
Pinned Demand Paging Based on the Access Frequency
of Video Files in Video Servers

Yin-Fu Huang* and Hung-Ming Ho

Institute of Electronics and Information Engineering
National Yunlin University of Science and Technology

123 University Road, Section 3,
Touliu, Yunlin, Taiwan 640, R.O.C.
Tel: (+886)-5-5342601 Ext. 4314

Fax: (+886)-5-5312063
Email: huangyf@el.yuntech.edu.tw

For Considerations as a Regular Paper

in the Workshop on Multimedia Technologies

Abstract
In this paper, we present a novel demand-paging algorithm called PDPAF (i.e.,

Pinned Demand Paging based on the Access Frequency of video files), to efficiently
utilize the limited buffer space in a VOD server. It excludes the limitation of the disk
bandwidth, and raises the hit ratio of video pages in the buffer, thereby increasing the
total number of concurrent clients. Furthermore, we also propose an admission control
algorithm to decide whether a new request can be admitted. Finally, we conduct
extensive experiments to compare PDPAF with other algorithms on the average
waiting time and the maximal number of concurrent requests, and the simulation
results validate the superiority of our approach.

Keywords: VOD, demand paging algorithms, hit ratios, admission control

*To whom all correspondence should be addressed.

 1

1 Introduction

Video-On-Demand (VOD) service is a new entertainment. Viewers can watch
videos on demand from a remote video server through a network [4, 6, 10]. Due to the
advances in computer and communication technologies, the service has become true.
A VOD server services clients by retrieving the chosen video blocks from disks, and
then transmitting them to display devices via buffers. In general, a buffer is used to
temporarily store the video data being paged from disks on demand. In order to
provide guaranteed transfer rates of video streams, enough resources (i.e., disk
bandwidth and buffer spaces) must be reserved for each client to retrieve video blocks.
However, reserving the disk bandwidth for a long duration will degrade the
performance of a video system. Besides, due to the limitation of the disk bandwidth,
the maximum number of concurrent clients in a video system is also limited. Thus, a
demand paging algorithm must be provided to effectively utilize the buffer and reduce
the required disk bandwidth.

A good demand paging algorithm can raise the hit ratio of video pages in the
buffer, thereby increasing the total number of concurrent clients. However, the
demand paging algorithms such as LRU and MRU used in operating systems cannot
be applied to continuous media applications since they cannot guarantee the transfer
rate of a video stream [8]. Therefore, a demand paging algorithm called PDP (Pinned
Demand Paging) was proposed to address the above problem by Özden et al [7].
Although it improves the bottleneck of the disk bandwidth and the limitation of buffer
requirements, it is still not good enough. In this paper, we present a novel
demand-paging algorithm called PDPAF (i.e., Pinned Demand Paging based on the
Access Frequency of video files). It excludes the limitation of the disk bandwidth, and
raises the hit ratio of video pages in the buffer, thereby increasing the total number of
concurrent clients. Furthermore, we also propose an admission control algorithm to
decide whether a new request can be admitted. Finally, through the experiments, we
show the superiority of our approach.

The remainder of the paper is organized as follows. Section 2 describes our
system model. The PDPAF algorithm is presented in Section 3. Besides an admission
control algorithm is proposed in Section 4. Section 5 shows a simulation model and
experimental results. Finally, we make conclusions and discuss the future research in
Section 6.

2 System Model

In this study, we assume that the storage structure includes memory (buffer) and

 2

disks, as shown in Fig. 1. All M videos are stored in the disks, and the buffer is used
to temporarily store the viewed video data that are being paged from the disks on
demand. Each video file Vi is associated with a display rate Bdispaly, and should be
transmitted at that rate over a high-bandwidth network to a requesting client. Here we
assume that all video files have the same display rate. The size of each video file
could be different from each other, and this implies that all video files have different
service time. Each video file consists of a sequence of blocks or pages with size D.
The access frequency of a video file represents its popularity. We assume that the
access frequency of each video file Vi is known in advance and is denoted by Pi,
where ∑ = 1iP . The video files are indexed by a decreasing order of access

frequencies; i.e., ji PPji ≤⇔≥ .

MemoryDisks

Display devices

Fig. 1 System architecture

Here the time taken by a client to consume a video block is referred to as a
service cycle denoted by Ts. It is assumed that multiple clients are serviced in a fixed
order that does not vary from one service cycle to the next one. During a service cycle,
the server must prevent the starvation for the continuous playbacks of all requested
clients [1]. The amount of video data consumed by a client in a service cycle is called
a D-block. A service cycle can be computed with D-block and Bdispaly as follows:

display

s B
DT = (2.1)

Obviously, the size of D-block is proportional to the length of a service cycle, it
should be well chosen. In order to meet the continuity requirement of each admitted
client, a constraint is imposed on Ts as follows:
 scached TtC ≤× (2.2)

 3

Cd denotes the number of admitted clients requiring the disk bandwidth to retrieve
D-block to the buffer each cycle. tcache denotes the time used to retrieve the amount of
D of a requested video file from disks to the buffer, and can be expressed as follows:

disk

cache B
Dt = (2.3)

where the symbol Bdisk is the transfer rate of disks. Due to the limitation of the disk
bandwidth, if we do not consider the contents in the buffer, the maximum number of
concurrent clients m can be expressed as follows:

 







=

cache

s

t
T

m (2.4)

However, if a new request arrives and the referenced page is already in the buffer,
then no disk bandwidth is required for the request. In other words, the maximum
number of concurrent clients will not be bounded as expressed in equation (2.4).
Furthermore the response time will be zero for the request.
 The buffer includes a number of frames, each of which also has the same size D.
If a page of a video file needs to be accessed, the page must be loaded into one of the
available frames in the buffer. Let Mbuffer be the size of the buffer, and then the total
number of frames in the buffer Nframe can be expressed as follows:

 







=

D
M

N buffer
frame (2.5)

3 Buffer Management

3.1 Pinning a Page in the Buffer

A pinned page in the buffer is one, the contents of which cannot be replaced with
the pages being paged from the disks for a request. When a page is being consumed
(or transmitted) to a display device at cycle t, the page will be pinned for PT cycles;
i.e., the pinned page will be unpinned at cycle (t+PT+1). Here PT is the pinned
duration of each page of a video file and is an integer number of service cycle.
Besides when the first page of a video file is not referenced during its PT, the system
will never pin all its following pages from page 2 to page PT. An example for pinning
the pages of a video file for PT=2 is shown in Fig. 2.

 4

1 1

2

1

3

2

4

3

2

1T 2T 3T 4T

n : The contents in page n are being produced from disks.

n : The contents in page n are being cosumed to a display device.

n : Page n is being pinned.

1

4

5T

5

iR

iR

iR

iR

iR

iR

iR iR

iR

Fig. 2 Pinned pages in the buffer

The PTs of video files are not necessarily all the same, since it is related to the
access frequency of the video files. The greater the access frequency of a video file,
the longer the pinned duration of its page should be. Thus a heuristic to decide the
pinned duration of video files is proposed here. At first Nframe frames in the buffer are
distributed among M video files according to their access frequencies. Then the
number of frames distributed for a video file can be regarded as its PT, such as
PTi=Hamilton(Pi×Nframe), where Pi is the access frequency of video file Vi. Here we
use Hamilton function to adjust PTi into an integer [5].

3.2 Algorithm PDPAF

Let group Gj={Ri, Ri+1, …, Ri+k} be a set of requests requesting the same video
and ordered by their arrival time such that Ri arrived before Ri+1 and so on. Here the

earliest (i.e., the first) and latest requests in group Gj are denoted by e
jR and l

jR ,

respectively. A group has different statuses in its life as follows:

1) Gj is called an active group if the disk bandwidth is being used for e
jR at a given

time.

2) Gj becomes passive after e
jR finishes retrieving the video (i.e., no request in Gj

needs further disk accesses).
3) Gj is called an available group if the first page of its requested video is still pinned

in the buffer by Gj.
4) Gj becomes unavailable once the first page of its requested video is unpinned from

the buffer by Gj.

 5

The replacement policy of the buffer is depicted in Fig. 3. Each group has its
own local pool. When a new request R is granted to be served and the requested video
is Vm, we try to find an appropriate group Gj, and then determine the required space
size for the request according to the group status as follows, which is allocated from
the common free pool.

free pool

common free pool

free poolfree pool

group group group

Fig. 3 The replacement policy of the buffer

Case 1: If an available group can not be found for R, then a new group Gj will be

created. The local pool of Gj will be allocated from the common free pool,
and its required size is expressed as follows:

D2)(PTpool) Size(local m ×+= (3.1)

From equation (3.1), we know that the size of the local pool of a new group is
at least 2 frames. It means that these two frames are used for the double
buffer policy, regardless of whether the pinning is required in the group.

Finally R joins to Gj and becomes e
jR and also l

jR in Gj.

Case 2: If an available and active group Gj can be found for R, then it will join to Gj.
Before R joins to Gj, the size of the local pool for Gj can be computed as
follows:

D
T

)R,diff(R
D2)(PTpool) Size(local

s

l
j

e
j

m ×+×+= (3.2)

where)R,diff(R l
j

e
j is the time difference of starting to display the video for

e
jR and l

jR . Though the local pool has been allocated for Gj before R joins Gj,

it is still to allocate more spaces from the common free pool for R unless the
size of the local pool for Gj has been equal to that of video Vm. The required

 6

size allocated from the common free pool for R can be computed as follows:
















×≥−×

×<−−

=

=

D
T

RRdiff
pool) free Size(localVSize if ,D

T
RRdiff

D
T

RRdiff
pool) free Size(localVSize if ,pool) free Size(localVSize

VSizepool) free l Size(locaif ,

 spaces)redSize(requi

s

l
j

m
s

l
j

s

l
j

mm

m

),(
)(

),(

),(
)()(

)(0

 (3.3)
where Size(Vm) is adjusted into an integer number of D. Finally R joins to Gj

and becomes l
jR in Gj.

Case 3: If an available and passive group Gj can be found for R, then it will join to Gj

and become l
jR . Since e

jR have finished retrieving the pages from disks, no

allocation from the common free pool is required for R.

For an active group Gj, one frame will be allocated from its local free pool for
e
jR per service cycle, since e

jR needs to retrieve the video from disks. Once an

available group becomes unavailable, three cases to determine what free pool
allocated frames are released to at the current cycle are as follows, depended on the
group status.

Case 1: When an available group Gj becomes unavailable, the frames used by from

page 1 to page PT will be unpinned and released to the common free pool (i.e.,
the total PT frames are released). The reason is that they will not be
referenced again in group Gj, although the pinned duration of some frames is
not over yet. An example with PT=2 is shown in Fig. 4, illustrating that the
frames used by page 1 and page 2 are released at cycle T7.

Case 2: Once a group Gj is unavailable and active, then the frame consumed by l
jR

at the preceding cycle will be unpinned and released to the local free pool of

the group. At the same time, the frame can be reused again by e
jR . An

example with PT=2 is shown in Fig. 4, illustrating that the frame used by
page 3 is released and then reused by page 7 at cycle T7, and so on in the
following cycles.

 7

1 1

2

1

3

2

4

3

2

1T 2T 3T

4T

1

4

2

5T

1

3

1R

5

1R

1R

1R

1R

1R

1R

1R

1R

2R

2R

R2 is admitted to be served
and starts to display the

video instantly.

The group is active.
 R1 is admitted to be served.

4

2

6T

1

3

5

61R

1R

2R

4

free

7T

free

7

5

6

1R

1R

2R

The group becomes unavailable. Page 1 and
page 2 are unpinned and released to the
common free pool. Since the group is still
active, page 3 is released to the local free pool
and reused again by page 7.

8

8T

7

5

6

1R

1R

2R

8

9T

7

9

6

1R

1R

2R

.........

Since the group is still active, page 4 is
released to the local free pool and reused
again by page 8.

.........

Fig. 4 Space allocation in the buffer
for an unavailable and active group

Case 3: Once a group Gj is unavailable and passive, then the frame consumed by l
jR

at the preceding cycle will be unpinned and released to the common free pool,
since it will not be referenced again in group Gj. An example with PT=2 and
Size(Vm)=6D is shown in Fig. 5, illustrating that the frame used by page 3 is
released at cycle T7, and so on in the following cycles.

 8

1 1

2

1

3

2

4

3

2

1T 2T 3T

4T

1

4

2

5T

1

3

1R

5

1R

1R

1R

1R

1R

1R

1R

1R

2R

2R

R2 is admitted to be served
and start to display the

video instantly.

The group is active.
 R1 is admitted to be served.

4

2

6T

1

3

5

61R

1R

2R

4

free

7T

free

free

5

6 1R

2R

The group becomes unavailable and passive.
Page 1 and page 3 are unpinned and released
to the common free pool.

free

8T

5

6

2R

9T

free

6
2R

Since the group is passive and unavailable,
page 4 is released to the common free pool.

10T

free

Fig. 5 Space allocation in the buffer
for an unavailable and passive group

Algorithm PDPAF is run at the beginning of each cycle and shown as follows:

Algorithm PDPAF /* Pinned Demand Paging based on the Access Frequency of
 video files */
/* pin_count: the pinning duration of a page */
Step 1 For each pinned frame of all groups,

1.1 If the frame will be consumed by a request at the current cycle,
then unpin the frame.
else pin_count ← pin_count + 1.

Step 2 For each active group Gj,
2.1 If the page retrieved from disks at the preceding cycle is the last one of video

Vm, then set Gj to be passive.
Step 3 For each group Gj, free allocated frames to the common or local free pool

 9

according to the group status.
3.1 If the frame used by the first page of video Vm exists and

its pin_count > PTm,
 /* An available group Gj becomes unavailable. */

3.1.1 Unpin and release the frames used by from page 1 to page PT to the
common free pool.

3.1.2 Set Gj to be unavailable.
3.2 If Gj is unavailable and active, then unpin and release the frame consumed

by l
jR at the preceding cycle to the local free pool of Gj.

3.3 If Gj is unavailable and passive, then unpin and release the frame consumed

by l
jR at the preceding cycle to the common free pool.

Step 4 If a new request R is granted to be served and its requested video is Vm, find an
appropriate group Gj and allocate frames from the common free pool
according to the group status.

4.1 If an available group can not be found for R,
4.1.1 Create new group Gj and set it to be active.
4.1.2 Allocate the required space size expressed in equation (3.1) from the

common free pool to the local pool of Gj.

4.1.3 R joins to Gj, and becomes e
jR and also l

jR in Gj

4.2 If an available and active group Gj can be found for R,
4.2.1 Allocate the required space size expressed in equation (3.3) from the

common free pool to the local pool of Gj.

4.2.2 R joins to Gj, and becomes l
jR in Gj

4.3 If an available and passive group Gj can be found for R, then R joins to Gj,

and becomes l
jR in Gj

Step 5. Allocate a frame from the local free pool, and pin it when consumed.

5.1 For each active group Gj, allocate one frame for e
jR from the local free pool

of Gj.
5.2 For each frame of all groups, consumed by request R at the preceding cycle

5.2.1 If the frame is used by the first page of video Vm, then set the group to be
available.

5.2.2 If the group is available, then pin the frame and pin_count ← 0.

 10

5.2.3 If the group is unavailable and R ≠ l
jR , then pin the frame and

pin_count ← 0.
5.2.4 If the frame is used by the last page of video Vm,

5.2.4.1 delete R from Gj.

5.2.4.2 If R = l
jR , delete Gj.

As described in algorithm PDPAF, we know that if a video has a longer pinned
duration, then it will require more frames initially. However once a group becomes
unavailable, unused frames of the group will be released immediately. Furthermore,
the allocated frames of a group are shared by multiple requests in the group. Thus the
limited buffer is utilized effectively. Besides, although a group consists of a set of
requests, the disk bandwidth is only allocated for the earliest request in the group;
thus it overcomes the disk bandwidth limitations and increases the total number of
concurrent clients.

4 Admission Control

Due to limited system resources, before servicing a new request, the server must
employ an admission control algorithm to decide whether the new request can be
admitted [9]. Once the request is admitted, it is guaranteed not to violate the
continuous playbacks of all the requests. The concepts of the admission control are as
follows. When a video is requested, the buffer is first checked whether the video data
is available there; if so, the request is served directly from the buffer. If the video data
is not available in the buffer, the video data should be available in the disks. If the
required resources are available, the video data is transmitted to the client via the
buffer. During locating the video, if the required resources are not available, the
request will be rejected.

The required resources checked in the admission control are listed as follows:
1) The disk bandwidth: If the requested video is in the disks, the required disk

bandwidth is
cachet
1 . Besides, meeting equation (2.2) is also required for the

continuity requirement of each admitted request.
2) The spaces of the buffer: The required size of the buffer can be computed

according to the PDPAF.
The admission control algorithm is run at the beginning of each cycle and shown

as follows:

 11

Algorithm AC /* Admission Control */
Step 1 Receive a new request from the network
Step 2 Check the required resources for the new request according to its served mode.

2.1 If the requested video is in the disks, then check the required resources
including the disk bandwidth and the buffer.

2.2 If the first page of the requested video is already in the buffer, then check the
required buffer.

2.3 If the required resources are available, then add the new request into the
service cycle, else reject it.

5 Performance Evaluation

In this section, we describe the simulation model and present the results of the
performance evaluation. The simulation was conducted using the GPSS simulation
package developed by Minuteman Software, Inc.

5.1 Simulation Model

The simulation model is depicted in Fig. 6. The request generator generates a
request for a video file and submits it to the waiting queue in an FCFS manner. The
dispatcher examines the request at the head of the waiting queue for each service
cycle and decides its served mode. Then the admission controller checks the required
resources for the request according to its served mode. If the required resources are
available, the serving unit will accept the request and allocate a video stream for it.
Otherwise, the request will be rejected and return to the tail of the waiting queue. The
serving unit simulates the playback mechanism.

Dispatcher Admission
Controller

Serving Unit

Accepted

Request Generator

Waiting Queue

Rejected

Finished

Fig. 6 Simulation model

 12

In the simulation, the arrival of requests is assumed to be a Poisson distribution.

The access frequencies to each video are dependent on the popularity of the video. We
use a Zipf distribution to determine the probability of choosing the ith most popular
video from the video library [2]. The formula can be expressed as follows:

∑ =

×
= M

j j
zi

zi
P

1
1

1

where 10 ≤≤ z is the z-factor. A larger z value means a more skew condition (i.e.,
some videos are accessed considerably more frequently than others). When z=0, the
distribution is uniform (i.e., all the videos have the same access frequency). Unless
the values of the simulation parameters are mentioned, their default values are given
in Table I.

Table I Simulation parameters

D-block size 128KB
Disk space 20GB
Disk bandwidth 100MB/sec
Display rate 4Mb/sec (≈0.5MB/sec)
Main memory size 256MB
Zipf factor 0.7
Arrival rate of requests 1 (request/sec)
Number of videos 200
Minimum video size 390MB (≈13 minutes)
Maximum video size 780MB (≈26 minutes)
Number of requests 1000

Extensive experiments were conducted to validate the superiority of our

approach in the following subsection. For most clients, the waiting time of a request
(i.e., the interval between the arrival time of a request and the display time of the
requested video) is most concerned factor. Thus, the average waiting time of 1000
requests was measured and used as an evaluated parameter. Besides, in order to
demonstrate the superiority of PDPAF, we also measured the maximal number of
concurrent requests in the experiments.

5.2 Evaluation of PDPAF Policy

 13

In Section 3, we have analyzed the PDPAF policy. In order to demonstrate the
superiority of PDPAF, we conduct extensive experiments to compare it with double
buffer policy, PDP-T policy, and PDP-k policy on the average waiting time and the
maximal number of concurrent requests. The double buffer policy using no pinning
technique is the simplest. Both the PDP-T policy and PDP-k policy were proposed by
Özden et al [7]. For the PDP-T policy, once a page is retrieved, it is pinned for only
one cycle (i.e., until the end of the next cycle). For the PDP-k policy, the pinning
duration can be computed according to the following formula:

m
VSize

Tk i
s ×
≥×

2
)(

where k is the smallest integer that satisfies the above condition, and m is the maximal
number of concurrent requests to which the disk bandwidth can be allocated using
double buffer. Once a page is retrieved, it is pinned until the end of the next

)12(−× k th cycle. According to the parameter values as shown in Table I, the relative

data can be computed as follows: Ts 0.25 second, tcache 0.00125 second, Mbuffer 256MB,
Nframe 2048, and m in the above formula 200.

Experiment 1: Effect of Arrival Rate

In this experiment, we investigate the effect of the arrival rate on the
performance of the PDPAF and the other three policies. As shown in Fig. 7, PDPAF
outperforms the other three policies very much in terms of the average waiting time.
The saving ranges are from 54% (under the arrival rate 4) to 154% (under the arrival
rate 0.25) for the double buffer policy, from 50% (under the arrival rate 4) to 164%
(under the arrival rate 0.25) for the PDP-T policy, and from 79% (under the arrival
rate is 4) to 357% (under the arrival rate 0.25) for the PDP-k policy. As shown in Fig.
8, PDPAF also outperforms the other three policies in terms of the maximal number of
concurrent requests. The only one whose maximal number of concurrent requests
goes beyond 200 is the PDPAF policy.

 14

0

500

1000

1500

2000

2500

3000

3500

0.125 0.25 0.5 1 2 4

arrival rate

av
er

ag
e

w
ai

tin
g

tim
e

(s
) PDPAF

PDP-k
PDP-T
Double Buffer

Fig. 7 Average waiting time of different policies for different arrival rates

0

50

100

150

200

250

300

350

0.125 0.25 0.5 1 2 4

arrival rate

m
ax

. n
um

be
r o

f
co

nc
ur

re
nt

 re
qu

es
ts

PDPAF
PDP-k
PDP-T
Double Buffer

Fig. 8 Maximal number of concurrent requests of different policies
for different arrival rates

Experiment 2: Effect of Access Skew

In this experiment, we investigate the effect of the access skew on the
performance of the PDPAF and the other three policies. As shown in Fig. 9, PDPAF
has better average waiting time than the other three policies. Since the pinning
duration for the PDPAF policy is based on the access frequency of video files, a larger
Zipf factor means that more clients request the videos pinned in the buffer, and thus

 15

the average waiting time is reduced. The saving ranges are from 5% (under the Zipf
factor 0.1) to 82% (under the Zipf factor 0.9) for the double buffer policy, from 5%
(under the Zipf factor 0.1) to 76% (under the Zipf factor 0.9) for the PDP-T policy,
and from 35% (under the Zipf factor 0.1) to 125% (under the Zipf factor 0.9) for the
PDP-k policy. As shown in Fig. 10, PDPAF also outperforms the other three policies
in terms of the maximal number of concurrent requests, especially when Zipf factor is
0.9.

0

500

1000

1500

2000

2500

3000

0.1 0.3 0.5 0.7 0.9

Zipf factor

av
er

ag
e

w
ai

tin
g

tim
e

(s
)

PDPAF
PDP-k
PDP-T
Double Buffer

Fig. 9 Average waiting time of different policies for different Zipf factors

0

50

100

150

200

250

300

350

400

0.1 0.3 0.5 0.7 0.9

Zipf factor

m
ax

. n
um

be
r o

f c
on

cu
rr

en
t r

eq
ue

st
s

PDPAF
PDP-k
PDP-T
Double Buffer

Fig. 10 Maximal number of concurrent requests of different policies
for different Zipf factors

 16

Experiment 3: Effect of Video Size

In this experiment, we investigate the effect of the video size on the performance
of the PDPAF and the other three policies. The video with a larger size always has
longer display time; hence the average waiting time is definitely increased for all the
policies. As shown in Fig. 11, PDPAF has better average waiting time than the other
three policies. Since the pinning duration for the PDP-k policy is based on the video
size, its performance becomes the worst when the video size is getting larger. As
shown in Fig. 12, PDPAF also outperforms the other three policies in terms of the
maximal number of concurrent requests.

0

1000

2000

3000

4000

5000

6000

7000

100 300 500 700 900

video size (MB)

av
er

av
ge

 w
ai

tin
g

tim
e

(s
) PDPAF

PDP-k
PDP-T
Double Buffer

Fig. 11 Average waiting time of different policies for different video sizes

 17

0

50

100

150

200

250

300

350

100 300 500 700 900

video size (MB)

m
ax

. n
um

be
r o

f c
on

cu
rr

en
t r

eq
ue

st
s

PDPAF
PDP-k
PDP-T
Double Buffer

Fig. 12 Maximal number of concurrent requests of different policies
for different video sizes

6 Conclusions and Future Works

In the paper, we proposed the PDPAF algorithm to maximize the utilization of
the buffer. It excludes the limitation of the disk bandwidth, and raises the hit ratio of
video pages in the buffer, thereby increasing the total number of concurrent clients. To
decide whether a new request can be admitted and guaranteed not to violate the
continuous playbacks of all the requests, we also proposed the admission control
algorithm to check the required resources of the new request according to its served
mode. Finally the simulation results validate the superiority of our approach.

Although normal playback is the most important function for the VOD service,
providing clients with VCR functions such as fast-forward and fast-reverse is also
highly desired [3]. In the future works, we will study how to support these functions
in our system.

References

[1] D. Anderson, Y. Osawa, and R. Govindan, “A file system for continuous media,”

ACM Transaction on Computer Systems, Vol. 10, No. 2, 1992, pp. 311-337.
[2] A. Dan, D. Sitaram, and P. Shahabuddin, “Scheduling policies for an on-demand

video server with batching,” Proc. ACM Multimedia, 1994, pp. 15-23.
[3] J. K. Dey-Sircar et al, “Providing VCR capabilities in large-scale video servers,”

Proc. ACM Multimedia, 1994, pp. 25-32.

 18

[4] D. J. Gemmell et al, “Multimedia storage servers: a tutorial,” IEEE Computer,
Vol. 28, No. 5, 1995, pp. 40-49.

[5] L. Golubchik and A. Thomasian, “Token allocation in distributed systems,” Proc.
12th IEEE International Conference on Distributed Computing Systems, 1992,
pp. 64 –71.

[6] R. T. Ng and J. Yang, “Maximizing buffer and disk utilizations for news
on-demand,” Proc. 20th VLDB Conference, 1994, pp. 451-462.

[7] B. Özden, R. Rastogi, A. Silberschatz, and C. Martin, “Demand paging for
video-on-demand servers,” Proc. IEEE International Conference on Multimedia
Computing and Systems, 1995, pp. 264-272.

[8] B. Özden, R. Rastogi, and A. Silberschatz, “Buffer replacement algorithms for
multimedia storage systems,” Proc. IEEE International Conference on
Multimedia Computing and Systems, 1996, pp. 172-180.

[9] H. Vin, A. Goyal, and P. Goyal, “An observation-based admission control
algorithm for multimedia servers,” Proc. IEEE International Conference on
Multimedia Computing and Systems, 1994, pp. 234-243.

[10] K. L. Wu and Philip S. Yu, “Consumption-based buffer management for
maximizing system throughput of a multimedia system,” Proc. IEEE
International Conference on Multimedia Computing and Systems, 1996, pp.
164-171.

