
Software Maintainability Improvement: Integrating Standards and 
Models 

 
 

William C. Chu, 
Dpt. of Computer Science and Information Engineering, Tunghai University, Taiwan 

 
  Chih-Wei Lu, Chih-Hung Chang, and Yeh-Ching Chung 

Dpt. of Information Engineering, Feng Chia University, Taiwan 
 

Yueh-Min Huang 
Department of Engineering Science, Cheng Kung University, Taiwan 

 
Abstract 

Software standards are highly recommended 
because they promise faster and more efficient 
ways for software development with proven 
techniques and standard notations. Designers 
who adopt standards like UML and design 
patterns to construct models and designs in the 
processes of development suffer from a lack of 
communication and integration of various 
models and designs. Also, the problem of 
implicit inconsistency caused by making 
changes to components of the models and 
designs will significantly increase the cost and 
error for the process of maintenance. In this 
paper, an XML-based unified model is proposed 
to solve the problems and to improve both 
software development and maintenance through 
unification and integration. 

 
Keywords: software standards, software 
maintenance, UML, XML, model unification 
and integration. 

1. Introduction 

By involving deeper and deeper to the 
operations of modern businesses, software 
systems have been a dominant influence of 
successful businesses. As the growth of scales 
and contents of the software systems, most of 
those software systems have become too 
complex to be developed by individual efforts. 
Responding to that situation, the typical process 
of the software lifecycle, as shown in figure 1, 
and each of the phases should be proceeded by 
various working groups with different 
methodologies. As a result, software 
development usually involves teamwork and 
need good communication. However, without 
the restrictive enforcement of using common 

standards, most systems are developed in an ad 
hoc manner which makes software development 
difficult and costly. 

Requirement
Analysis Design Implementation Maintenance

 
Figure 1.  The typical process of the software 

life cycle 
On the other hand, software systems should 

not only be more flexible and efficient in the 
process of development, but they also need to be 
more effective in the process of maintenance. 
Software maintenance is defined as the 
modification of a software product after delivery 
to correct faults, to improve performance or 
other attributes, or to adapt the product to a 
changed environment. In the early days of 
computing (1950s and early 1960s), software 
maintenance took up only a small part of the 
software life cycle. In the late 1960s and the 
1970s, maintaining those old working software – 
called legacy systems – started to be recognized 
as a major activity of the software life cycle [1]. 
Up until now, the maintenance cost of these 
working systems has turned to be much higher 
compared to that of the initial development [3], 
and the cost of maintenance keeps growing 
faster since new software gets more and more 
complicated. 

To deal with the demand of effective 
development, software standards are highly 
recommended because they promise faster and 
more efficient ways for software development 
with proven techniques and standard notations. 
De facto standards, such as Unified Modeling 
Language (UML) [10] or eXtensible Markup 
Modeling Language (XML) [6], are used to 
reduce the overhead of software 
inner-communication during the software life 
cycle and to increase maintainability and 



reusability. Another de facto standard, design 
patterns [8] are reusable solutions to recurring 
problems that occur during software 
development [2, 5]. From the perspective of 
improving software development, modern 
software standards do show their contributions. 
However, the way that woks out a problem 
brings up several new problems. 

For the first problem, these software 
standards usually only cover single or partial 
phases of the software process. For instance, 
UML provides standard notations for modeling 
software analysis and design, yet it lacks support 
in the implementation and maintenance phases. 
Another example is found in design patterns, 
which offer help only to the design phase. A 
third example is component-based technologies, 
which focus on the implementation phase for the 
most part. And so on. 

For the second problem, the software 
process consists of the whole software life cycle 
including requirement, design, implementation, 
testing, and maintenance phases. The 
inner-phase consistence promised by standards 
in their respective phases exhibit the serious 
inter-phase consistence problems, since currently 
these standards are proposed by individual 
organizations and they do not “talking” well to 
each other. Designers need to spend a lot of 
manual effort to map and integrate standards in 
previous phases of the software life cycle to 
catch the designs in order to proceed the works 
in following phases.  

For the third problem, the similar dilemma 
of the inconsistency will obsess the maintainers. 
For the correctness and consistency of the 
software system after maintenance/modification, 
two fundamental questions should be answered 
first. The first, where can we find the right points 
quickly for modification? And the second, how 
can we find out the ripple effect (impact analysis) 
and then sustain the consistency? Since the 
modeling specifications are isolated with various 
standards, and the codes with some specified 
language are in the lower level representation 
that can be hardly related to the higher level 
representations like design models, jobs of 
maintenance are error-prone, inefficient, and 
costly. Furthermore, without unifying and 
integrating these standards, the consistency of 
the models cannot be held, and the extent of 
automation is very narrow.  

In this paper, we proposes an XML-based 
meta-model to unify and integrate these 
well-accepted standards in order to improve 
maintainability of the software systems. This 
paper will discuss the adopted standards, 
including UML, design patterns, 
component-based frameworks, and XML. A 
comparison and mapping of these standards will 

be presented. An XML-based unified model is 
proposed to unify and integrate models that are 
composed with various standards.  

The rest of the paper is organized as follows. 
The related works are briefed in section 2; 
section 3 introduced the approach to improve 
software maintainability by unifying and 
integrating existing software standards; a 
conclusion will be given in section 4 lastly.  

2. The Related Works 

Software standards are introduced to 
improve software development. By using the 
standards notations and concrete designs 
provided from widely accepted standards, 
designers can successfully reduce the complexity 
of software development. However, software 
standards caused the problem of inconsistency of 
the different modeling specifications, and that 
leads to the difficulty of maintenance. In this 
section, related methodologies, software 
standards and studies are surveyed to disclose 
the problem itself, as well as some noteworthy 
efforts responding to that demand.  

2.1. Object-Oriented Technology and 
UML  

Object-oriented (OO) technology is a 
landmark of software engineering; it organizes 
data as objects in ways that “echo” how things 
appear, behave, and interact with each other in 
the real world. An object is identified by its 
individual characteristics and activities, and it 
plays a role as a reusable, self-operational 
component in a business information model. OO 
technologies greatly influence software 
development and maintenance through faster 
development, cost saving, and quality 
improvement [11]. Object-Oriented Analysis and 
Design (OOA/D) [3] follows the concept of OO 
technology and thus has become a major trend 
for methods of modern software development 
and system modeling. A sign of the maturity of 
OOA/D is the convergence of object-oriented 
modeling notations in the form of the Unified 
Modeling Language (UML) [10].  

UML is used to specify, visualize, construct 
and document the artifacts of software systems. 
UML defines the following diagrams to build 
software models and to express important 
domain-related concepts: use case diagrams, 
class diagrams, collaboration diagrams, 
component diagrams, etc. UML allows the user 
to easily understand a system analysis or design 
through these diagrams as well as its widely 
accepted modeling notations. UML is rapidly 



growing to be the first choice of standards for 
object-oriented modeling in general. However, 
the lack of formality in UML prevents the 
evaluation of completeness, consistency, and 
content in requirements and design 
specifications [4]. Not only UML, but also all 
the modeling techniques used in a design need 
more formalization to achieve system 
comprehension and integration in software 
development and maintenance. 

  

2.2. Modeling Transfer and Verification  

Current modeling techniques and standards 
offer explicit definitions and notations to support 
software development, but few of them have the 
capability to enable users to verify the 
completeness and consistency of their work 
while users shift to other techniques or standards 
that are needed in the next phases of software 
development. This leads to limited automation 
and inefficiency. Some researchers have 
dedicated their work to improve the situation. In 
the followings, we will consider three issues 
related to modeling transfer and verification: 
modeling understanding, automation, and 
modeling verification.  

Modeling understanding is a technique that 
helps an engineer compare artifacts by 
summarizing where one artifact (such as a 
design) is consistent with and inconsistent with 
another artifact (such as source) [9]. Other works 
have developed a software reflection model 
technique to help engineers perform various 
software engineering tasks by exploiting – rather 
than removing – the connection between design 
and implementation [9]. Based on a similar 
concept, an engineer might use a reverse 

engineering system to derive a high-level model 
from the source code [12]. 

Although the studies of these three issues try 
to address the isolated problem of modeling 
information, mostly they take care of the 
problems of models in some specified subjects 
or limited domains. Software models are 
dynamically changed during the analysis/design, 
revision, and maintenance phases of the software 
life cycle. Software tools at each phase usually 
employ their own formats to describe the 
software model information. As we can see in 
the surveys and discussions in the previous 
sections, the various standards do show their 
respective contributions in their specialized 
subjects for software development. 
Unfortunately, none of these standards is general 
enough to cover all phases of the software life 
cycle, thus developers need to adopt more than 
one standard to accomplish their work. However, 
because most of the standards offer no 
connections or compatibility to the others, gaps 
exist between these standards’ applications. 
Figure 2 illustrates the relationship of the 
standards along with their positions during the 
life cycle of software development. The notation 

 expresses that there is a need for modeling 
transfer between successive phases/models in a 
specific standard; the notation  points out the 
absence of consistency from one standard to the 
others.  

New standards will surely keep emerging 
for new requirements of software engineering. It 
is clear that modeling information expressed 
with a specific standard can only show part of 
the system information from its particular aspect. 
In this paper, we would rather propose a unified 
system model to integrate and coordinate various 
models in different standards with different 
phases of the software life cycle. 

UML

Design
Patterns

Framework

CBSE

Requirement
Analysis Design MaintenanceImplementation

  
Figure 2. The relationship of some standards and the life cycle of software development 

2.3. eXtensible Markup Modeling 
Language (XML)  

XML [7] is a standard language supported 
by W3C (World Wide Web Consortium) with 



many useful features such as application 
neutrality (vender independence), user 
extensibility, ability to represent arbitrary and 
complex information, validation for data 
structure scheme, and human readability. XML 
provides the feasibility of the unification and 
formalization to different levels of concepts and 
representations of a system.  

XML schema is a language which defines 
structure and constraints of the contents of XML 
documents. An XML schema consists of a set of 
type definitions and element declarations. These 
can be used to assess the validity of well-formed 
elements and attribute information items, and 
furthermore may specify augmentations to those 
items and their descendants.  

3. The Approach to Unifying and 
Integrating Standards 

In this paper, the XML-based Unified 
Meta-Model (XUMM) is used to define the 
schema of an XML-based Unified Model 
(XUM) – the integration and unification of the 
modeling information from the adopted standard 
models, such as analysis and design models 
represented in UML, design patterns, framework, 
etc., in each phase of the software life cycle. To 
avoid confusion with the various uses of the 
term “model”, we refer in this paper to those 
models composed with a standard as 

“submodels” of our integrated, unified model. 
We call them submodels because each one 
characterizes the system partially, in the aspect 
of a specific phase. Through the transformation 
of XUMM, a submodel can be transformed into 
its corresponding XML representation, which we 
call a “view” of the XUM.   

As shown in Figure 3, based on XUMM, 
submodels are unified, integrated, and 
represented as views of an XUM. Semantics in 
each submodel should be described explicitly 
and transferred precisely in XUM.  

In our approach, an XUM is employed to 
facilitate the following tasks: 
1) The capturing of modeling information of 

models and transforming into views of 
XUM. 

2) The two-way mapping of modeling 
information among models and XUM 
views. 

3) The integration and unification of modeling 
information of different views in XUM. 

4) The support of systematic manipulation. 
5) Assisting the consistency checking of views 

represented in XUM. 
6) The reflection of changes of view 

information in XUM to models in each 
phase. 

The details of XUMM as well as XUM will be 
discussed in the following sections. 

 

XUM

 Framework RepresentationView
Representation

SubModel1 for
Use Case
diagram

XUMM
Transformation

Models in Standards

SubModel2 for
Class diagram

SubModel3 for
Collaboration

diagram...

SubModeln for
Design Patterns

Source
Code

Source Codes
with XUM tags

Components

Associations

...

...
...

SM1

SM2

SM3

SMn

 
Figure 3. The unification and integration of models into XUM 

3.1. XML-based Unified Meta-Model 
(XUMM)  

Figure 4 shows the relationship of views in 
XUM. The major merits of XUM are (1) the 
modeling information used in models (views) of 
each phase of the software life cycle and (2) the 
interaction and relationship of models (views). 

Both are explicitly defined and represented in 
XUM.  

The relationship of the XUMM with an 
XUM is like the DTD with an XML document. 
XUMM defines the schema (definitions) of an 
XUM. Three kinds of elements defined in 
XUMM are used to describe the constitution of 
an XUM; they are component, association, and 
unification relation. Any object in an XUM is 



identified as a component. Components and 
associations are used to describe the semantic 
information of model objects and their 
relationships respectively. The third kind of 
element, unification relation, is used to describe 
the relationship of different views.  

According to the three kinds of elements, 
three primitive schemas are defined in XUMM 
respectively – ComponentType, AssociationType, 
and Unification_linkType. The ComponentType 
schema defines the necessary modeling semantic 
information and the types that are used to 
describe components in our unified model.  

The AssociationType schema defines the 
necessary information and the types that are used 
to describe the relationships of components.  

In order to show the relationship of the 
integration and unification of views in XUM, 
Unification_linkType is defined. 
Unification_linkType schema defines the 
hyperlink relations between elements in an 
XUM using a set of xlinks.  

Based on the purposes of 
Unification_linkType, three types of links are 
defined further – Integration_link, 
Abstraction_link and Sourcecode_link. The 
Integration_link is used to link a set of 
components and/or associations that have the 
same semantics but may be named or 
represented differently in different views. The 

Abstraction_link is used to link a component/ 
association to a view. The view consists of a set 
of components and their associations; it also 
represents the details of a specific component at 
a lower level of abstraction. And the 
Sourcecode_link is used to link a component to 
its corresponding source code.   

Figure 4. The relationship among views in XUM 
 

Table 1. Mapping of model elements and XUM elements 
Models 
/Standards 

Model elements XUM element Representations 

Actor <Actor> 
Use Case <Usecase> 
Association <Relationship type=”association”> 
Generalization <Relationship type=”generalization”> 
Extend <Relationship type=”extend”> 

UML  
Use Case  
diagram 

Include <Relationship type=”include”> 
Class <Class> 
Attribute <Attribute> 
Operation <Operation> 
Interface <Interface> 
Parameter <Parameter> 
Association <Class_Association type=”association”> 
Composition <Class_Association type=”composition”> 
Generalization <Class_Association type=”generalization”> 
Dependency <Class_Association type=”dependency”> 

UML  
Class, 
Collaboration, 
Sequence 
 diagram  

Message <Message> 
Participants <Participants> 
Structure <Structure> 

Design  
Patterns 

Collaborations <Collaboration> 
Based on the integration, abstraction and 

sourcecode links, the submodels – adopting various 
standards that might share some semantics but were 
not explicitly represented – can be integrated and 
unified in XUM. Therefore, when a submodel (view) 
gets changed, the changes can be reflected to other 
related submodels (views).    

Each submodel has its corresponding XUM 
representation, the view, and its schema is defined in 
XUMM. Following the transformation of XUMM, 
transforming modeling information of a submodel 
into a view of the XUM is not a difficult task. Due to 
the space limitation, we only show the its mapping 

rules in Table 1.   

3.2. XML-based Unified Model (XUM) 

An XML-based Unified model (XUM) is the 
representation of artifacts of software systems 
defined in XUMM. These artifacts are the modeling 
information collected from models of standards used 
in each phase of the software life cycle. Firstly, each 
submodel is transformed and represented as a view in 
XUM. The semantics of submodels are explicitly 
captured and represented in views of XUM. Secondly, 



the artifacts of views are integrated and unified into 
XUM.  

Lastly, the manipulation of views of XUM is 
through XML’s published interfaces based on the 
Document Object Model (DOM), i.e. DOM is the 
internal representation of XUM. Therefore, the 
systematic manipulation of XUM can be 
accomplished through the manipulation on DOM of 
XUM.    

The unification link plays a very important role 
in tracking the related elements that reside in 
different views. These related elements may have 
abstraction relations, which are linked by 
abstraction_links. The views that share the same 
elements are linked by integration_links. The 
components in views that are related to source codes 
are linked by sourcecode_links. Based on these links, 
if any information in each view or any source code 
gets changed, the affected views can be reflected by 
following the links.  

During software maintenance, modification to 
any submodel should be detected and reflect the 
impacts on the related submodels, so the semantics in 
each model can be updated appropriately according 
to the modification. Therefore, the consistency 
checking of modeling information of views can be 
assisted. Besides, the impact analysis can be applied 
to the entire software system, including the impact on 
related source codes, the impact on related design 
information, and the impact on related requirement 
information.  

4. An Example  

In this section, to demonstrate the feasibility of 
our XUM approach, we have prepared the following 

example: the development and maintenance of a 
library subsystem – a book loaning management 
software. 

Book Borrower

Manager

Return Book

Loan Book Query Book

Maintain Book

Uses

Uses

Uses

 

Figure 5. The use case diagram of the system 
Suppose that various popular standards have 

been applied in the phases of the software 
development process. During the requirement 
analysis phase, the use case diagram of the system, as 
shown in Figure 5, is generated by the users. 
Following the instructions in the previous section, the 
corresponding XUM is derived and shown in Figure 
6. Note that, in Figure 6, the fields of 
Abstraction_link are currently undefined and marked 
as “?”, since we have not finished the integration and 
unification for views yet. These fields will be 
pointing to related views, such as design pattern view, 
collaboration diagram, and other views with 
abstraction relationship during integration and 
unification of views. 

The class diagram, collaboration diagram, and 
design pattern diagram are created during the design 
phase seperately. Figure 7 shows the class diagram, 
while Figure 8a and Figure 8b show the partial XUM 
representation of used classes and associations in 
Figure 7 respectively, and Figure 8c shows the XUM 
representation of the class diagram.  

 

   <Requirement> 
      <UseCase_Daigram> 
         <Actor name="Book Borrower"/> 
         <Actor name="Manager"/> 
         <Usecase name="Loan Book"> 
              <Abstraction_link xlink:label="A_Loan_Book" xlink:title= 

"Use Case of Loan_Book" xlink:from="A_Loan_Book" xlink:to="? "/> 
<Abstraction_link xlink:from="A_Loan_Book" xlink:to=" ?"/> 

             … … 
         </Usecase> 
         <Usecase name="Return Book"> 

… … 
          … … 
      </UseCase_Daigram> 
   </Requirement> 

Figure 6. The XUM specification of the use case diagram 

Colleague

change()

Mediator

colleaguePropertyChange(colleague : Colleague)

Book
book_title
book_id
book_state

updateBookstate()

Book_Borrower
name
id
email
browser_state

updateBrowserState()

ReservationMediator

makeReservation()
returnBook() 1..n

Reservation
browser_id
book_id
loan_date
return_date

updateReservation()

mediator

1..n

 
Figure 7. The class diagram of the system 



      <Class name="Mediator"> 
         <Integration_link xlink:label="D_Mediator" xlink:title="Class of Mediator"/> 
         <Sourcecode_link xlink:from="D_Mediator" xlink:to="S_Mediator"/> 
         <Operation name="colleaguePropertyChange(colleague:Colleague)" attribute="public" /> 
      </Class> 

… … 
      </Class> 
      <Class name="Book_Borrower"> 
         <Integration_link xlink:label="D_Book_Borrower" xlink:title="Class of Book_Borrower "/> 
         <Sourcecode_link xlink:from="D_Book_Borrower" xlink:to="S_Book_Borrower "/> 
         <Attributes name="name" type="String" attribute="private"/> 
         <Attributes name="id" type="String" attribute="private"/> 
         <Attributes name="E-mail" type="String" attribute="private"/> 
         <Attributes name="browser_state" type="Boolean" attribute="private"/> 
         <Operations name="updateBrowserState()" attribute="public" /> 
      </Class> 

… … 
      </Class> 
      <Association from="Mediator" to="ReservationMediator"> 
          <Intgration_link xlink:label="Mediator_ReservationMediator" xlink:title="Association: 

Mediator_ReservationMediator"/> 
      </Association> 
… … 
      </Association> 

Figure 8a. The XUM representation of classes 
      <Association from="Mediator" to="ReservationMediator"> 
          <Intgration_link xlink:label="Mediator_ReservationMediator" xlink:title="Association: 

Mediator_ReservationMediator"/> 
      </Association> 
      <Association from="ReservationMediator" to="Reservation"> 
          <Intgration_link xlink:label="ReservationMediator_Reservation" xlink:title="Association: 

ReservationMediator_Reservation"/> 
      </Association> 
… … 
      </Association> 

Figure 8b. The XUM representation of associations 
   <Class_Diagram> 
      <Class name="Mediator"> 
  <Integration_link xlink:href="D_Mediator"/> 
      <Class name="ReservationMediator"> 
  … … 
      <Class name="Book"> 
  … … 
      <Class_Association from="Mediator" to="Reservation Mediator" type="generalization" client="1"> 
       <Integration_link xlink:title="Mediator_ ReservationMediator" xlink:lable=" Association of Mediator_ 

ReservationMediator" xlink:href="Mediator_ReservationMediator" xlink:from="D_Mediator " xlink:to="D_ 
ReservationMediator" /> 

      <Class_Association from="ReservationMediator" to="Reservation" type="dependency" client="0..n"> 
  … … 
   </Class_Diagram> 

Figure 8c. The XUM specification of class diagram 
There are four arguments that need to be 

discussed further in this case study. First, the 
way to capture modeling information from 
submodels and then transform them into view 
representations in an XUM is quite systematic 
and straight forward as long as the mapping 
rules between two representations are 
well-defined in XUMM. In our approach, each 
submodel adopting a software standard should 
have its corresponding view representation. The 
views carrying and sharing information from the 
global information repository – the XUM – can 
explicitly and completely define the semantics of 
components and their relations, which may be 
implicitly or incompletely represented in the 
standard submodels.  

Second, beside the transformation from a 
submodel to a view, since the standards are 
wildly accepted for modeling understanding, it is 
necessary to keep the two-way mapping in an 
XUM between the submodels and their views in 
order to project a standard model as needed. In 
an XUM, the naming of elements in views is the 

same as that in the corresponding submodels; 
therefore the two-way mapping can be achieved.    

Third, as shown in the XUM representation 
in previous figures, the unification_links such as 
Integration_link, Abstraction_link, and 
Sourcecode_link are used to link the components 
and associations that share some semantic 
information. For example, class 
ReservationMediator in the view of the class 
diagram has links from the views that use this 
class, such as the view of the design pattern – 
Mediator, the view of the collaboration diagram, 
etc. Similarly, it has a link to the source code 
segment that implements the class.  

Fourth, when modeling information is not 
complete, some of the unification_links may be 
undefined. However, these undefined links are 
very valuable indications to software engineers, 
for they indicate that the system is in a situation 
of incompleteness, so some enhancements are 
needed. 

5. Conclusion 



Software standards, such as UML and 
design pattern, are supposed to offer standard 
notations or proven techniques for faster and 
more efficient model constructions for software 
development. However, none of the standards 
are general enough to cover all the phases of the 
software life cycle, and few of them employ 
compatibility with the others. So, using these 
isolated standards will cause the problems of 
integration and consistency of the standards, and 
especially the more serious problems of 
maintenance while doing necessary alteration in 
models of a system.     

In this paper, we have proposed an 
XML-based unified model, called XUM, which 
can integrate and unify a set of submodels with 
well-accepted standards of a system into a 
unified model represented in XML; through the 
unification and formal representation, XUM can 
not only assist software development, but also 
improve software maintenance. The feasibility of 
the approach has been verified through a set of 
experiments. 

In our future studies, XUM and XUMM will 
be extended to embrace all the materials of 
modeling, design, implementation, and 
documentation for a system. Further experiments 
for a comprehensive XUM environment and the 
tool sets are being carried out to accomplish the 
goal of the enhancement and unification of 
software development and software 
maintenance. 

 

References 
1. Bennett, K. H. (1993). An overview of 

maintenance and reverse engineering, The 
REDO Compendium, John Wiley & Sons, 
Inc., Chichester. 

2. Booch, G. (1991). Object-oriented design 
with applications. Redwood City, Calif.: 
Benjamin/Cummings Pub. Co. 

3. Booch, G. (1994). Object-oriented analysis 

and design with applications 2nd ed. 
Redwood City, Calif. : Benjamin/Cummings 
Pub. Co., 3-25. 

4. Bourdeau, R.H., & Cheng, B.H.C. (1995). A 
formal semantics for object model diagrams. 
IEEE Transitions on Software Engineering, 
21(10), 799-821. 

5. Chu, W.C., Lu, C.W., Chang, C.H., & 
Chung, Y.C. (2001). Pattern based software 
re-engineering. Handbook of Software 
Engineering and Knowledge Engineering, 
Vol. 1, Skokie, IL.: Knowledge Systems 
Institute. 

6. Connolly, D. (2001). The extensible markup 
language (XML). The World Wide Web 
Consortium. Retrieved August 21, 2001 
from http://www.w3.org/XML 

7. Deitel, H., Deitel, P., Nieto, T., Lin, T., & 
Sadhu, P. (2001). XML how to program. 
Upper Saddle River, NJ : Prentice Hall. 

8. Gamma, E., Helm, R., Johnson, R., & 
Vlissides, J. (1995). Design patterns: 
elements of reusable object-oriented 
software. Reading, MA.: Addison-Wesley. 

9. Murphy, G.C., Notkin, D., & Sullivan, K.J. 
(2001). Software reflexion models: bridging 
the gap between design and implementation. 
IEEE Transitions on Software Engineering, 
27(4), 364-380. 

10. Object Management Group. (2001, August). 
OMG unified modeling language 
specification. Version 1.4, Retrieved July 16, 
2001 from 
http://www.omg.org/technology/documents/
recent/omg_modeling.htm 

11. Rine, D. C. (1997). Supporting reuse with 
object technology. IEEE Computer, 30(10), 
43-45. 

12. Wong, K., Tilley, S.R., MuÈller, H.A., & 
Storey, M.D. (1995, January). Structural 
redocumentation: a case study. IEEE 
Software, 12(1), 46-54. 

 


