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Design of Modular Scalable HM M -based
Continuous Speech Recognition /
Convolutional Decoder I P

Yeu-Horng Shiau, Jer-Min Jou and Tsung-Chih Wang

Abstract

This paper presented a design method of modular scalable HMM-based continuous speech
recognition / convolutional decoder IP. This IP includes three magjor functions. (i) Hidden Markov
Model based continuous speech recognition (ii) convolutional decoder of error control coding (iii)
modular scalable IP design. Since the recognition kernel of HMM-based speech recognition system
and the decoding kernel of convolutional coding system are similar, we integrate the two functions
in one IP by working with same hardware modules. Besides, in order to satisfy the number of
recognizable words requirement of most speech recognition applications, we develop the modular
scalable IP architecture that one can increase the number of recognizable words by cascoding

connection with speech recognition 1Ps and extension modules.
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1. Introduction

A wide variety of approaches to the problem of recognizing a spoken utterance have been
proposed and evaluated. An approach based on Hidden Markov Models (HMM) helps recognizers
to deal with most of the variability in the way people speak. Since the HMM technology is
well-consolidated and its effectiveness is well proved, many current speech recognizers use the
technique of HMM for pattern matching. An HMM is atype of model based on a doubly stochastic
processin which there is an unobservable Markov chain. It provides a way of dealing with both
temporal structure and the variability within speech patterns representing the same perceived

sounds.

Convolutional coding with hard- and soft-decision Viterbi decoding can be used for error
detection or error detection and correction. It has found application in many diverse systems such
as majority-logic decoding, burst-error correction, concatenated coding system, and satellite
communication systems, etc. The Viterbi agorithm provides a maximum likelihood decoding

procedure that is practical for decoding short constraint length Convolutiona codes.

When we observe the relation between HMM-based speech recognition and Convolutional
codes, it is easly to find out that these two applications have the same computing kernel- Viterbi
algorithm. Hence, we design a general architecture that can work for both applications without any

conflict to increase the practical utilization of 1P sfunctiondlity.

The remainder of this paper is organized as follows. In Section 2, we describe the design of
modular scalable IP. In Section 3, the combination design of speech recognition and convolution
decoder is presented. Then, the hardware/software (HW/SW) co- verification of this IP is introduced
in Section 4, and the experiment results are presented in Section 5. Finally, we give the conclusion

in Section 6.



2. Design of Modular scalable Speech Recognition IP

Generaly, the number of recognizable words in one speech recognition IP is designed in
constant. If one integrates speech recognition [P into his applications but the number of
recognizable words is not enough to satisfy the requirements of system, the only one solution is

adjudting its gpplication to overcome this limitation.

In our modular salable IP design, one can cascode |Ps with extension modules to increase the
number of recognizable words and does not need to re-code the IP hardware description language.
Fig. 1 shows n IPs cascoding connection with related extension modules and the extension modules

areshownin Fg. 2.
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Figurel N speech recognition IPs cascading connection with extension modules.
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Figure2 The architecture of extenson modules.

The Extenson module is described as follow:

ACSEM : The ACSEM compare two minimum paths from different |Ps and send the minimum

word with its related candidate word back to each IP.

SMEM : The SMEM switches extending control sgnadswith And/Or gate among 1Ps.

IP_DC: The IP_DC Replaces the 6 bits output of IP to 8 bits output. Hence, the number of

recognizable wordsis increase to 22=256 words.

IP_FIX: When we cascode connection more than one IP, we must add one IP_FIX to fix the

recognized word tag. For example, if IP is connected in the fifth situation, the output of

IP must connect five IP_FIX to fix the tag.

IP_SEL: TheIP_SEL is utilized to combine the output of two IPs into one output when the number

of cascoded connection IPsis over two.



3. Combinational architecture design of speech recognition and

Convolutional decoder

The block diagram of IP architecture shown in Fig. 3 is divided into four major units. The
Pipelined Transition Metric Unit (PLTMU) is only for speech recognition mode to compute
transition metric in each state. The Hard-decision Branch Metric Unit (HDBMU) is only for
convolutional decoding mode to compute branch metric in each state. Since these two operations
are definitely distinct, we implement them in different hardware units. We can select convolutional
decoding function or speech recognition function by switching these two units to work with the R/V

sgnd.

The survivor data extraction tasks in the trellis diagram of each state and the survivor path
back tracking tasks in memory accessing operation in convolutional decoding procedure and speech
recognition procedure are similar. Hence, the survivor data extraction tasks implemented in Parallel
Add-Compare Select Unit (PACSU) and survivor path back tracking tasks implemented in Survivor

Memory Unit (SMU) are designed in general architecture that can correctly work with both

goplications.
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Figure3 The architecture of speech recognition/Convolutiona decoder 1P
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3.1 Pipelining design of PLTMU ar chitecture
In speech recognition tasks, we first enumerate the probability P(O|I ) of the observation
sequence O =(0,,0,,...,0; ), giventhemodd A and can be gpproximated as:
POI1)> max [p, b, (0)%,, ", (0,)-4, 5 *b, (0))] ®
The observation probability of feature symbol o, at state i (b, (0,) ) can be represented as

_lg (0u- mjk)2
b(0)= aC e o @
\/(ZIO) xPSkk

where M is the number of Gaussian mixtures, D is the order of MFCC parameters, c; isthe

weight of cluster j in statei, rp, is the k-th order mean vector in cluster j of statei and sy, is the

element [k K] of covariance matrix.

In order to reduce the complexity for hardware design, equation (2) issmplified as

18 (otk'mjk)z
-=a 3
b (0,) » Max ! X 2 s %)
j=1~-M D 5
(2p)° P S

Then, we take the negative logarithmsin equation (2) and obtain the observation probability as

Y b 241
- ot~ & %
5(0) =- logl,(a)] = Min 1€, + & [§.. 0, - m)] 3
1==My k=1 K
o 0
where 5”- =- log¢C; ! - : y S = 251
(2)° P 54 % “

Finally, by alding the observation probability and transition probability @i ad & +1), the

output of PLTMU, trandtion metric f,, and f, ., can be obtained.

i i = ii+6; y
o =8 rh(e) @

fai i+l = ai,i+1 + h (Ot)



We draw the data flow of one state in Fig. 4 accord to the Eqg. (5) and the computation

elements of one state in PLTMU include 2 multipliers, 5 adders/subtractors and 1 comparator.
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Figure 4 (&) The architecture of PLTMU including 10 STMU
computation dements (b) The data flow of STMU

Asshown in Fig. 4, if we use fully parallel architectures to design PLTMU with Sstate in each
HMM to reduce the clock cycles of transition metrics conmputation, the number of statesin PLTMU
is 10*S. Hence, the totally number of computation elements of IP need 10*S*2 multipliers, 10* S5
adders and 10* S comparators.

Consider an example with the number of states in each HMM is 4 and design the architecture
with fully parallel techniques, there will be 40 states in one IP and the computation elements
include 80 multipliers, 200 adders and 40 comparators. This shows that the fully parallée
architecture design is not efficent in 1P area saving.

In order to achieve an efficient IP design with lower area utilization we utilize one state
computation element set to compute one HMM with S states computations. Hence, there are 10

computation e ements called STMU in PLTMU architecture shown in Fig. 4(3).
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Besides, for improving the computation performance of STMU, we utilize the pipelining
technique to break the summing and minimizing operation loops. The architecture of STMU can

partition into PE1 and PE2 modules shown in Fig. 5.

(M+1)*(D+3)
- 2*(M+1)*(D+3)
-- S (M+D)*(D+3)
Figure5 STMU pipdine scheduling
The PE1 and PE2 of STMU pipdine scheduling is drawn in Fig.6.
PE1 PE2
———————————————————————————————— D+3
—————————————— 2*D+3)
----------------------------------- 3*(D+3)

——————————————————————————————————————————— % - - -~ (M+1)*(D+3)

@ (b)
Figure6 (a) PE1 pipdine scheduling (b) PE2 pipeline scheduling

In PEL, the origina D summation loop takes D*3 clock cycles can be reduced to D+3 clock



cycles after using pipeline techniques. The same improvement occurs in PE2, the original M loops
take 2*(M+1)* (D*3) clock cycles and can be reduced to (M+2)* (D+3) clock cycles. It really more

effect than the design without using pipeline techniques.

3.2 HDBMU ar chitecture design

The function of HDBMU is to compute branch metrics in each state of the trellis diagram of
convolutional decoder. The architecture of HDBMU includes one register, two inverters and four

adders shown in Fig. 7 can be used in any code-rate- 1/2, hard-decision convolutiona decoder.

A
=+ = bmoo
>o ]+ bmo1
yoan R DL = O
>0 — bm11l
HDBMU

Figure7 The architecture of HDBMU

The branch metric equations bm00, bm01, bm10 and bm11 isillustrated as
i bm00O=A+B
3} bm0l=A+~B
: bm10=~A +B
'1|' bmll=~A+~B

3.3 PACSU architecture design

The PACSU accumulates path metrics by adding the transition metric from PLTMU or the
branch metrics from HDBMU with previous time step path metrics for all possible paths in trellis
diagram and find the matching path with minimum error, which is also called survivor path, of each

state. The dataflow of each sateisshownin Fig. 8.
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Because the computing speed requirement is more important in convolutional decoder designs,
we design the PACSU with parallel techniques to reduce the performance diminishing of feedback

loop latency as shown in Fig. 9.
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Figure9 Paald desgn of PACSU architecture.

InFig. 9, the transition metrics generated by PLTMU or branch metrics generated by HDBMU
and previous path metric from ACSM-IF will send to TMACS-IF module and distribute to related
ACSs according to its own trellis diagram. The architecture of ACS shown in Fig. 10 includes two

adders, one comparator and one multiplexer. Two pairs of branch inputs in one state are compared

1



to find the minimum path metric and survivor path information.

ACS
> Survivor
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Figure 10 The architecture of ACS module.

After finished the survivor path information computed by paralel ACSs architecture, the 40
survivor bits output from 40 ACSs will be combined into one survivor word before serding to
SMU in ACSM-IF module. Simultaneously, current path metric in each state will update and send
back to TMACS-IF module. Besides, in speech recognition function mode, the candidate word

information in each time step will be sent to SMU with the survivor path information, too.

3.4 SMU architecture design

The survivor path can be regarded as a circular N block of memory as shown in Fig. 11. We
can break the memory into four blocks, M1, M2, M3, M4 and these blocks corresponds to different
processes of traceback called Survivor Data Write (SDW), TraceBack Read (TBR), and DeCode

Read (DCR) describe as follows.

1. Survivor Data Write (SDW)
Decision bits of all states from the PACSU combined into one word are written in one of the

memory blocks M1, M2, M3 or M4 that are used cydlicaly.

2. TraceBack Read (TBR)

The TBR processing is performed in one of the memory blocks. An arbitrary state S, at timen

is chosen and recalls the trellis connections in the reverse order that they were stored to trace the
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corresponding survivor path. The decision bit D> for S, is obtained from survivor memory using
S, as the sdlection signal. The previous state of S, in the survivor path can be computed by
S,,=D>|(S, >>1). This process will be repeated for 2*D iterations to reach the convergence
state of survivor paths. Hence, we obtain 2* D bits of the surviving path corresponding to starting

sate S,. These bits are not used for the output, but the oldest bit is the starting state for a DCR

processin the next period.

3. DeCode Read (DCR)

The DCR is performed in one of the memory block. The output bit of DCR process is the
correct input sequences can be decoded. In fact, the DCR and TBR processing involve the same
memory read operation. The difference is the 2*D bit traceback outputs from TBR are the selected

path, but the traceback outputs from DCR are the reverse order of decoder actualy read out results.

Decode Survivor Path Write
Block Merge Block Block
(D) (L=2"D) O
4—>|<—>»
Decision
Bits
M1 M2 M3 M4
« |« I »
. DCR TBR N SDW )
—— ~
Read Region Write Region

Figure 11 Survivor memory organization.

The dynamic scheduling among four RAM blocks for 10 periods of the traceback procedureis
shown in Fig. 12. The horizontal axis of Fig.12 represents the time in terms of the clock cycles, and
the vertical axis represents the column address of the memory. During SDW procedure, one
decision path (40 bits) is written to survivor memory and a WR point is used to keep track of its

position Simultaneoudly, the RE pointer is used to keep track of the position of TBR and DCR
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operations. The WR pointer accesses the memory in the increasing order but the RE pointer
accesses in the opposite direction. Note that in the traceback processes, all bits in the same column
of the memory are accessed during write operation, but only one bit needs to be accessed during

read operation; the memory access time for both pointers is the same, but the RE pointer moves

three times faster than the WR pointer.

- Survivor Data Write
—— TraceBack Read
----------------- » DeCoded Read

1
1
i
1
1

0O T 2T 3T 4T 5T 6T 77 8T 9T 10T
Time (Clock-Cycle)

Figure 12 Survivor memory scheduling.

We desgn the SMU with survivor memory as shownin Fig. 13.
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Figure13 The architecture of SMU
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4. Hardwar e and Software Co-Design

The rapid hardware prototyping system is built based on hardware/software co-design methods.
The complete co-verification environment includes, software program run in a PC, hardware
module (1P) implemented in FPGA target board and communicate between hardware and software
with I1SA bus architecture. Since software programs can access input/output data of hardware
modul e through the memory map read/write scheme of 1SA, one can send test patterns generated by
software program to hardware module and observe the ssimulation result to verify the functionality

of IP.

We draw the configuration of the prototyping board in Fig. 14.

Down load over indicators

L L L Down load over
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] v I
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— \
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Figure 14 Configuration of prototyping system.
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4.1. Continuous Speech Recognition System

The block diagram of the speech recognition system is shown in Fig. 15. It is separated into
two parts, software and hardware parts. The software part is implemented with C code running ona
PC including speech data collecting, front-end processing and parameters modeling for HMM
training tasks. The hardware part (1P) is implemented in the FPGASs prototyping board including

observation probability estimation and Viterbi processing computations.

Input
speech signal
Speech data
collectng | .
[ i Implemented
_(_SOU_':C&?) _____ - L_--_i insoftware
] : Implemented
Speech signal | ﬂ in hardware
processing ]
Extract :
characteristic ] Feature_
parameters 1 Extraction
o1 iModule
Untrained speech * Unrecognized speech
MFCC parameters q ; MFCC parameters
H M odel Observation
i > parameters probability
H computation estimation
! Y
Observation Viterbi

: probability Pr ocessor .
! estimation ; Recognition
i Y 1 Module
| Viterbi ' #
i Processor | i Training Recognition
——— i Module result

Figure 15 The block diagram of Speech recognition system.

4.2. Convolutional Coding System

The block diagram of the Convolutional coding system is shown in Fig. 16. The software
running on a PC includes convolution encoding and AWGN channel simulating. The encoded

sequence is then sent to the IP on the FPGAS target board to begin the Convolutional decoding

16



procedure.
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Sequence

. 1
Convolutional | |
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: channel M ' insoftware

: : ﬂ Implemented
' 1 in hardware

e i

Encoded sequence with noise
Viterbi
Processor

Convolutional

Decoder

A

Decoded
Sequence

Figure 16 Theblock diagram of Convolutiond coding system .

5. Experiment Result
5.1 Synthesis Result

Fig. 17 and Table 1 show the layout diagram and utilization rate of resource for our IP in

Xilinx xcv1000 FPGA chip respectively.

Figure 17 FPGA Layout diagram (Target: Xilinx xcv1000 BG580).
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Table1l Resource utilizationof speech recognition IP.

Resour ce USED MAX available % USED

Number of Slices 8,446 12,288 68%
Total Number Slice Flip Flops 4722 24,576 19%
Total Number 4 Input LUTs 14,469 24,576 58%
Number of bounded IOBs 41 404 10%
Number of Block RAMs 26 32 81%
Number of GCLKs 1 4 25%
Number of GCLKIOBs 1 4 25%
Total equivalent gate count 600,756
Additional JTAG gate count for IOBs 2,016

Minimum period

69.412ns (Maximum frequency: 14.407MHz)

Maximum net delay

16.119ns

The resource utilization listed in Table 1 shows that the maximum operating clock rate is

above 14 MHz and available to process about 14 million trellis steps per second.

5.2 Speech Recognition Rate Analysis

In order to analyze recognition rate in our speech recognition system, we gather 200 random
generated sentences include 1370 digits to be recognized by 10 users. The random generated

sentences are listed in Table 2 and the analyzed results are shown in Table 3. The experimental

results show that the average speech recognition rate is above 90%.

Table2 Random generated test sentences.

8182 6603 8012 50947 83512
01640 618984 143988 087783 8371073
4965109 9683484 | 99255333 | 74380880 68198973
282890781 | 586124258 | 626539246 | 1821197629 | 5200391819

18



Table3 Recognition rate for 10 users

Recognition Errors Word Error Rate

Samples
Insertion Deletion Substitution (%)

Userl 15 67 53 90.15
User2 17 60 65 89. 614
User3 18 55 61 90. 22
Userd 16 59 58 90. 29
Userb 17 61 60 89.93
User6 16 57 66 89.85
User?7 18 65 55 89.93
User8 15 56 60 90. 44
User9 16 6 4 57 90.00
Userl0 17 57 59 90. 29

5.3 Bit Error Rate Analysis

We draw the bit error rate simulation results for a (2, 1, 5) convolutional coding on an AWGN
channel with hard-decision FPGA simulation decoding, soft-decision software simulation decoding,

and uncoded result of our convolutional coding system.
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Figure 18 Simulation results for a (2, 1, 5) convolutional coding on an AWGN
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6. Conclusion

This speech recognition IP integrates diversity function includes continuous speech
recognition, convolutional decoder of error control coding and IP function scalable extension.
General architecture of module design methods make two different application domains, speech
recognition function and convolutiona coding function can work together without any conflict.

Besides, the concept of modular scalable IP implementation overcomes the limitation of 1P
function extension. This modular scalable IP design method simultaneously releases the IP user
from the utilization overhead in many applications. We can call it an originative design in speech
recognition filed.

The hardware/software co-verification prototyping system ensures the reliability of IP design.
Of course improves the completeness of |P design with system integration Therefore, we built the
continuous speech recognition system and the convolutional coding system to emphasize the

advantage of easy to integrate with our designed IP.
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