Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

Using Traders for Loosely Integrating Heterogeneous Database
Systems

Wanlei Zhou, Philip Hepner and Xidong Wang

School of Computing and Mathematics
Deakin University

Geelong, VIC 3217, Australia
Email: wanlei@deakin.edu.au

Abstract -

This paper presents the design and prototype im-
plementation of a loosely integrated heterogeneous
database system. The main goal of the design is to
let local databases maintain full autonomy over their
databases, yet when willing, they can share some por-
tion of thewr information. These local databases reg-
ister with a trader the portion of information that
can be shared by using service offers. A service of-
fer can be in the form of data, operations on data, or
both. A trading agent is appointed by database sys-
tems to managing the services to be provided. The
trading agent will be involved in special functions such
as schema translation and shared data and/or oper-
ations on multiple database systems. The prototype
implementation of the loosely integrated heterogeneous
database system (involving two different database sys-
tems) is now running on a network of Sun worksta-
tions.

Key Words: Heterogeneous databases, Traders
in open distributed processing, Distributed systems,
Client / server model. :

Introduction

Two approaches are commonly used in integrating
heterogeneous database systems. The first is called
the unified schema approach [12], and the second the
multidatabase approach [13]. Both approaches ac-
knowledge that there are a number of database sys-
tems in existence, and the design task involves inte-
grating them into one virtual database system. The
unified schema approach starts from individual local
databases and translates each participating local con-
ceptual database schema into a common intermedi-
ate database schema (a canonical representation). It
then integrates each intermediate schema into a global
conceptual schema [3]. Sometimes the local external
schemas are considered for integrating rather than lo-
cal conceptual schemas, since it may not be desirable
to integrate the entire local conceptual schema in the
integrated database.

However, the above approach essentially returns to
centralisation by re-integrating the decentralised data
into a “composite database.” A global/virtual schema
is used to describe the information in the databases
being composed. Database access and manipulation
operations are then mediated through this new con-
ceptual schema. This type of integration can be called

1

25

tight integration.

The process of integrating existing databases forces
control over the local database structures (both con-
ceptually and physically) to be ceded to some central
authority. The users of the existing databases may
have expended considerable resources in developing
their databases and may be reluctant to lose control
of them.

The multidatabase approach has no single inte-
grated schema. The shared data is represented either
as the actual local conceptual or external schema def-
inition.

In many applications, local databases are not will-
ing to change their own structure or give up control
over their data, yet they are willing to share certain
information with other database systems. Also, cen-
tralising all the local databases into a global schema
may be too expensive or even not necessary. The fol-
lowing two application examples. -

e A hospital may wish to share a subset of the infor-
mation about its operating theatre waiting list to
some external agent. It is unlikely it would wish to
expose other confidential information.

¢ Two companies are developing a product that in-
volves the use of part of their own database infor-
mation. It would be undesirable for either company
to divulge rest of their respective databases.

The solution to the above problems is to let in-
dividual database system have the full control over
their own databases, yet let them decide what por-
tion of the database is going to be shared [13}. No
centralised global schema is enforced. We call this
type of integration loose integration.

The key issues behind loose database integration
are local database autonomy and information sharing
[7]. There has been a lot of research on integrating
distributed heterogeneous database systems, such as
Multidatabase [14], Mermaid [15], InterBase [4], Dat-
aplex [5], Remote-Exchange [10], Pegasus [1}], and DI-
RECT [llf]. However, all the existing approaches use
passive information sharing. That is, they let some
authority (e.g., the global schema) decide what is the
content and format of information shared. In this pa-
per we present an integration approach that allows
the existing database systems to maintain their au-
tonomy, yet through their willingness, provides a sub-
stantial degree of information sharing. The main dif-

Proceedings of International Conference on Distributed
Systems, Software Engineering and Database Systems

ference between our proposal and existing approaches
is the modes of information sharing. Our approach
uses active information sharing. That is, we let the
participating database systems decide the content and
format of information to be shared.

2 The trader
2.1 Description of the trader . _

A trader is a third-party object that links clients
and servers in a distributed system [9]. By using a
trader, servers can advertise (export) their service of-
fers and clients can get (import) information about
one or more exported service offers that match some
objectives [6] [2]. Traders have been a subject of in-
ternational standardisation for some time. The best
known and ongoing standardisation work is the ISO
Open Distributed Processing project [9)].

We use a trader to manage the shared information
among participating databases. If a database system
is willing to share part of its information with other
database systems, it ezports that willingness as a ser-
vice offer to the trader. The following three types of
service offers are defined: ’

e Dute. Each database system has a collection of
data that might be of interest to other database
systems. This information can be exported to the
trader as a service offer that can then be accessed
by others. This type of service offers is designed
for direct data sharing.

e Operation. A database system may not wish to
shared its data directly with other database sys-
tems. In this case, an operation can be created
and exported to the trader for indirectly sharing
this critical data.

e Object. An object contains a piece of data and
the operations that manipulate the information. It
is essentially the combination of the two previous
types of service offers.

Any local database willing to share its informa-
tion has to export relevant service offers to the trader.
Application programs (clients) wishing to make use of
the shared information have to #mport such service of-
fers from the trader and then access the database(s)
concerned.

There are two forms of trading:

o Direct trading. The database systems export their
service offers directly to the trader. The clientsim-
port these service offers from the trader and access
the relevant database systems directly.

o Indirect trading. The database systems appoint a
trading agent to manage the service offers. The
trading agent is then responsible for exporting the
service offer to the trader. After importing the ser-
vice offer, the clients call the trading agent and
all accesses to the database systems have to go
through the trading agent.

Figure 1 depicts the direct trading process involv-
ing one database system only. In this figure, the
database system (DB) exports its service offer to
the trader; the client imports the service offer from

26

the trader and the trader returns the offer to the
client. The returned offer contains information such
as the description of the service and the address of
the database system that provides the service; then
the client calls the database system directly and the
result is returned.

Execute/Result

Client

Figure 1: Trading process: direct trading

Direct trading may not be appropriate in many
cases. For example, if some schema translation is
needed, or if a service offer involves accessing mul-
tiple database systems, then the indirect trading may
be used. Figure 2 depicts the indirect trading process
that involves two database systems. In this figure,
both database systems (DB1 and DB2) are willing to
share their information in one service offer. They then
appoint an agent and the agent exports the service of-
fer to the trader. The client imports the service offer
from the trader and is given the agent’s address (and

the description of the service, of cause). It then calls
the agent and obtains the service.

Execute/Result

Execute/Result

Figure 2: Trading process: indirect trading

The following questions must be properly answered
in order to design such a trader systems:

e Trading operations. How do database systems,
the trader, and trading agents interact with each
other? How do users interact with the trader, trad-
ing agents, and database systems?

e Trading context management. All services must be
registered by the trader before they can be shared.
The total set of service oftfers managed by a trader
is called the trading contezt of the trader. The
question is, how are these service offers stored, ac-
cessed, and managed?

e An agent is used to provide services that need
special treatment, such as a shared service involv-
ing two or more database systems. How do these
database systems appoint the agent for building a
common service for them?

o Is it feasible to build such a trader?

These questions will be addressed in the following
sections. ‘
2.2 Service offer data structures

A service offer is actually a set of capabilities that
are provided by a server and are to be used by clients.
We have defined three types of service offers, namely,
data, operations, and objects. In order to describe
these service offers in more detail, the following data
structures are defined:

e Tables. Tables are the basic unit used in the trader
to describe shared information. A database system
willing to share its data with other systems must
use the following data structure to describe it:

/* three types of service offers */
#define TAB_TYPE 1
#define TRA_TYPE 2
#define OBJ_TYPE 3

/* one attribute */
typedef struct AnAttr {

char * aName; /% attribute name */
char * aType; /* attribute type */
int alen; /* maximum length */

} AnAttr;

/* one table */

typedef struct TableStruct { _
char *tableName; /* table’s name */
AnAttr attrs[MAXATTR];/# attributes */
int degree; /* number of attributes */
int cardinality; /# number of rows */

} TableStruct;

The TableStruct data structure defines the name,
attributes, type of each attribute, and the size of
the table. '

e Operations. Another basic unit for describing
shared information is an operation (procedure). An
operation is defined as follows:

/* one procedure (operatiomn) */

typedef struct ProcStruct {
char * procName; /% procedure name/
int noOfParameters;/*# of parameters*/
char ** params; /* parameters */
char ** paramTypes;/*types of params*/

} ProcStruct;

The ProcStruct data structure defines the name
and the parameters (names, types, and number of

parameters) of an operation.

e Shared data. A database system can offer a few
tables for information sharing. The data structure
for such data is as follows:

/* shared tables */

27

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

typedef struct DataStruct { '
char * dataName; /* name of data *
int noOfTables; /* # of tables */
TableStrcut TB[MAXTBS]; /* tables */
} DataStruct;

e Shared operations. Shared operations are offered
by database systems that want to share their data
indirectly. The data structure for such operations
is as follows: '

/* shared operations */

typedef struct TransStruct {
char * transName; /*operations name */
int noOfProcs; /%# of procedures */
ProcStruct PR[MAXPRS];/* procedures %/

} TransStruct;

e An offer. An offer can be the form of shared data
(a set of tables), shared operations (a set of op-
erations), or a shared object (the combination of

shared data and operations). The data structure
of an offer is as follows:

/% an offer */
typedef struct AnOffer {

char * offerName; /* offer name */
int offerType; /* offer type */
char % path; /* context path %/
char * description; /* offer descrip*/
char * address; /* service addrs*/

o
*/

shared data
operation

DataStruct dName;
TransStruct tName;
} AnOffer;

If the offerType = TAB_TYPE, then the offer is to
share a set of tables. The dName will contain the
detail of these tables, and the tName will be empty.
Similarly, if offerType = TRA_TYPE, then the offer
is to share a set of operations. The tName will con-
tain the detail of these operations and the dName
will be empty. If offerType = OBJ_TYPE, then the
offer is to share a set of tables and a set of op-
erations on these tables. In that case, dName will
contain the detail of shared tables and the tName
will contain the detail of the operations.

2.3 Converting to/from service offer data
structures

An exporter wishing to export its services has to
use the service offer data structure described in Sec-
tion 2.2 for describing its offers. If the local database
system does not use the service offer data structure
in its local definition, a translation is then needed.
This can be done through the appointment of an
agent. The agent is then responsible for converting
the shared portion of the local schema into the ser-
vice offer data structure. It is also responsible for
converting the calls of the shared data structure into
the local schema.

An importer imports from the trader an offer de-
scribed in the service offer structure. It then uses this
data structure to access the shared information. If
the data structure of the service offer is different with

Proceedings of International Conference on Distributed
Systems, Software Engineering and Database Systems

the importer’s data structure, a translation is again
needed. We assume that the importer will provide
the mechanism for translating the service offer’s data
structure into its local data structure.

3 The trading operations

Three sets of operations have been designed and
can be used by exporters, importers and the trader.
One common feature of all these operations is the er-
rors returned from the operations. We have defined
a global data structure called opErrors that contains
most of the possible errors from an operation.

Each operation will return one of the following val-
ues when the operation terminates:

#define OP_OK O
#define OP_ER 1

The global data structure opErrors contains the
error- descriptions when the operation returns an
OP_ER.

3.1 Exporter operations

The basic operation needed by an exporter is to
export its service offers to the trader. The exporter
may also need to withdraw a service offer if it does
not want to provide the service any more. If some
conditions have been changed, the exporter may also
want to change the service offer accordingly. It is also
necessary for the exporter to obtain some information
about an existing service offer placed in the trading
context by itself or by other exporters. The following
operations have been designed and can be used by an
exporter:

o Export. This operation is used by an exporter to
export its service offer to the trader. The trader

has a well-known address and is hidden inside the.

operation. This operation has the following format:

int export(offer, createlpt)
AnOffer offer;
int createOpt;

Before calling this operation, the exporter has to
fill in the offer structure with proper information,
such as the type of the offer, the description of the
offer, and the details of the offer. Most impor-
tantly, it has to give the preferred context path
name for the offer to be stored within the trading
context. When the offer reaches to the trader, the
trader will use this path name to store the offer into
the trading context. The structure of the trading
context is discussed in Section 4. The exporter also
needs to specify its address in the offer structure.

o Withdraw. This operation is used by an exporter
to withdraw an offer that it placed at the trader at
some prior time. The operation has the following
format:

int withdraw(offerName, path)
char * offerName;
char * path;

28

Both the offerName and path must be the same
as used by the exporter in the export operation.
The path is used by the trader to find the service
offer in the trading context and the offerName is
used to confirm the name of the offer to be deleted
from the trading context.

o Replace. This operation is used by an exporter to
replace an offer that it placed at the trader previ-
ously. The operation has the following format:

int replace(prevPath, prevName, offer)
char *prevPath;
char *prevName;
AnOffer offer;

The prevPath and prevName contain the context
path and the offer name that the exporter used dur-
ing the export operation for placing the particular
offer. This operation can change all the details of
the service offer such as the name, the description,
the data and/or operations, and so on. Even the
context path name can be changed. In that case,
the old service offer will be deleted from the trading
context and then a new service offer will be stored
by using the new context path and the new offer
name contained in the offer data structure.

e Describe. This operation is used by an exporter to
get some information about a particular offer. The
operation has the following format:

int describe(path, offerName,
offerType, description);

* path;

* offerName;

* offerType;

* description;

char
char
int

char

The path is the context path name of the service
offer that the exporter wants to know about. The
operation then returns the type of the service offer
and the descriptions about the service.

3.2 Importer operations

The basic operation needed by an importer is to
import a service offer from the trader. In many cases,
it is also necessary for an importer to browse through
the trading context and to obtain some descriptions
about a particular service offer. The following op-
erations have been designed and can be used by an
importer:

o Import. This operation lets the importer import a
service offer from the trader. The importer has to
be aware of the context path and the offer’s name
of the service offer before it can invoke the import
operation. The operation has the following format:

int import(path, offerName, offer)
char * path;

char * offerName;

AnOffer * offer;

After receives the import request, the trader will

search its context space for the given path'and the

offer’s name. If the search is successful, the se-

lected service offer will be stored in the offer and
" returned to the importer.

e Describe. This operation is the same as th
describe operation for an exporter. :

o List. The describe operation only returns the de-
scriptions of a particular service offer. Sometimes
it is necessary to know about a set of offers that
provide the same services. This operation is used
to return the types, context path names, and de-
scriptions of a set of service offers. The operation
has the following format:

int list(offerName, noOf0ffers,
offerTypes, paths,

descriptions)
char * offerName; /* offer name */
int * noOf0ffers; /* # offers found */
int * offerTypes(]; /% offer types %/
char #* paths[]; /% context paths */
char * descriptions[];/*offer descrpt */

The operation takes the offerName as the input pa-
rameter and asks the trader to find out all service
offers with the same offerName. If the operation
is successful, the no0f0ffers contains the num-
ber of service offers that match the of ferName and
the offerTypes, paths and descriptions con-
tain the types, context path names, and descrip-
tions of each of these service offers.

3.3 Management operations

All the management operations are used by the
trader to manage the trading context. These oper-
ations allow the trader to add in new service offers,
to delete or modify existing offers, to find the descrip-
tion about a specific offer, and to browse through the
trading context. These operations can be (and actu-
ally have been) used by a utility tool that talks to the
trader directly for managing the trading context. We
will not go into the details of these operations since
the functions of these operations are similar to the
operations provided to the exporters and importers.
The only difference is that these operations are now
performed locally within the trader, or between the
trader and the management utility.

4 Trading context management

The trading context of the trader consists of all
the service offers registered with the trader. Associ-
ated with each service offer is the information that
describes the service. That may include, for example,
the name / address of the agent or database system
that offers such service, the type of the offer, and a
brief description of the service (e.g., a brief introduc-

tion of how to use the service),

Service offers of the trading context are managed
by the trader as a tree structure, similar to the UNIX
directory structure. Figure 3 describes an example of
the trading context.

When exporting a service offer, the agent or the
database system should specify the intended path of

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

Hospital

| GeelongJ
loffer _j |offelj |offer__2|

University

‘ FacuM

| Ballarat| I Center J

Figure 3: Trading context

the trading context and the offer’s name for the ser-
vice offer. The trader then uses the path and the of-
fer’s name to record and locate the,service offer within
the trading context.

The trading context also contains a linked list for
offerName fields. This link list is used for obtaining
descriptions and other information about a group of
offers that have the same offerName.

The actual trading context uses only one set of con-
text path names and two sets of pointers. One set of
the pointers is used for constructing the context tree
structure and the other set of pointers is used for con-
structing the linked list of offerNames.

The client can browse through the trading context
and then find the desired service offer (through the
list operation, for instance). The client can also
obtain a more detailed description from the database
or it appointed agent.

5 The trading agents

A trading agent integrates services involving two
or more database systems, or provides some special
management for the service offer. If two databases
are heterogeneous, translators for transforming local
schemas into a virtual schema may be necessary. The
virtual schema is determined by the agent and may be
negotiated by the participating database systems. Al-
though we only use a label “Appoint” in Figure 2 to
represent the process of trading agent appointment,
the process would actually involves several commu-
nication steps among the participating database sys-
tems and the trading agent. -

In our prototype implementation, we have not im-

plemented a standard facility for trading agent ap-

pointment and for negotiations among participating
database systems. At this moment trading agents are
hand-written programs (with the help of a precom-
piler, see Section 6 for details) that perform the func-
tions such as accepting local offers from participatin,
database systems, format translating between loca
offers and the virtual offer, exporting the virtual offer
to the trader, and processing requests from clients.
The local offers of participating database systems are
decided before the program of a trading agent is writ-
ten.

Proceedings of International Conference on Distributed
Systems, Software Engineering and Database Systems

6 Prototype implementation

Currently the trader has been implemented on a
set of networked Sun workstations. Two database sys-
tems are used in the prototype: an Oracle database
system and a Mini SQL database engine [8]. An In-
gres database system and a POET object-oriented
database system have been planned to be added into
the system soon.

6.1 Architecture

Figure 4 depicts the architecture of our loosely in-
tegrated heterogeneous database system. Currently
two database systems (Oracle and Mini SQL) are run-
ning on two separate Sun workstations. The trader,
trading agents, and user application programs can be
executed on any Sun workstations.

SUN

Truder

Network

|
rading
Agent

Teuding
1 \Agent

tading
Agent

ruding
-+ \Agent

tading
Agent

rading)
1 \Agent

ruding

unager,

Urading Truding

anager, unagery

Oracle Mini QL Ingres

SUN SUN SUN

Figure 4: Architecture of the loosely integrated sys-
tem

A trading manager is built on every participating
database system for performing all common tasks of

trading preparation and management. It is responsi- -

ble for such tasks as checking the validity of trading
requests, forming local offers, executing the service,
and returning request results. By using the ‘trading
managers, we can reduce the duplicating part of each
trading agent and concentrate on the work of the trad-
ing agent such as'schema translation and combina-
tion. Of cause, it also adds one more level of inter-
process communication.

One may argue that having one trading agent for
each offer is a waste of resources. It is true to some ex-
tend, but it is also the mechanism that provides diver-
sity of service requests and loose integration. These
agents are application-oriented. For instance, if a spe-
cial application requires some information from two
or more heterogeneous database systems, the trading
agent provides an easy mechanism for loose integra-
tion. A service offer can be deleted from the trading
context if it is no longer needed.

The rapid prototyping tool described in [16] is used
in the prototype implementation.

The trader is implemented as a server. It pro-
vides export and import operations through remote
procedure calls (RPCs). The trader also uses a well-
known port for accepting calls from clients. The con-
text space is currently located in the main memory
because of the small size. It should be implemented
on a file systems if the space required becomes large
enough.

30

The trading agent acts as both a server and a client.
To the user program, a trading agent is a server be-
cause it provides services that the user program has
imported from the trader. But to a trader program,
a trading agent is a client because it exports service
offers to the trader. The interprocess communication
between trading agents and the trading manager is
through sockets.

6.2 Offer definition files

We use an offer definition file (ODF) to define
an offer and then through a precompiler called offer
frame generator, the source files of the offer defined in
the ODF will be generated. Currently only C source
code is generated. Listing 1 shows the syntax of an
offer definition file.

L:"Lsting 1. Offer definition file syntax,

ODF := BEGIN
INCS
OFFER
[TABLES]
[PROCS 1]
END
INCS = [INC]
INC = Include: filename ;
OFFER = O0Offer Name: variable ;
Offer Path: string ;
Offer Description: variable ;
Offer Address: HOST, PORT ;
HOST := string
PORT := integer ,
TABLES ::= Table: string from [variable];
TBS ;
End Table ;
TBS := TB { TB }
TB := Namé: string ; ATTRS
ATTRS := { ATTR }
ATTR 1= Attrib: declarator ;
PROCS ::= Procedures: string; OPS ;
End Procedures ;
0PS := 0P { 0P}
0] ::= Name: string ; PARAMS
PARAMS ::= { PARAM }
PARAM = Param: CLASS: declarator ;
CLASS = in | out | in_out

Most of the descriptions of Listing 1 are self-
explanatory. We use a modified BNF to denote the
syntax of definition files, where [x] means that x can

appear 1 to many times and {x} means that x can
appear 0 to many times. The “variable”, “integer”,
“string”, and “declarator” have the same meanings
as in the C programming language. Comments are
allowed in the definition file. They are defined the
same as in the C programming language (using /#*
and */). The semantics of an ODF file will be made
clear in Section 6.4.
6.3 Offer frame generator :
After a programmer sends an offer definition file to
the offer frame generator, the generator first does syn-
tax checking. If no errors are found, several program
source files are generated. These generated files can
be used by programs that use the service offer, such as
the trading agent, the trading manager, and the user
program. A makefile is also generated for testing the

service offer by using the generated driver programs.
That is, when using the make utility, the executable
files for the trading agent, the trading manager, and
the user program will be generated. Figure 5 shows
the input and output of the offer frame generator. By
default, source code for the trading agent is always
generated. If the user does not want trading agent
to be generated, the source code for trading manager
and user application program will be a little different
(for instance, the trading manager in this case will
include operations previously located in the trading
agent).

> Header files

— Trading Agent Driver

. I~ Trading Manager Driver
Offer Definition Offer Frame
File Generator —> User Program Driver

> Stub files

> Offer Template Files

‘= A makefile

Figure 5: Input and output of the offer frame gener-
ator ' T

6.4 Example applications

We use a simple example to show the application of
the tools and the idea of loosely integrating heteroge-
neous database systems. Suppose we have a database
about off-campus student records and it is stored in
an Oracle database. The table definition is assumed
to be as follows (the database may contain other ta-

bles):

OFFCAMPUS (sid integer, sname char[20],
street char[20], suburb char[20],
city char[10], country char[12],
phone char[16], major,

Assume that we have decided to share those stu-
dent records that havemajor = ’Computing’ in some
applications. We may want to define an offer as fol-
lows:

/% Offer from off-campus student database */
BEGIN
Include: offCampus.sql
Offer Name: ofcs;
Dffer Path: /University/Faculty/Computing;
Offer Descriptiom:
"A table for off-campus students majoring
in Computing. In Oracle database. An
operation to change student address";

Offer Address: frodo.deakin.edu.au, 6500;
Tables: StudentTable;
Name: Student from OFFCAMPUS;
Attrib: int sid;
Attrib: char sname[20];
Attrib: char street[20];
Attrib: char suburb[20];
Attrib: char city[10];
Attrib: char country[12];

31

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

Attrib: char phone[16];
End Tables;

Procedures:
Name: changeAddress;

Param: in: integer sid;
Param: in: char street[20];
Param: in: char suburb[20];
Param: in: char city[10];
Param: in: char country[12];

End Procedures;

END

The offer has one table which shows the de-
tails of students that are majored in “Computing”,
and an operation that changes a student’s address.
The trading agent is to be executed on machine
frodo.deakin.edu.au and is to use socket port 6500.
The offer is going to be stored in the trading con-
text path /University/Faculty/Computing under
the name of ofcs. The table of the offer is created
from a database definition file named of £Campus .sql,
which contains a CREATE TABLE statement for the
OFFCAMPUS table. After we send this file to the offer
frame generator, the following files will be generated:

ofcs.h Header file, must be included
by trading agent, user
program, and trading manager.
Trading agent driver file
Trading agent stub file
Framework of trading agent
Trading manager driver file
Trading manager stub file
Framework of trading manager
User application driver file
User application stub file
make file

ofcsTA.c
ofcsTAStub.c
ofcsTAOps.c
ofcsTM.c
ofcsTMStub.c
ofcsTMOps.c
ofcsAP.c
ofcsAPStub.c
makefile

All these files use the data structure defined in Section
2.2. After using the make utility, three executables
will be generated: :

ofcsTA Trading agent program
ofcsTM Trading manager program
ofcsAP User application program

The ofcsTMOps.c file contains such operations as
security checking, view creating, offer creating, offer
executing, and so on. The ofcsTAOps. c file contains
such operations as offer exporting, format translating,
and so on. Note that some of the operations (such as
the changeAddress operation defined in the definition
file) are not fully defined in these files. Instead, only
frameworks (dummy procedures) are defined for such
operations. Their details are to be programmed by
the programmer. .

Now suppose we have another ISAM database con-
taining on-campus student records and is defined as
follows:

ONCAMPUS(sid integer, studentName char[30],
address char[40], phone char[10])
major,

Assume that both databases want to share their
student records with “Computing” major in some ap-
plications. We can define the following offer to ac-
commodate the differences of the two databases:

Proceedings of International Conference on Distributed
Systems, Software Engineering and Database Systems

/* Both */
BEGIN
Include: offCampus.sql
Include: onCampus.sql
Offer Name: allcs;
Offer Path: /University/Faculty/Computing;

Offer Descriptiomn:
"A table for all students majoring in
Computing. In both Oracle and ISAM DBs;
Offer Address:baragund.deakin.edu.au,6700;

Tables: StudentTable;
Name: Student from OFFCAMPUS, ONCAMPUS;

Attrib: int sid;
Attrib: char name[30];
Attrib: char address[65];
Attrib: char phone[16];

End Tables;

END

The offer contains only one table. It is going to
be executed on the baragund.deakin.edu.au ma-
chine and is to use socket port 6700. The ta-
ble is created from two database definition files
named offCampus.sql and onCampus.sql. These
two files contain the definitions for OFFCAMPUS and
ONCAMPUS tables, respectively. The offer is go-
ing to be stored in the trading context path
/University/Faculty/Computing under the name of
allcs.

The trading agent in this case will be responsi-
ble of operations including forming the virtual table
from the two tables, directing user requests to differ-
ent database trading managers, accepting results from
trading managers, and converting the results into the
virtual table format. Note that because the address
attribute in the global table combines a few attributes
from the student table of the off-campus database,

any update to this field will then be prohibited by the’

trading agent.

7 Remarks

The design and prototype implementation of a
loosely integrated heterogeneous database system is
described in this paper. The main contribution of
this paper is the introduction of the active participa-
tion of information sharing by the database systems
and the introduction of data and operation sharing.
It also shows that building such a system that loosely
integrates heterogeneous database systems is possible.

References
[1] R. Ahmed. The pegasus heterogeneous multi-
database system. Computer, 24(12):19-27, De-
cember 1991,

M. Bearman. ODP trader. In Open Distributed
Processing II, IFIP Transaction G-20, pages 37—
51. Elsevier Science B. V., North-Holland, 1994.

7. Brzezinski, J. Getta, J. Rybnik, and W. Step-
niewski. Unibase: An integrated access to
database. In Proceedings of the 10th Interna-
tional Conference on Very Large Data Bases,
pages 388-400, Singapore, 1984.

0. A. Bukhres, J. Chen, W. Du, and A. K. El-
magarmid. InterBase: An execution environment

[2]

(3]

32

for heterogeneous software systems. Computer,
26(8):57-69, August 1993.

[5] C. W. Chung. Dataplex: An access to heteroge-
neous distributed databases. Communications of

the ACM, 33(1):70-80, January 1990.

A. Goscinski and M. Bearman. Resource man-
agement in large distributed systems. Operating
System Review, October 1990.

D. Heimbigner and D. Mcleod. A federated ar-
chitecture for information management. ACM

Transactions on Office Information Systems,
3(3):253-278, July 1985.

D. J. Hughes. Mini SQL: A Lightweight Database
Engine. Huges Technologies P/L, Australia,
http://Hughes.com.au, January 1996.

[9] ISO/IEC. Working Document - ODP Trading
Function. ISO/IEC JTC1/SC21 N8409, 1994.

[6]

[7]

18]

[10] D. McLeod. The remote-exchange approach to
semantic heterogeneity in federated database sys-
tems. In Proceedings of the 2nd Far-East Work-
shop on Futhre Database Systems, pages 38-43,
April 1992. ‘

[11] U. Merz and R. King. DIRECT: A query facil-
ity for multiple databases. ACM Transactions
ogginformation Systems, 14(4):339-359, October
1994.

[12] M. T. Ozsu and P. Valduriez. Principles of Dis-
tributed Database Systems. Prentice-Hall, Engle-
woods Cliffs, New Jersey, 1991.

[13] S. Ram. Heterogeneous distributed database sys-
tems. Computer, 24(12):7-10, December 1991.

[14] J. M. Smith, P. A. Bernstein, U. Dayal, N. Good-
man, T. Landers, K. Lin, and E. Wong. MULTI-
BASE: Integrating heterogeneous distributed
database systems. In Proceedings of the Amer-

ican National Computer Conference, pages 487—
499, MAY 1981.

M. Templeton, E. Lund, and P. Ward. Prag-
matics of access control in mermaid. ZEEF Data
Engineering Bulletin, 10(3):33-38, 1987.

(15]

[16] W. Zhou. A rapid prototyping system for dis-
tributed information system applications. The
Journal of Systems and Software, 24(1):3-29,
1994.

