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ABSTRACT

In this paper, a set of statistical propertiesis used
to evaluate several well-known smoothing
methods. We first propose a set of properties to
analyze the statistical behaviors of these methods.
Furthermore we present a new smoothing method
which complies with all the proposed properties.
Finally, we implement three Mandarin language
models and then evaluate the cross entropies on
varioussize N.
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1. Introduction
Language modds (LM) have been used in various
tasks of natura language processing (NLP). An
event can be regarded as a possible type of n-gram
in LM, n>=1. We can cdculate the probability for
the each occurred event according to its count in
corpora.

It isimportant in NLP to compute the probability
of a sequence of words W = ww,w;..w, =w{". This
probability will bedenoted by P(W) = P(w;"). We
can use the chain rule of probability to decompose
the probability:

P(W") = P(W)P(Ws | w;) P(Ws [W7)...P(Wp, [W1™)

Pul
= O P(w Wy @y
In préctice, the probability should be estimated on
the assumption that each word depends only on a
limited number of preceding words. In the n-gram
modd, the conditiond probability in Eq. (1) can be
written as. cww)
-1 — i-n+1"i
P(w, [W1.,) m

@

* Correspondence author.

where C( ) denotes the count of an event in the
training corpus.

The probability P of Eq. (2) is the rddive
frequency and such a method of parameter
esimation is cdled maximum likelihood estimation
(MLE). As shownin Eq (2), we can estimate the
probability of a word sequence W with MLE.

Because of zero count of an event, such a
method will lead to the degradation of performance.
For agivenword w3 in bigram modd, if a bigram w;.
1W never occur in the training corpus, then C(wi_1w)
isequa to 0. It is gpparent that Eq. (2) evaluates to
zero. Yet an unseen event in a word sequence W
does not mean that P(W) should be zero. The
schemes used to resolve this problem are called
smoothing. Smoathing methods are usudly used to
reesimate the probability for each possble event.
There are some wael-known methods Additive
discount, Good-Turing, Witten-Bell, Absolute
discount, and so on.

2. Previous Smoothing Methods

In this section, we review some famous
smoothing methods and only consder n-gram
Mandarin language models in our paper. Let atype
ti be a possble event in an n-gram modd and C(t;)
be the count (the number of times) that type t
occurred in the training corpus. We use N to denote
the number of occurrences of dl thetype, That is,

N = é C(t). €)
Also we use B (bins) to denote the number of

possible types. Then we haveB=V, B=V?, and B=V?
for the unigram, bigram, and trigram models,



correspondingly, where V is the vocabulary size (the
number of Mandarin characters in our discussion).
Additive smoathing method is intuitivdly smple.
A smdl & isadded intodl types (including dl seen
and unseen types). Typicdly, 0<d <=1. The case d
=1 iscalled add-1 smoothing. The adjusted count ¢’
is defined as.
* N
c =(c +d) ,
N+Bd

According to the previous experiments [1], the
performance was usudly degraded by using add-1
smoothing.

Good-Turing wasfirst described by Good in 1953
[2]. Some related works are [3] and [4]. Let nc
denote the number of types with count ¢ in the
corpus. For example, ny represent that the number of
types with zero count and n; means the number of
types which exactly occur once. Therefore, iy will be
described as:

c3 0. 4)

n, = é 1. ©)
i:C(t;)=c
Based on Good-Turing smoothing, the
redistributed count ¢ will be presented in term of n,
Ne+1and ¢ as

c = (c +1)% (6)

We discuss two of five smoothing schemes
introduced by Wetten-Bdll [6]; called W-B Aand C.
In method W-B A just one count is dlocated to the
probability that an unseen bigram will occur next.
The probability mass Prass assigned to al unseen
bigrams can be summed up to /(N+1). Let Py be
the smoothed probability of typet; in a training data
od sizeN. Then,

i 1
1 forcq,) =0,
P, =[UN D )
i C(t)
TN+I1 for C(t;)3 1,

where U isthe number of unseen types, i.e,

o

U= 1.
i:C%)ZO (8)
Each smoothed countc* inW-B Cis described as:
1S _N if ¢c=0
¢t = U N+S’ ©)
ic_ N itcso
T N+S

 There are 5 methods in [6]; method A, B, C, Pand X. We just
discuss two of them (W-B Aand C) in this paper.

where Sisthe number of kinds of seen types, i.e,

s= 3L (10)
i:C(t;)3 1
The discounted probability will be expressed for
seen bigrams as.

P =Nvse a0 (12)
Absolute discount, introduced by authors of Ney
and Essen [5], isan interpolating scheme and looks
like method of Jelinek and Mercer [3]. The method
interpolates the higher and lower order models, the
higher order didribution will be cdculated just
subtracting a static discount D from each n-gram
with non-zero count.

3. Proposed Properties

In this section, we propose five properties which can
be regarded as Hatistical features. These properties
will be further used to andyze the daidicd
behaviors of the smoothing methods.

Property 1. The smoothed probability for any
one type ti should fal between 0 and 1 (0,1), which is
described as:

0<Ry <1 (12)

Property 2: The summation of smoothed
probability P for dl the typesis necessarily egua to
1 on any traning Sze N. Totd probability P is
symmed &
aPy= aPRy+
t 1 seen types

Property 3: LGQ;N be the smoothed probability of a
type with count c on atraining corpus of sizeN. That is,

Q;N = Pi,*Na C(t)3 1. (14)
The smoothed probability assgned to the type ti

with different count should satisfy dl the following

inequality

egutions:

Qv < Qiuns for c=01.2,..., (15
Inequaity EQ. (15) describes the concept that

smoacthed probability for any type with same count

should be the same. I nstead, the probability for type t

with count c+1 should be larger than that of type

with count c.

Property 4. Comparing to the probability P prior
to smoothing process, the smoothed probability P for
dl types will be changed. Since we assign some
probability to the unseen types, the smoothed

aPR.=1 (13)

t; unseen types



probability of he unseen types should be higher than
zero obtaned from MLE. Property 4 can be

expresed asfollows:
QON >Qon, forc=0 (16)

Qcn <Qn, forc21 (17)

Property 5 We have B=StU for the language
models. When the number of traning sze is
Increased, &l the smoothed probability Q" for type
with same count on training sze N+1 should be
smaler than Q on traning sze N. For instance,
when an incoming type (say tne¢) OCCUrS, the training
szeisincrease by one (low N=N+1). The smoothed
probability Q on N+1 training set should be less than
the probability Q on Nfor c3 0, except the P for
theincoming bigram tey.

In other words, in addition to the P' of theq ot
training sizeN+1, dl other smoothed probability Q at
traning sze N+1 will be decreased than those a

traning sze N. In summary, property 5 can be
expressed as.

Q;N > Q;Nﬂ , (18)
Q;N < Q(*:+1,N+l . (19)

4. Properties Analysis

From the datigtical points, smoothed probaility for
bigrams computed from various smoothing methods
should dill comply with these properties. Based on
the datisticad properties, we will andyze the
rationdization of each smoothing modes. For
samplicity, only Good-Turing will be anayzed usng
five propertiesin this section

4.1 The Analysis of Good-Turing Smoothing
Referring to Eq. (7), tota number of smoothed count
can be computed as:

écir\ =g +gn +on, +...=N, fori >=0.
F;rope‘[ia 1, 2 and 3 do not hold. For instance, nthe
following case: nmlsequai 0, (M- =(m-1+).=-=0,
and m = (m+1)l== ¥ (violate property 1 and 2)
Insuch a case, it iSobvious that:

Ql;»Z,N > :n-ZLN and Qm, Qm+l,N

Hence, the results dso violate the property 3.

It is possible that one of ny, for certain amount of
training data set will be zero. The smoothed
probability for unseen and seen bigrams with ¢
counts, property 4 does not hold.

When anew type te iS read in, then training Sze
is increased by one (N=N+1). As shown in Eq. (6),

« n o4
thesmoothed count ¢ = (¢ * D :
Supposed that the type teq IS ever seen W|th count
on traning Sze N, upon the te appears, N=N+1,
NnEne-1 and Nng1 1+, the smoothed probability
for typeswith ¢ on traning 9ze N and N+1 can be
computed as

QN—(C+1) 2/N and Qva = (c+2)

Therefore theratio of Q' is

. (N +1) c+1
Qen ne _ (N+1(n.-Dn (20)

Q;,N+1 N Ne, +1 Nn (N, +1)
n.-1

According to Eq. (18), Q> Qe Therefore, Eq.
(19) should be greater than 1. In fact, N>>n¢ and
N>>nq; while Eq. (20) may be < 1 on certan
Stuation. Hence, property 5 does not hold.

For the type theq, Whet is the relation between the
smoothed probabilities P on training size N and N+1?

Aswe know:

KN+n

Pl = (@) /N By, =(C4D = /N +)

C c+Hl
then:

Pon  _ €+ DN+ (Mo +1) ()
P, (c+2)Nn_n_,,

c+1,N+1

According to Eg. (19) of property 5 Eq. (21)

should be less than 1. It is obvious that Eq. (21) may
be grester than 1 in certain dtuations, while it is
possibly less than 1. Therefore, property 5 does not
had.
4.2 Our Smoothing M ethod and Its Properties
We will propose a new smoothing method; Yu-
Huang (caled Y-H hereafter) and then anayze the
datistica behaviors of these methods.

We describe another smoothing scheme; in which
the probability mass for unseen bigrams is assigned
Ud/(N+1). Consequently, it varied with N and U; the
number of training data and types of unseen types.

The smoothed probabilities will be caculated as.

1_d for C(t;) =0,

pry =1 N 22)
iC(t) N+1-ud
forC(t;)3 1,
f N N +1
ad
. N N+
d<mint s 3

When computing the smoothed probability P, our
proposed method don’ t employ interpolating scheme
to combine the hgh order models with lower order



models. As shown of Eq. (22), N+1-Ud)/(N+1) is
the normdization factor of Q for seen types. The
probabilites Q will be discounted by , the
normalization factor and then the remained Q are
redistributed to unseen types, which share uniformly
the distributed probability mass Ud/(N+1)

We will anayze further the statistical behaviors
of Y-H gmocthing. As shown in Eq. (22), the
smoothed probabilities for seen and unseen types will
be (0,1). Therefore, property 1 does hold. The total
probabilities for seen and seen types can be summed

as.

o " o " o C(t-)N+1-d o d

a Qwvta Qv=a — +

iic )1 N i:0(t)=0 N ict P 1 N  N+1 i:cm:oN"'l
_NN+1-Ud + ud _

N N+1  N+1

S0, property 2 does hold. The smoothed probability
Q for bigramswith ¢ and c+1 countson training size
nis caculated asfollows. For c=0and 1,

., .+ _1N+1l-ud d
R N L
_N+1-Ud- Nd_ N +1- d(N +U)
N(N+1) N(N+1)
Dueto the condition of d (see Eq. (22)), EQ. (24)

islarger than 0. For c>1,
_c(N+1-Ud) (c+D(N+1-Ud)

(24)

Qc,N - Qc+lN - N(N +1) N(N +1)
_ - (N +1- Ud) _
O . @

Eq. (25) will be less than 0. Referring to the
results of Egs. (24) and (25), we can conclude that
propety 3 does hold. Origind and smoothed
probability for typesis asfollows.

N c¢(N +1- ud c
Qc,N b Qc,N :(—'

N(N+1) N
_ - cud _
"NIND +1)<0 for ¢ >=1. (26)
Q.-Q -9 050 forc=o. (27)
c,N c,N N+l

As shown of Eq. (26) and (27), we can conclude
that property 4 does hold. Findly, we andyze
pragoerty 5. Smoothed probabilities for types with
count ¢ on N and N+1 training data are caculated as.

.. _ d d
QQN'Q),N+1—(N+:D (N+2)

:;>O forc=0.
(N+D(N+2)

Q.- Q _o(N+1-Ud) ¢(N+2-Ud)
oN e N(N +1) (N +1)(N +2)

—cN*2-Ad forc>=1 (28
N(N +1)(N +2)

Numerator (N+2-2Ud) should be larger than O
because d< (N+2)/2U. We can prove that Eq. (28) is
greater than 0. From the results above, property 5
does hold.

4.3 Summary of the Properties

In Table 1, the reationship between 6 smoothing
methods and five proposed properties are shown.
Among these smoothing methods, there ist' t any
method which completely comply with 5 proposed
properties. Additive discounting and W-B C don’ t
comply only one of five properties. All aher methods
do not comply with more than two properties.
However, Our smoothing Y-H does saidfy 4l
properties.  Notations O and X denote the method
does and does not comply with the property,
respectively.

Table 1. The rdaionship of 6 methods and
proposed dtatistical properties.

roperty
Method 1 2 34| 5
Add-one discount O| O|0O|X]| O
Good-Guring X X | X[ X] X
Witten-Bell (A) 0] O|O0O|0O]| X
Witten-Bell (C) 0] O[X|O] O
Absol utediscount O O | X]0]| X
Yu-Huang O]l O0O|0O|0O|] O

5. Evaluation of Cross Entropy

5.1 Data Setsand Empirical Language M odels
In the following experiments, a text sources is used
as data sets; the Mandarin news texts collected from
Internet and divided into two parts; training set and
test set The html tags and al unnecessary symbols
ae extracted and there are about ~30M(1CP)
Mandarin characters of newstexts.

We construct three language modds: Mandarin
character unigrams, character bigrams and trigram
moded, to evduate the cross entropy CH of
smoothing methods discussed. Thecross entropies of
fird two modes are evaluaed on various data Sze
on ratio 4:1 of training and test sets from 4M to 12M
Mandarin characters. The third modd employs 30M
characters astraining set (trigrams).

In our experiments, & =1 for additive smoothing
and discount constant D =1 for absolute discount
smoothing. A set of cut-off vdue K on various
training sze N for Good Turing is used to avoid the



failure (such as violating the properties in Section 3)
of probability estimation.

5.2 Results

Figure 1~3 display three empirica results of cross
entropies CH for Sx smoothing methods discussed in
this pgper. Badcdly, the method with lower cross
entropy may perform better in NLP.

Figure 1 gives the cross entropies for Mandarin
characters unigram model. Although the difference
of CH between various methods is not obvious,
Good-Turing and Y-H methods have lower CH.
The average of cross entropy is near 9.81. Figure 2
shows Mandarin character modd. For al methods,
the cross entropies will decrease gradudly on
increasing training data set N. Among these methods,
Good-Truing aways obtains lower CH through
different N by using a cut-off K. Our Yu-Huang
obtains 17.8 in average and a little higher CH than
that of Good-Truing, while bwer than that of al
other methods. Figure 3 shows trigram modd on
traning size N=30M characters. Three methods,
Good-Truing, W-B C and Yu-Huang, generate
closer CH. It is apparent that Add-1 always obtains
highest CH For both bigram and trigram models.
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Figure 1: Cross Entropies of 6 smoothing methods
for Mandarin character unigram
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Figure 2. Cross Entropies of 6 smoothing methods
for Mandarin character bigram
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Figure 3: Cross Entropies of 6 smoothing methods
for trigram on 30M Mandarin characters.

6. Conclusion

In the paper we propose 5 datistica properties to
evauae 5 wdl-known smoothing methods employed
to solve the zero-count problem for language modd.
An effective smoothing method is aso proposed and
evauated by these properties. For each method,
every property is proven and 5 previous methods
can't saisfy these propertties while our method
satisfies al the properties; which presents the
method will fit the application of NLP and holds
better satistical behaviors. Based on the experiment
results, our smoothing method aways gets lower CH
than three previous methods and amost equa to that
osf Good- Truing smoothing method.
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