contains key values from site j. Rl is then
used for performing outerjoin, aggregate functions,
and selection if necessary.

aggregate function selection formula
A<c|A=c | A>¢

chooseany S S S

max T3 T1 S

min S T2 T4

sum .| T5 T6 N

avg T7 T8 N
T1:  transfer tuples with A; = ¢, and the key values of 4; > ¢
T2: transfer tuples with A; = ¢, and the key values of 4; < ¢
T3:  transfer tuples with A; < ¢, and the key values of A; >c
T4: transfer tuples with A; > ¢, and the key values of A; <c
T5:  transfer tuples with A; < ¢, and the key values of A4; >c
T6: transfer tuples with A; < ¢, and the key values of 4; > ¢
T7:  transfer tuples with A; < nc, and the key values of A; >

ne
T8:  transfer full tuples of 4; < nc, and the key values of

A; > ne
(7 € {1,..,n}, n is the number of sites )

Figure 4: Modified Rules for Distribution of the Selection For-

mula

Ezample 2. Consider relations EM P1 and EM P2
in Figure 2, and the execution of the query

Tidname (a'

e<30(EMP) ).

The selection afg)rmula age < 30 can be transformed
by T3. Next, we can transform the global query into
two local queries :

Q1: Tidl,namel (Uagel<30(EMP1) ): and

Q2 : a2, name2 (Cagea<ao(EMP2)),

and transfer the query results of each local execution
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to the query site for final processing. Note that the
key values of unqualified tuples should also be trans-
ferred to the query site. Given that John’s agel equals
29 and age2 equals 31, then maz of agel and age2
1s 31, which is greater than 30, and John should be
pruned from the query site. In our method, John
is selected from EM P1 and pruned by the key val-
ues transferred from EMP2. If the key values is
not transfered, John will be selected, which renders
a wrong answer. Suppose R; is the set of the quali-
fied tuples from site 7, and K; is the set of key values
of the unqualified tuples from site i (i=1,2), then the
reduced results R} is:

Ry = R; — Semijoin(R; , Kj)

» = Ry — Semijoin(R, , K),

and the final processing is:

EMP = ( Outerjoin;q(R}, R'2) ) and

Tidname (U'age<30_(EMP . . .
After the modification, T1 and T2 in Figure 4 are
better than the original ones because the amount of
data transferred is reduced enormously. T3 through
T8 eliminate six ”N” entries from Figure 3. However,
Ts, T6, T7 and T8 only work under the assumption
that no negative attribute value exists. Meanwhile,
'T7 and T8 are not good enough because the num-
ber of sites n could be quite large. In this case, ac-
cording to the selection formulas, there could be very
small amount of tuples reduced by performing the lo-
cal selection formulas. Therefore, we propose another
method to further improve the localization of the se-
lection formulas.

3.2 Method 2 : Maintaining the maxi-
mum and minimum value

If the maximum and minimum values of all numer-
ical attributes are available, then the effectiveness of
the local selection involving sum and average can be
further improved.

After applying Method 2, the transformation rules
for sum and average are shown in Figure 5.

aggregate function selection formula
ALc | A=c ] A>¢
‘sum T9 T10 T11
avg T12 T13 T14
T9: transfer tuples with A; < maz(c, ¢ — Ajmin)

T10: transfer tuples with min(c,c — Ajmaz) < A;
< maz(c,c — Ajmin)
T11: transfer tuples with A; > min(c, ¢ — Ajmaz)
T12: transfer tuples with A; < maz(c, 2¢ — Ajimin)
T13: transfer tuples with min(c, 2¢c — Ajmaz) < A;
< maz(c,2¢c — Ajmin)
T14: transfer tuples with A; > min(c, 2¢c — Ajmaz)
Note:  All rules have to transfer the key values of the
unquali fied tuples.

(ie{1,2},i#3)
Figure 5: Transformation Rules of Method 2 for 2 Sites

In Figure 5, Aimaz and A;pmin denote, respectively,
the maximum value and minimum value of attribute
A at site i. The query site can get all A;pnq., and
Aimin by sending a query to all sites, or by keeping
the maximum values and the minimum values in the
global data dictionary.
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Using the information of A;,,,, and Aimin, Figure
4 can be improved. TI11 and T14 replace the last
two ”N”s in Figure 4. Meanwhile, it is obvious that
T12 and T13 are better than T7 and T8, respectively,
because the transformed selection formulas become
more selective (i.e., they can reduce more tuples from
the base relations.). The proof of transformation rules
T9 through T14 are shown in Appendix A . If no
negative attribute value exists, rules T9, T10 and T11
can be written as:

T9: transfer tuples with A; < c (= T5) .
T10; transfer tuples with c — Ajmar < A; <c.
T11:  transfer tuples with A; > ¢ — Ajmaz -

Ezample 3: Consider relations EM P1 and EM P2
in ‘Figure 2, and the execution of the query

Tid,name (a'salary>30000(EMP) )
Suppose that maz(Salary in EMP1) is 40000 and
maz(Salary in EM P2) is 38000, we transform the
global query into the following two local queries by
applying rule T11:

Q1 : Tia1 name: (Usalary1>min(30000,60000—38000)(EMPl))

Q2 : Tia2 name2 (U.yalary2>min(SOOOO,GOOOO—40000)(EMP2) )

Finally, the query results of each local execution are
transfered to the query site for final processing.

The transformation rules in Figure 5 can be gener-
alized into n sites as follows:

T9: A; < maz(c— Zj;éi Ajmin) , for any combination of
Ajmin (Ai < ¢, if no negative attribute value exists)

T10:  min(c — Zj# Ajmaz) £ Ai < maz(c— Zj.—,éi Ajmin)
y for any combination of Ajmaz o Ajmin
(c - Zj:l to n,j#¢ Ajmaz <4 e,
1f no megative attribute value) ) :

T11: A > min(c — Zﬁ“ Ajmaz) , for any combn:nation of
Ajmaz (o1 Ai > c— Zj=1 to nji Ajmaz , if o —
negative attribute value)

T12: A; < maz(the number 0fAjmin X ¢ — z;‘;ﬁi Ajmin)
y» for any combination of Ajmin

T13: min(the number 0fAjmaz X ¢ — E ‘i Ajmaz) < Ai
< maz(the number o0fAjmin X c¢— it Ajmin) ,

for any combination of Ajmaz o7 Ajmin

T14: A; > min(the number 0fAjmaz X ¢ — Zj;ﬁ Ajmaz)
, for any combination of Ajmaz

Note:  All Tules have to transfer the key values of the
ungqualified tuples
(i€{1,2,..,n} ,n is the number of sites)

4 Effectiveness Analysis

So far, we have discussed how to improve the distri-
bution of selection formulas involving aggregate func-
tions. In this section, we discuss when the distribution
of a selection formula is beneficial and how beneficial
it is.

In evaluating the effectiveness, we define the ratio
of reduced data at each site as the proportion of the
reduced data (in terms of bytes) to the total amount
of data in the base relation. In other words, the ratio
of reduced data is one minus the ratio of transferred



data in a base relation. For simplicity, we assume that
the values of an attribute A; are uniformly distributed
over its domain. That is, attribute A; may take on any
possible value from its domain with equal probability.
In the following analysis, we further assume that the
value of A; ranges from 0 to 100. We also define key
ratio of a base relation as the ratio of the length (in
terms of bytes) of the key attributes to the length of a
tuple in the relation (assuming that the base relation
contains fixed-length tuple). The values of r are set
to 0.1, 0.2 or 0.3 in different cases of our analysis.

4.1 Analysis of Method 1

The effectiveness of transformation rules listed in
Figure 4 depends on the value ¢ of the selection for-
mula AOc as well as the key ratio , r. For example, if
T1 is applied, all tuples for A; = ¢ and the key values
for A; > c are all transferred to the query site. The

ratio of reduced datais 1 — - 1po=¢, where 199-¢
is the proportion of tuples with A; > ¢, and r - ig%%

is the proportion (in terms of bytes) of keys to the
tuples with A; > ¢. It shows that the transformation
is beneficial for 0 < ¢ < 100. Other rules can be ana-
lyzed in a similar way. The results of the analysis are
shown in Table 1. :

Transform- | Beneficial Ratio of reduced
ation rule range data

Tl 0<c<100 |1 — 7355
T2 0<c<100 |1 - 7 5655
T3 0<c<100 | (1-7): 50—
T4 0<c<100 | 1-1) 1555
T5 0<c<100 | (1—7)-igo—e
T6 0<c<100 | (I-7): i5o=5
T TSI () e
T8 Dgcc< ™ (1—1‘)-1130__70—5

n— "= n
Table 1. Relationship between c and the ratio of reduced data
for method 1

We sketch eight diagrams for T1 to T8 as shown
in Figure 6. From Figure 6.(a) to 6.(f), it shows that
transformation rules T1, T2, T3, T4, T5 and T6 are
always beneficial. However, from Figure 6.(g) and (h),
transformation rules T7 and T8 are beneficial only
when c is less than 50. It turns out that transforma-
tion rule T7 and T8 are beneficial only when the value
of ¢ is small, i.e., when the value of n X ¢ is within the
domain of A; (where n is the number of sites).

4.2 Analysis of Method 2

The effectiveness of transformation rules listed in
Figure 5 depends not only on the value of ¢ and the
ratio r of key attribute, but also on the current max-
jmum and minimum values of the attribute at other
sites. Therefore, the analysis is more complicated.
For simplicity, we consider only two sites, (n=2), and
assume that the value of A; ranges from 0 to 100. The
ratio of reduced data for the rules are shown in Table
2.
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[ I Ratio of reduced data ]
T9 [ (I1—7): too=g, when Ajmin 20
T10 | (1—r)- (1= 22 Pime9)) hen Ajmin 2 0
T11 | (1-r)- 2280 Aimes) yhen Ajmin >0
T12 [ 1-7)- igg:g, when ¢ < Ajmin
(1 _ 7_) . ma::(O,lOC:)l:)-gico—Az-m,-n)) ,
when ¢ > Ajmin
T13 | (1—r) (1 - Smem02e-Aimes)),
when Aer:::n(ZlOcO 2¢—Ajmin)—maz(0,2c—A; )
1-r)-(1- - mins - mesly
wfzerf Ajmin < c< Ajmaioo ° )
(1—7) (1 - n90ZecAimn)=s),
when Ajmaz < €
T4 | (1—7) 1505+ when ¢ > Ajmas
(1-7)- M—O%M, when ¢ < Ajmaz

Table 2. Relationship between ¢ and the ratio of reduced data
for method 2

We sketch six diagrams, as shown in Figure 7, one
for each of T9 to T14 respectively. Figure 7.(a) shows
that the transformation rule T9 is always beneficial.
Figure 7.(b) manifests that transformation rule T10
is always beneficial, and the ratio of the reduced data
becomes a constant when ¢ is greater than A;jmaz (cur-
rent max value at the other site). That is to say, the
smaller the current Ajmaz is, the larger the ratio of
reduced data will be. Figure 7.(c) shows that trans-
formation rule T11 is beneficial only when the value
of ¢ is greater than the current Ajmas. Figure 7.(d)
shows that transformation rule T12 is beneficial only
when the value of ¢ is less than 2(100 + Ajmin), and
the ratio of reduced data becomes a constant when ¢
is less than the current A;jmin. Figure 7.(e) shows that
transformation rule T13'is always beneficial, and the
ratio of reduced data is minimized when the value of ¢
is between %(100 + Ajmin) and %(0 + Ajmas). Figure
7.(f) shows that transformation rule T14 is beneficial
only when the value of ¢ is greater than %(0+Ajmaz).

In general, the first method is effective when the
aggregate function is a maz or a min, and the second
method is effective when the aggregate function is a
sum or an average.

5 Conclusion and future research

In this paper, we proposed two methods to dis-
tribute selection formulas in a global query in which
aggregate functions are used for resolving data incon-
sistency. Using our methods, global queries with ag-
gregate functions can be executed efficiently through
the localization of the selection formulas. The contri-
butions of this paper are two folds. First, we extend
Dayal’s approach on localization of selection formulas
such that, in most cases, the selection formulas involv-
ing aggregate functions can be executed efficiently.
Second, we quantified the effectiveness of the trans-
formation rules by the ratio of reduced data. This
give us the clue about how effective a transformation
rule is and when it should or should not be applied.
This could be used as a starting point for developing
a more comprehensive query optimization strategy.
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Figure 7: Effectiveness analysis for method 2
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Appendix A : The Proof of Transformation
Rules of Method 2 ( where i=1, j=2 or i=2, j=1

)

T9 : When the aggregate function is a sum and the
selection formula 1s A < ¢, we can transform the
global selection A < ¢ to local selection A; <
maz(c, ¢ — Ajmin)-

pf : (1) When the attribute exists at both sites:
A<e= AL+ Ay <c:>{ ﬁ;ig_ﬁf::
A;<e— Ajmin
(2) When the attribute exists only at one site:
A<e=> A; <ec
From (1) and (2), we have A; < maz(c,c —

jmin ). .

T10 : When the aggregate function is a sum and the
selection formula is A = ¢, we can transform the
global selection A = c to local selection min(c, c—
Ajmas) < Ai < maz(c,c— Ajmin)-

pf : (1) When the attribute exists at both sites:

A = ¢ = A+ A = ¢ =
¢— Asmaz <Ay <c— Aomin
¢ — Aimar < Az L ¢ — Aimin

Ai <c-—- Ajmin

= C—A]'m,_w <

(2) When the attribute exists only at one site:
A=c=2>A;i=c=>c< A <c

From (1) and (2), we have min(c,c — Ajmaz) <
A; < maz(c,c— Ajmin)-

T11 : When the aggregate function is a sum and the
selection formula is A > ¢, we can transform the
global selection A > ¢ to local selection A4; >
min(c, ¢ — Ajmaz)-

pf : (1) When the attribute exists at both sites:

A>c:>A1+A2>c:>{ ﬁ;iz:ﬁfmaa:
Ai>c—Ajma:z:

(2) When the attribute exists only at one site:
A>c=3 A >¢ :
From (1) and (2), we have A; > min(c,c —
jmazx )-
T12 : When the aggregate function is an avg and
the selection formula is A<c, we can transform

the global selection A<c to local selection A; <
maz(c,2¢ — Ajmin)-

pf : (1) When the attribute exists at both sites:
A < c = %(Al ‘+ Az) < c =
A1 < 2¢— Azmin
Az < 2¢ — Aimin
(2) When the attribute exists only at one site:
A<c= Ai<c
From (1) and (2), we have A; < maz(c,2¢c —

jmin ).

= A; < 2¢ — Ajmin

T13 : When the aggregate function is an avg and the
selection formula 1s A=c, we can transform the
global selection A=c to local selection min(c, 2c—
Ajmaz) < Ai < maz(c,2¢ — Ajmin)-

pf : (1) When the attribute exists at both sites:

A = ¢ = %(Al + A) = ¢ =
2¢ — Agmazr < A1 < 2¢ — Agmin
2¢ — Atmar < A2 < 2¢— Aimin

= 2c— Ajmaz: <A; <2c— Ajmin

(2) When the attribute exists only at one site:

A=c=>A;=c=>c<A; <c

From (1) and (2), we have min(c,2¢ — Ajmas) <

A; < maz(e,2¢ — Ajmin).

T14 : When the aggregate function is an avg and
the selection formula is A>c, we can transform
the global selection A>c to local selection A; >
min(c,2¢ — Ajmaz)-

pf : (1) When the attribute exists at both sites:

A > c = %(Al + Ag) > c =
A1 > 2¢~ Asmax
AZ > 2¢— Alma:c

(2) When the attribute exists only at one site:
A>c=2> A >¢
From (1) and (2), we have A; > min(c,2c —

jmaz -

= A; > 2¢c— -Ajma,a:



