
l 2002 International Computer Symposium (ICS2002) Workshop on Multimedia

Technology

l Paper title: A 3D Model Alignment and Retrieval System

l Abstract: Techniques for 3D model alignment and retrieval are proposed in this

paper. Since the techniques of 3D modeling and digitizing tools are in great

demand, the expectations of 3D models alignment and retrieval are increasingly.

We propose an algorithm for 3D model alignment, which gets the affine

transformation between two 3D models. The main idea of our 3D alignment

algorithm in rotation is to search the similarity of projected 2D shapes from each

viewing aspect of two models. Then, we apply the technique to match two 3D

models after recovering the affine transformation.

l Author 1: Ding-Yun Chen

Communication and Multimedia Lab, Department of Computer Science and
Information Engineering National Taiwan University, Taiwan

Room 505, Dept. of CSIE, NTU, 1 Roosevelt Rd. Sec. 4, Taipei, 106 Taiwan

Phone: 886-2-23625336 Ext.505

Fax: 886-2-23625336 Ext.507

Email: dynamic@cmlab.csie.ntu.edu.tw

l Author 2: Ming Ouhyoung

Communication and Multimedia Lab, Department of Computer Science and
Information Engineering National Taiwan University, Taiwan

Room 421, Dept. of CSIE, NTU, 1 Roosevelt Rd. Sec. 4, Taipei, 106 Taiwan

Phone: 886-2-23625336 Ext.421

Fax: 886-2-23628167

Email: ming@csie.ntu.edu.tw

l Contact author: Ming Ouhyoung

l Keywords: 3D model alignment, 3D model retrieval, content-based retrieval

A 3D Model Alignment and Retrieval System
Ding-Yun Chen and Ming Ouhyoung

Department of Computer Science and Information Engineering,
National Taiwan University, Taipei, Taiwan

dynamic@cmlab.csie.ntu.edu.tw, ming@csie.ntu.edu.tw

Abstract

Techniques for 3D model alignment

and retrieval are proposed in this paper.

Since the techniques of 3D modeling and

digitizing tools are in great demand, the

expectations of 3D models alignment and

retrieval are increasingly. We propose an

algorithm for 3D model alignment, which

gets the affine transformation between two

3D models. The main idea of our 3D

alignment algorithm in rotation is to search

the similarity of projected 2D shapes from

each viewing aspect of two models. Then,

we apply the technique to match two 3D

models after recovering the affine

transformation.

1. Introduction

The problem of 3D objects recognition,

retrieval, clustering and classification is a

traditional research topic during previous

decades in computer vision, mechanical

engineering, medical imaging and molecular

biology. The research topic is important in

computer graphic because the techniques of

3D modeling and digitizing tools are in

great demand. Many tools of digitized and

constructed 3D objects are getting more and

more popular, for example, 3D model

acquisition systems [14], 3D model

capturing systems [17], 3D freeform design

systems [12] and sculpting systems [13].

Therefore, 3D objects can be digitized and

modeled easier, faster and less expensive. A

large number of free 3D models can be

accessed all over the world via the Internet,

such as in [15, 16]. Although text-based

search engines are ubiquitous today,

multimedia data such as 3D models lack

meaningful and semantic description for

automatic matching. The MPEG group aims

to create an MPEG-7 international standard,

also known as “Multimedia Content

Description Interface”, for the description of

the multimedia data, including image, video,

audio, 2D shapes and 3D objects [11].

However, there is currently only one

descriptor for 3D model. This has

highlighted the need for developing efficient

techniques of content-based retrieval for 3D

model.

The problem of 3D model retrieval can

be stated as follows: given a 3D model, the

retrieval system compares it with all other

3D models from the database, and shows

ranked similar models. In short, the problem

is to determine the similarity between two

given 3D models. The most important issue

is to extract suitable features for matching.

The feature should represent the

characteristics of different 3D models, and

should be invariant to translation, rotation

and scaling, and robust against re-meshing,

subdivision as well as simplification, noise

and deformation. The second important

issue is to define a meaningful distance

metric, which should be efficient.

Most previous works of 3D model

retrieval focus on finding a good feature for

matching [1~10]. Most of those are based

on either statistical properties, such as

global shape histograms, or the skeletal

structure of 3D model. Zhang and Chen [2]

propose an algorithm to efficiently calculate

features, such as volume, moments, and

Fourier transformation coefficients. In many

applications, there is a high demand to

calculate these important features for a 3D

model. Volume-surface ratio, aspect ratio,

moment invariants and Fourier

transformation coefficients [3] are often

used in 3D model retrieval. In their current

system, they simply normalize the features

and use Euclidean to measure the similarity.

The total number in their database is around

2,000 models, which are in VRML format.

Osada et al. [5, 6] propose and analyze

a method for computing shape signatures for

arbitrary (possibly degenerate) 3D

polygonal models. The key idea is to

represent the signature of an object as a

shape distribution sampled from a shape

function measuring global geometric

properties of an object. The primary

motivation for this approach is to reduce the

shape matching problem to the comparison

of probability distributions, which is simpler

than traditional shape matching methods

that require pose registration, feature

correspondence, or model fitting. More

specifically, they have experimented with

five different shape functions, and the D2

shape function can classify 3D objects better

than the other shape functions. The D2

shape function is defined as follows:

measures the distance between two random

points on a surface. In addition, the entire

shape distribution is scaled based on the

mean in order to deal with the scaling

problem. Finally, they examine that the PDF

L1 norm performed the best for comparing

shape distributions. In their experimental

results, they achieve 60% accuracy with a

diverse database of degenerate 3D models.

They also compare D2 shape distribution

method against surface moments, and find

the D2 shape distributions outperform

moments for classification of 3D models.

The approach is simple and fast, and robust

to scaling, rotation, mirror, noise, re-mesh,

simplification, deleting and inserting

polygon. They test the algorithm using 133

models now, and they will test for larger

database in the future.

Hilaga et al. [1] propose a technique in

which similarity between polyhedral models

is quickly, accurately, and automatically

calculated by comparing the skeletal and

topological structure. Therefore, their

algorithm can handle the global and local

properties simultaneously. The skeletal and

topological structure decomposes to a

one-dimensional graph structure. The graph

is invariant to translation, rotation and

scaling, robust against connectivity changes

caused by simplification, subdivision and

re-meshing, and resistant against noise,

certain changes due to deformation, such as

an articulated object change its posture.

Their search key is a multi-resolutional

structure of the graph, so that the

comparison can simply and fast. Their

experiments made use of 230 different

polyhedral meshes. In their experimental

results, the search key for a mesh of 10,000

vertices can be calculated in approximately

15 seconds with a Pentium II 400MHz

processor. The average search time is about

12 seconds, that is, it took only 0.05 second

in average to calculate one similarity.

In general, features of 3D models

should be invariant to affine transformations,

since each 3D model has its own coordinate

axis for different use. In contrast, we

propose an algorithm to recover translation,

scaling and rotation between two 3D models,

and then extend the technique to measure

the similarity. Furthermore, the function of

3D model alignment can not only be used in

3D model retrieval, but also in many other

applications, such as mesh watermarking,

3D model morphing, 3D animation, and so

on.

The main idea of our 3D alignment

algorithm in rotation is to render 2D

silhouettes from each viewing aspect of two

models, and get rotation which has

minimum error summing from all viewing

aspect using 2D shape matching algorithm.

Our approach of 3D model retrieval takes

the minimum error as the similarity between

two 3D models. The remaindered part of

this paper is organized as follows. In

Chapter 2, we propose an algorithm to do

3D model alignment. We detail rotation

alignment in Chapter 3. The experimental

results of 3D model alignment are

represented in Chapter 4. 3D model retrieval,

one application of 3D model alignment, is

proposed in Chapter 5. Finally, the paper is

Fig. 1 The order of 3D models alignment.

summarized and concluded in Chapter 6.

2. Flow of 3D Model Alignment

The order of 3D model alignment is as

follows: TS Rc TS Rr TS.

Where TS denotes the translation and

scaling alignment of two models; Rc denotes

the coarser rotation alignment and Rr refine

the rotation. All TS apply the same operator,

that is, translate to the same origin and scale

to the same size between two models. The

purpose of first two TS is to let two models

be roughly in similar position and of the

same size, which will make it easier to get

the correct rotation Rc and Rr. Once the

correct rotation is recovered, the last TS will

be easier to get the correct translation and

scaling. Fig. 1 shows an example of the five

steps.

The approach of translation and scaling

is very simple. The translation T=(Tx,Ty,Tz)

assigns the middle point of the whole model

to be the new origin. The scaling is isotropic,

and normalizes according to the maximum

distance from x, y and z axes of the whole

model. That is,

zyxi
MinCoorMaxCoor

T ii
i ,,,

2
=

+
= (1)

)(max
1

,,
ii

zyxi
MinCoorMaxCoor

S
−

=
=

 (2)

where the MaxCoori and MinCoori are the

maximum and minimum coordinate value of

i axis, respectively.

An intuitional thought of recovering

the rotation from two models is to rotate

model to all possible viewing angles, and

get the rotation that has minimum error

from all viewing angles. We take Fig. 2 as a

typical example to explain the idea. There

are two models, pig and cow, with different

rotations, and both models have been

applied coarser translating and scaling (TS)

alignment. To recover the rotation from

model cow to model pig, a set of cameras

surrounding a model to render 2D shapes

from each viewing angle. Those cameras are

put on the surface of a sphere and scatter

viewing angles all over the sphere. Fig. 2 (a)

shows a set of cameras surrounding the

model pig, where each intersection point

indicates a camera position. Then, apply

those camera set to the model cow, as

shown in Fig. 2 (b), and calculate the

difference of 2D shape for each camera pair.

We define the error of the two models in a

specific rotation as summing the difference

of 2D shapes for all camera pairs. Therefore,

the goal is to find a rotation that has the

minimum error from all rotation angles of

the camera set. That is,

models obewteen twpair camera:
set camera theof anglerotation :

 ,)(min

j
i

jShapeDiff
j

i
∑

 (3)

where ShapeDiff denotes the difference of

two 2D shapes. Fig. 2 (b)~(f) show various

rotation angles of a camera set, and we

suppose that Fig. 2 (e) will get the minimum

error, since the rotation matrix of the two

models can be calculated from the rotation

of the two camera sets between Fig. 2 (a)

and (e).

When rotating the camera set to a new

orientation, all 2D shapes should be

rendered from all new cameras position, and

the similarity of 2D shapes between each

camera pair have to be calculated. This will

cause large amount of calculation, and is

time consuming. Therefore, we put the

camera set in the vertices of a regular

convex polyhedron, so that the number of

rendering 2D shapes and calculating the

similarity between them will be greatly

reduced.

There are only five regular convex

polyhedrons, which are named as Platonic

bodies, and was known to the ancient

Greeks. The fact can also be proved using

Euler’s theorem. The five regular convex

polyhedrons are tetrahedron, hexahedron or

cube, octahedron, dodecahedron, and

icosahedron. We take vertices of

dodecahedron, which has the maximum

vertices from five regular convex

polyhedrons, as the position of the camera

set. There are 20 scattering viewing aspects

for each 3D model. The set of 20 2D shapes,

rendered from the 20 cameras, is a basis for

each 3D model to align between two 3D

models, and contains knowledge from

various viewing aspects for a 3D model. Fig.

3 explains the reason that we can reduce the

number of calculation from rendering and

2D shapes matching by using the

dodecahedron. Fig. 3 (a) shows a camera set

of model pig, and the same camera set

applying to model cow shows in Fig. 3 (b).

That is, the indices of camera set are all the

same between Fig. 3 (a) and (b). In addition,

we can rotate the dodecahedron resulting in

the camera set is at the same position. For

instance, rotate edge (1,2) from Fig. 3 (b) to

position of edge (1,3) and (1,4), which show

in Fig. 3 (c) and (d), respectively. Since a

dodecahedron has 20 vertices and each

(a) (b) (c)

(d) (e) (f)

Fig. 2 A typical example to show our algorithm.

vertex connects 3 edges, there are 60 kinds

of different rotation, which share the same

20 camera positions. Table 1 shows the

number of rendering and 2D shapes

matching for 60 different rotations with and

without using dodecahedron. Without using

dodecahedron, one model should render 20

times for a camera set, and another model

should render 60 camera sets, that is, 1200

times. The number of rendering can reduce

to 40 times by using dodecahedron, 20 times

for each model. On the other hand,

calculation of 2D shapes matching requires

1200 times without using dodecahedron, 20

times for each rotation. The number of 2D

shapes matching is 400 by using

dodecahedron, because there are 20 shapes

for each model. The table shows the reason

why we use dodecahedron.

For testing 60
kinds of
different
rotation

Number of
rendering

Number of
2D shapes
matching

Without using
dodecahedron

20 + 20 ×
60 = 1220

20 × 60 =
1200

Using
dodecahedron

20 + 20 × 1
= 40

20 × 20 =
400

Ratio 30.5 3
Table 1 Number of rendering and 2D shapes

matching for 60 different rotations with and

without using dodecahedron.

There are 60 different rotations to test

by using one camera set of dodecahedron

for both models. However, it’s usually not

enough to recover rotation from the best

solution of the 60 candidates for the coarser

rotation alignment, Rc. The coarser rotation

alignment should provide a good initial, so

that the refined rotation alignment, Rr, can

easily get the best result from the local

estimation. Therefore, we can use more

camera sets from different dodecahedrons.

There will increases 60 different rotations

when adding one camera set of

dodecahedron. If apply one dodecahedron to

first model and apply ten dodecahedrons to

another, there will be 600 different rotations.

Furthermore, we can also apply more then

one camera set of dodecahedron. That is,

when applying m dodecahedron to first

model and n dodecahedron to another, there

will be 60×m×n kinds of different rotation.

However, the more dodecahedrons are used,

the more computation is. Table 2 shows the

number of rendering and 2D shape matching

by using different dodecahedrons. In our

current implementation, we use m=10 and

n=10, that is, we take the best one from

6000 different rotations as the coarser

(a) (b) (c) (d)

Fig. 3 We can reduce the number of calculation from rendering and 2D shapes matching by

using the dodecahedron.

1
4

3

2 1
3

2

4 1
2

4

3 1
4

3

2

rotation alignment, Rc. The algorithm of

rotation alignment, Rc and Rr, will detail in

next chapter.

Since we use more than one

dodecahedron, the way to scatter the

dodecahedrons is also consideration. The

purpose is to scatter the camera sets to

whole rotation space, so that any possible

rotation will close to a candidate. If n

dodecahedrons should be scattered, we use

iterative approach to get the best one by:

∑∑
n j

jnMinDist),(max (4)

where j is index of dodecahedron vertex,

and MinDist(n,j) return the minimum

distance from j vertex of n dodecahedron to

all vertices of other dodecahedrons. That is,

iteratively rotate each dodecahedron from

larger to smaller rotation angle, so that all

vertices of all dodecahedrons are as

scattering as possible. The approach is not

effective, however, the pre-processing stage

only need to be run once.

In the end of this chapter, we detail the

operative flow of both models. There are

two 3D models A and B, and the operations,

which translate, scale and rotate 3D model B

to align 3D model A, show in the follows:

A’ = A · TA · SA

B’ = B · TB · SB

Rc = RotateCoarse(B’, A’)

B” = B’ · Rc · TB · SB

Rr = RotateRefine(B”, A’)

A’ ~ B” · Rr · TB · SB

A · TA · SA ~ B’ · Rc · TB · SB · Rr · TB · SB

A ~ B · TB · SB · Rc · TB · SB · Rr · TB ·

SB · SA
-1 · TA

-1

where RotateCoarse and RotateRefine

recover the coarser and refined rotation,

respectively, and detail in next chapter.

3. 3D model Alignment in Rotation

This chapter details our approach to

align rotation from two models. The rotation

alignment divides into two parts: coarse and

refined alignment. The coarse alignment

gets the approximate rotation from all

possible orientation between two models.

(m-n) 1-1 1-10 1-20 1-40 10-10
Number of rendering

(20×m+20×n)
40 220 420 820 400

Number of 2D shape
matching (20×m×20×n)

400 4000 8000 16000 40000

Number of different
rotations (60×m×n)

60 600 1200 2400 6000

Vertices of scattering
dodecahedrons

Table 2 Number of rendering and matching 2D shapes are calculated by mapping m to n

different dodecahedrons.

The refined alignment adjusts approximate

to accurate rotation from neighbor

orientation. Since the position and size of

both models are approximate, not exactly

the same, the approach should be invariant

to translation and scaling.

We align rotation between two models

by matching 2D shapes form camera set of

dodecahedron. Fig. 4 shows the flow of

rotation alignment. First, 2D shapes should

be rendered from camera set of

dodecahedron for both models. For each 2D

shape, feature can be extracted for matching

later. The operation of rendering and feature

extraction do 40 times respectively, if using

1-1 dodecahedron, that is, one camera set of

dodecahedron for both models. Then 2D

shapes of each camera pair are matched, and

the operation does 400 times if using 1-1

dodecahedron. Next, get minimum error

form different rotations, as defined in Eqn.

(3). Finally, once two camera sets of

dodecahedron with minimum error are

determined, the rotation matrix of two

models can be obtained by the rotation of

the two dodecahedrons. The main flows of

coarser and refined rotation alignment are

the same.

The character of 2D shape depends on

which matching algorithm is used. We use

OpenGL to render 2D silhouette by putting

camera to vertex of dodecahedron and

facing to origin. The size of 2D silhouette is

256 by 256 pixels. Since 3D models should

be translated, T, and Scaled, S, before

rotation alignment, it’s easier to make sure

that whole 3D models will be rendered into

2D silhouette, that is, no clipping happen.

Fig. 5 shows a typical example of 2D

silhouettes from a camera set of

dodecahedron. In our implementation, we

render to screen by perspective projection,

and then use glReadPixels() to copy 2D

silhouettes to memory.

To measure the similarity between two

shapes, we use region-based shape

descriptor of the MPEG-7 [11] to match.

The matching algorithm can be invariant to

translation, scaling and rotation in 2D

shapes, and allowable of minor non-rigid

deformations. The region-based shape

descriptor makes use of all pixels

constituting the shape, so that it can describe

complex shape including holes and several

disjoint regions. The descriptor utilizes a set

of ART (Angular Radial Transform)

coefficients to describe the shape. The ART

is a 2D complex transform defined on a unit

disk in polar coordinates. Twelve angular

and three radial functions are used, and 35

2D shapes are rendered from each viewing
aspect of camera set for both models

Feature extraction for each 2D shape

2D shapes matching for each camera pair

Get minimum error from different rotations

Rotation matrix from camera pair that has
minimum error

Fig. 4 The flow of rotation alignment

ART coefficients of 2D shapes are used for

matching.

There are several notices for using the

2D shape matching to our approach. In

general, in order to invariant to translation

in pure 2D case, the center of mass in 2D

shape should be aligned to the center of the

unit disk. However, our final alignment is in

3D case, so it’s no reason to align the center

for each 2D shape. Since translating 3D

model to origin has applied before rotation

alignment, we use center of rendered 2D

shape as the center of the unit disk.

Furthermore, in order to invariant to scaling,

linear interpolation is applied to align

between rendered 2D shapes from each

viewing aspect and the unit disk. The same

as translation, each 2D shapes in a camera

set should have the same scaling. Finally,

quantization is applied to the ART

coefficients for 2D shapes matching.

However, we didn’t quantize the ART

coefficients for more accurate.

After feature extraction for each 2D

shape, shape matching for each shape from

two models is calculated. Number of feature

extraction is the same as rendering, but the

number of shape matching is much more. In

general, the computation of matching is

much less than that of feature extraction in

order to speedy retrieval from a large

database, since feature can be previously

calculated and saved to database. The

region-based shape matching algorithm use

simple L1 distance to measure similarity:

() ∑ −=
i

BA iArtMiArtMBAShapeDiff][][),((5)

Fig. 5 A typical example of 2D silhouettes from a camera set of dodecahedron.

where ArtM is the ART coefficients,

ShapeDiff is the same in the Eqn. (3); A and

B are two 2D shapes for matching; i is index

of ART coefficients. Therefore, the 2D

shape matching is speedy.

Next, get minimum error from different

rotations of dodecahedron, as defined in

Eqn. (3). The error between different

rotations is defined as summing distances

from all 2D shapes pair of dodecahedron.

For each camera set of dodecahedron pair,

there has 60 different rotations. However,

there is a little difference in this stage

between coarser and refined rotation

alignment. In coarser rotation alignment, we

use 10-10 dodecahedrons, that is, there are

100 kinds of dodecahedron pair, so that

6000 different rotations are tested. In refined

rotation alignment, we use iterative

approach to close the best solution. We start

from 10° and step half for each iterative

until less than 1°. In each iterative, we

adjust rotation of one axis and fix that of

another two axes in the order of X, Y and Z

axis, respectively. When adjusting rotation

of one axis, we rotate the dodecahedron to

the direction, which has less error, until no

improvement. Therefore, we can align the

rotation with error less than 1°.

Finally, rotation matrix between

camera set of dodecahedron pair, that has

minimum error, should be calculated. The

rotation matrix is then applied to one model

in order to align rotation to another. The

problem of solving the rotation matrix can

be considered as aligning an edge between

two dodecahedrons, because all edges are

aligned if one edge is aligned. We utilize the

function of coordinate conversion between

the Cartesian and an arbitrary coordinate

system to obtain the rotation matrix. We use

Fig. 6 to explain our approach. Fig. 6 (a)

and (c) are the dodecahedron pair of model

A and B, respectively. The rotation matrix

aligns edge (1,2) in Fig. 6 (c) to that in (a).

The vector 1o and 2o can form a unique
coordinate frame, defined as follows:









×=
×=

=

21

1

ooz
xzy

ox

v

vvv

v

 (6)

where “×” denotes cross produce. The

notation FA and FB denote the coordinate

system of model A and B, respectively, and

FC denote the Cartesian coordinate system.

Therefore, the rotation matrix is the

coordinate conversion from FB to FA, that is,

FBA. However, 3D models are in Cartesian

coordinate system, FC, so we cannot apply

FBA to model B directly. Model B should be

converted to FB coordinate system first and

back to Cartesian coordinate system after

applying FBA. The rotation matrix is defined

as:

FCB · FBA · FBC
=FCB · FAC · FCB · FBC

=FCB · FAC

The FBA can be obtained by FAC · FCB,

and FCB · FBC can be eliminated, so the

rotation matrix from model B to model A is

FCB · FAC.

4. Experimental Results of 3D
Alignment

In order to experiment with the 3D

alignment algorithm, we use 445 models,

downloaded from [15] and [16], for initial

testing. The alignment algorithm should

work well at least using the same models.

So those models are randomly rotated,

translated and scaled by another program,

and then using our 3D alignment algorithm

to test. Fig. 7 ~ Fig. 10 show the results, and

most of them work well. Each model has six

pictures. Picture 1 is the original model, and

picture 2 is the destination model, which

randomly translate, scale and rotate from

original model. Picture 3 is the result of

rotating the destination model to align the

original model. To clearly look the relation

of the two models, picture 4 put original and

destination model together. So we can see

the difference of translation, rotation and

scaling between two models. Picture 5 and 6

are the coarsely and refined alignment

results between two models, respectively.

Fig. 10 demonstrates our algorithm can also

work well for many separated models.

In the 445 models, there are 5274.4

vertices and 10233.8 triangles in average.

The average execution time for coarser and

refined alignments are 25.7 and 39.2

seconds, respectively, in a PC with Pentium

III 800MHz CPU, 128MByte RAM and

WinFast S680 VGA (S3 ViRGE GX2 chip).

Next, we also test our algorithm by

using different models. Those models are

also randomly rotated, translated and scaled

by another program first, and then using our

3D alignment algorithm to test. Fig. 11 ~

Fig. 14 show the experiment results. All

experiment results are available in the web

pages: http://3dsite.dhs.org/~dynamic

/3dAlign.html.

5. 3D Model Retrieval

We apply the technique of 3D model

alignment to perform 3D model retrieval. In

order to reduce the retrieval time, we move

3D model alignment up to coarser rotation

alignment stage. That is, the search key of

3D models is the ART coefficients from 2D

shapes of each camera set. We take the

minimum error between two models as the

similar measurement. All models are

x

y

z

1

2

x

y

z 1
2

y z

x o
o

o

(a) (b) (c)

Fig. 6 Rotation matrix is calculated between two camera sets.

randomly rotated, translated and scaled by

another program first, and then using our 3D

model retrieval to test. The retrieval time is

about 11 seconds in a PC with Pentium III

800MHz CPU. Fig. 15 shows several

experimental results of 3D model retrieval.

The demo can be found in

http://3dsite.dhs.org/~dynamic/cgi-bin/art/li

st.php.

6. Conclusion and Future Works

The paper presents an algorithm of 3D

model alignment based on a set of 2D

shapes, which are projected from a 3D

position, and then applies the technique to

3D model retrieval. The goal of 3D model

retrieval is to recover coarser affine

transformations first, and is robust against

re-meshing, simplification, sub-division,

and noise. In the future, other 2D shape

matching algorithms can be applied to

improve the 3D model alignment algorithm.

In addition, other attributes, such as color

and texture, can be introduced for 3D model

retrieval.

References
[1] Masaki Hilaga, Yoshihisa Shinagawa,

Taku Kohmura and Tosiyasu L. Kunii,

“Topology Matching for Fully

Automatic Similarity Estimation of 3D

Shapes”, Proceedings of ACM

SIGGRAPH, pp. 203-212, Los Angeles,

USA, Aug. 2001.

[2] Cha Zhang and Tsuhan Chen,

“Efficient Feature Extraction for

2D/3D Objects in Mesh

Representation”, Proceedings of IEEE

International Conference on Image

Processing (ICIP), Thessaloniki, pp.

935-938, Greece, Oct. 2001.

[3] Cha Zhang and Tsuhan Chen,

“Indexing and retrieval of 3D models

aided by active learning”, Proceedings

of ACM International Conference on

Multimedia, pp. 615-616, Ottawa,

Canada, Oct. 2001.

[4] Ilias Kolonias, Dimitrios Tzovaras,

Stratos Malassiotis and Michael G.

Strintzis, “Fast Content-Based Search

of VRML Models Based on Shape

Descriptors”, Proceedings of IEEE

International Conference on Image

Processing (ICIP), pp. 133-136,

Thessaloniki, Thessaloniki, Greece,

Oct. 2001.

[5] Robert Osada, Thomas Funkhouser,

Bernard Chazelle and David Dobkin

“Matching 3D Models with Shape

Distributions”, Shape Modeling

International, pp. 154-166, Genova,

Italy, May 2001.

[6] Robert Osada, Thomas Funkhouser,

Bernard Chazelle and David Dobkin

“Shape Distributions”, to appear in

ACM Transactions on Graphics, Oct.

2002.

[7] Christopher M. Cyr and Benjamin B.

Kimia, “3D Object Recognition Using

Shape Similiarity-Based Aspect

Graph”, Proceedings of International

Conference on Computer Vision

(ICCV), pp. 254-261, 2001.

[8] Michael Elad, Ayellet Tal and Sigal Ar,

“Content Based Retrieval of VRML

Objects – A Iterative and Interactive

Approach”, Proceedings of 6th

Eurographics Workshop on

Multimedia, Manchester UK, Sept.

2001

[9] Eric Paquet and Marc Rioux,

“Content-Based Access of VRML

Libraries”, Lecture Notes in Computer

Sciences, Vol. 1464, pp. 20-32, 1998.

[10] Eric Paquet, Marc Rioux, Anil

Murching, Thumpudi Naveen and Ali

Tabatabai. “Description of shape

information for 2-D and 3-D objects“,

Signal Processing: Image

Communication, Vol. 16, pp. 103-122,

Sept. 2000.

[11] Sylvie Jeannin, Leszek Cieplinski,

Jens Rainer Ohm and Munchurl Kim,

MPEG-7 Visual part of

eXperimentation Model Version 7.0,

ISO/IEC JTC1/SC29/WG11/N3521,

Beijing, China, July 2000.

[12] Takeo Igarashi, Satoshi Matsuoka and

Hidehiko Tanaka, “Teddy: A Sketching

Interface for 3D Freeform Design”,

proceedings of ACM SIGGRAPH, pp.

409-416, Los Angeles, USA, Aug.

1999.

[13] Guo-Luen Perng, Wei-Teh Wang and

Ming Ouhyoung, “A Real-time 3D

Virtual Sculpting Tool Based on

Marching Cubes”, Proceedings of

International Conference on Artificial

Reality and Tele-existence (ICAT), pp.

64-72, Tokyo, Japan, Dec. 2001.

[14] Szymon Rusinkiewicz, Olaf Hall-Holt

and Marc Levoy, “Real-Time 3D

Model Acquisition”, proceedings of

ACM SIGGRAPH, pp. 438-446, San

Antonio, USA, July 2002.

[15] http://www.3dcafe.com

[16] http://deep.sitenest.net

[17] http://www.3dfamily.com/products/dig

ibox/main.htm

Fig. 7 Results of an experiment by using the same model “3dcafe_ant” among different affine

transformations.

Fig. 8 Results of an experiment by using the same model “3dcafe_bicycle” among different

affine transformations.

Fig. 9 Results of an experiment by using the same model “3dcafe_orbit” among different

affine transformations.

Fig. 10 Results of an experiment by using the same model “3dcafe_fishbird” among different

affine transformations. Our algorithm can work well for separated models.

Fig. 11 Results of an experiment in aligning model “3dcafe_chair01” to model

“3dcafe_chair”.

Fig. 12 Results of an experiment in aligning model “3dcafe_cow” to model “3dcafe_pig”.

Fig. 13 Results of an experiment in aligning model “3dcafe_man1” to model “3dm-mc_slim”.

Fig. 14 Results of an experiment in aligning model “3dcafe_dc10” to model “3dcafe_a-10”.

Fig. 15 Experimental results of 3D model retrieval. The first one of each row is the target to

be queried. The top 7 similar models are ranked from left to right

