
 1

Submit to: Workshop on Multimedia Technologies

Design of Modular Scalable HMM-based

Continuous Speech Recognition /

Convolutional Decoder IP

Yeu-Horng Shiau, Jer-Min Jou and Tsung-Chih Wang

Abstract

This paper presented a design method of modular scalable HMM-based continuous speech

recognition / convolutional decoder IP. This IP includes three major functions: (i) Hidden Markov

Model based continuous speech recognition (ii) convolutional decoder of error control coding (iii)

modular scalable IP design. Since the recognition kernel of HMM-based speech recognition system

and the decoding kernel of convolutional coding system are similar, we integrate the two functions

in one IP by working with same hardware modules. Besides, in order to satisfy the number of

recognizable words requirement of most speech recognition applications, we develop the modular

scalable IP architecture that one can increase the number of recognizable words by cascoding

connection with speech recognition IPs and extension modules.

Key words: Speech recognition, HMM, Convolutional code, Viterbi algorithm, Modular

scalable, IP design

 2

Yeu-Horng Shiau,

Current affiliation: Department of Electrical Engineering, National Cheng Kung University, Tainan,

Taiwan, R. O. C.

Postal address: ASIC LAB, EE 10F, NCKU, NO.1, Ta-Hsueh Road, Tainan, 701 Taiwan

E-mail address: huh@j92a21.ee.ncku.edu.tw

Telephone number: 06-2757575-62431-821

Jer-Min Jou

Current affiliation: Department of Electrical Engineering, National Cheng Kung University, Tainan,

Taiwan, R. O. C.

Postal address: ASIC LAB, EE 10F, NCKU, NO.1, Ta-Hsueh Road, Tainan, 701 Taiwan

E-mail address: jou@j92a21.ee.ncku.edu.tw

Telephone number: 06-2757575-62365

Tsung-Chih Wang, (the contact author)

Current affiliation: Department of Electrical Engineering, National Cheng Kung University, Tainan,

Taiwan, R. O. C.

Postal address: ASIC LAB, EE 10F, NCKU, NO.1, Ta-Hsueh Road, Tainan, 701 Taiwan

E-mail address: tcw@j92a21.ee.ncku.edu.tw

Telephone number: 06-2757575-62431-821

 3

1. Introduction

A wide variety of approaches to the problem of recognizing a spoken utterance have been

proposed and evaluated. An approach based on Hidden Markov Models (HMM) helps recognizers

to deal with most of the variability in the way people speak. Since the HMM technology is

well-consolidated and its effectiveness is well proved, many current speech recognizers use the

technique of HMM for pattern matching. An HMM is a type of model based on a doubly stochastic

process in which there is an unobservable Markov chain. It provides a way of dealing with both

temporal structure and the variability within speech patterns representing the same perceived

sounds.

Convolutional coding with hard- and soft-decision Viterbi decoding can be used for error

detection or error detection and correction. It has found application in many diverse systems such

as majority- logic decoding, burst-error correction, concatenated coding system, and satellite

communication systems, etc. The Viterbi algorithm provides a maximum likelihood decoding

procedure that is practical for decoding short constraint length Convolutional codes.

When we observe the relation between HMM-based speech recognition and Convolutional

codes, it is easily to find out that these two applications have the same computing kernel-Viterbi

algorithm. Hence, we design a general architecture that can work for both applications without any

conflict to increase the practical utilization of IP’s functionality.

The remainder of this paper is organized as follows. In Section 2, we describe the design of

modular scalable IP. In Section 3, the combination design of speech recognition and convolution

decoder is presented. Then, the hardware/software (HW/SW) co-verification of this IP is introduced

in Section 4, and the experiment results are presented in Section 5. Finally, we give the conclusion

in Section 6.

 4

2. Design of Modular scalable Speech Recognition IP

Generally, the number of recognizable words in one speech recognition IP is designed in

constant. If one integrates speech recognition IP into his applications but the number of

recognizable words is not enough to satisfy the requirements of system, the only one solution is

adjusting its application to overcome this limitation.

In our modular salable IP design, one can cascode IPs with extension modules to increase the

number of recognizable words and does not need to re-code the IP hardware description language.

Fig. 1 shows n IPs cascoding connection with related extension modules and the extension modules

are shown in Fig. 2.

Decoded
word

Observation
Vector

IP_DC
(1)

IP_FIX
(2,1)

IP_SEL
(1)

IP_DC
(2)

IP_SEL
(2)

IP(1)

IP(2)

ACS
EM

IP_FIX
(n ,1)

IP_DC
(n)

IP(n)

ACS
EM

PL
TMU

PACSU SMU

PL
TMU

PACSU SMU

PL
TMU

PACSU SMU

IP_FIX
(n,n-1)

IP_SEL
(n-1)

ACS
EM

SMEM

SMEM

SMEM

SMEM

SMEM

SMEM

Decoded
word

Observation
Vector

IP_DC
(1)

IP_FIX
(2,1)

IP_SEL
(1)

IP_DC
(2)

IP_SEL
(2)

IP(1)

IP(2)

ACS
EM

IP_FIX
(n ,1)

IP_DC
(n)

IP(n)

ACS
EM

PL
TMU

PACSU SMU

PL
TMU

PACSU SMU

PL
TMU

PACSU SMU

PL
TMU

PACSU SMU

PL
TMU

PACSU SMU

PL
TMU

PACSU SMU

IP_FIX
(n,n-1)

IP_SEL
(n-1)

ACS
EM

SMEM

SMEM

SMEM

SMEM

SMEM

SMEM

SMEM

SMEM

SMEM

SMEM

SMEM

SMEM

SMEM

SMEM

Figure 1 N speech recognition IPs cascading connection with extension modules.

 5

C
M
P

M

U

X

M
U
X

minMetric1

minMetric2

canWord1

canWord2
canWord

ECC

minMetric

ACSEM SMEM

CCout1

CCout2

CCin

dw6out1

dw6out2

dw6in

M
U
X

M
U
X

bypass

C
M
P

M

U

X

M
U
X

minMetric1

minMetric2

canWord1

canWord2
canWord

ECC

minMetric

ACSEM SMEM

CCout1

CCout2

CCin

dw6out1

dw6out2

dw6in

M
U
X

M
U
X

bypass

OutWord _in

M
U
X

0

Out_ok_in

CC

[5:0]
[3:0]

[5] [4]
Out_ok_out

Out_word_out[7:0]

IP_DC

OutWord _in

M
U
X

FF

Word_num

Add

Out_word_out
+

IP_FIX

M

U

X

0 0

0 1

1 0

1 1

FF

OutWord2

OutWord1 Out_word_out

Out_ok1
Out_ok2

Out_ok

IP_SEX

OutWord _in

M
U
X

0

Out_ok_in

CC

[5:0]
[3:0]

[5] [4]
Out_ok_out

Out_word_out[7:0]

IP_DC

OutWord _in

M
U
X

FF

Word_num

Add

Out_word_out
+

IP_FIX

M

U

X

0 0

0 1

1 0

1 1

FF

OutWord2

OutWord1 Out_word_out

Out_ok1
Out_ok2

Out_ok

IP_SEX

Figure 2 The architecture of extension modules.

The Extension module is described as follow:

ACSEM : The ACSEM compare two minimum paths from different IPs and send the minimum

word with its related candidate word back to each IP.

SMEM : The SMEM switches extending control signals with And/Or gate among IPs.

IP_DC: The IP_DC Replaces the 6 bits output of IP to 8 bits output. Hence, the number of

recognizable words is increase to 28=256 words.

IP_FIX: When we cascode connection more than one IP, we must add one IP_FIX to fix the

recognized word tag. For example, if IP is connected in the fifth situation, the output of

IP must connect five IP_FIX to fix the tag.

IP_SEL: The IP_SEL is utilized to combine the output of two IPs into one output when the number

of cascoded connection IPs is over two.

 6

3. Combinational architecture design of speech recognition and

Convolutional decoder

The block diagram of IP architecture shown in Fig. 3 is divided into four major units. The

Pipelined Transition Metric Unit (PLTMU) is only for speech recognition mode to compute

transition metric in each state. The Hard-decision Branch Metric Unit (HDBMU) is only for

convolutional decoding mode to compute branch metric in each state. Since these two operations

are definitely distinct, we implement them in different hardware units. We can select convolutional

decoding function or speech recognition function by switching these two units to work with the R/V

signal.

The survivor data extraction tasks in the trellis diagram of each state and the survivor path

back tracking tasks in memory accessing operation in convolutional decoding procedure and speech

recognition procedure are similar. Hence, the survivor data extraction tasks implemented in Parallel

Add-Compare-Select Unit (PACSU) and survivor path back tracking tasks implemented in Survivor

Memory Unit (SMU) are designed in general architecture that can correctly work with both

applications.

Decoded
Word

Output
or

Decoded
Sequence

Input
Observation

Vector
or

Encoded
Sequence HDBMU

(for convolutional
decoding only)

R/V

Speech Recognition/Convolutional Code IP

S
W
I
T
C
H
I
N
G

S
W
I
T
C
H
I
N
G

Extension Data switching
& Extension Control signal

PLTMU
(for speech

recognition only)

HMMs SMUPACSU

Decoded
Word

Output
or

Decoded
Sequence

Input
Observation

Vector
or

Encoded
Sequence HDBMU

(for convolutional
decoding only)

R/V

Speech Recognition/Convolutional Code IP

S
W
I
T
C
H
I
N
G

S
W
I
T
C
H
I
N
G

Extension Data switching
& Extension Control signal

PLTMU
(for speech

recognition only)

HMMs SMUPACSU

Figure 3 The architecture of speech recognition/Convolutional decoder IP

 7

3.1 Pipelining design of PLTMU architecture

In speech recognition tasks, we first enumerate the probability)(λOP of the observation

sequence) ,, ,(21 ToooO K= , given the model λand can be approximated as:

])()...()([max)|(
122111

21
21

,...,,
Tssssssss

sss
obaobaobOP

TTT
T

⋅⋅⋅⋅≈
−

πλ (1)

The observation probability of feature symbol to at state i ()(ti ob) can be represented as

∑
⋅

Π⋅
= =

−
−

=

=
∑

D

k kk

ijktko

kk

D

k

D

m

j
ijti eCob 1

2

2)(

2

1

2

1

1)2(

1
)(σ

µ

σπ
 (2)

where M is the number of Gaussian mixtures, D is the order of MFCC parameters, ijC is the

weight of cluster j in state i, ijkµ is the k-th order mean vector in cluster j of state i and 2
kkσ is the

element [k,k] of covariance matrix.

In order to reduce the complexity for hardware design, equation (2) is simplified as

∑
⋅

Π⋅
≈ =

−
−

=

=

D

k kk

ijktko

kk

D

k

D
Mj

ti eMaxob 1
2

2)(

2

1

2

1

~1

)2(

1
)(σ

µ

σπ
 (2)

Then, we take the negative logarithms in equation (2) and obtain the observation probability as:

[] []












−+=−= ∑
=

=

2

1
~1

)(~~)(log)(
~ D

k
ijktkkkij

Mj
titi oCMinobob µσ (3)

kk
kk

kk

D

k

D
ijij CC

σ
σ

σπ
2

1~ ,
)2(

1
log

~
 where

2

1

=


















Π⋅
−=

=

Finally, by adding the observation probability and transition probability (ai,i and ai,i+1), the

output of PLTMU, transition metric ii,φ and 1, +iiφ , can be obtained.







+=

+=

++)(
~

)(
~

1,1,

,,

tiiiii

tiiiii

oba

oba

α

α
 (4)

 8

We draw the data flow of one state in Fig. 4 accord to the Eq. (5) and the computation

elements of one state in PLTMU include 2 multipliers, 5 adders/subtractors and 1 comparator.

STMU
(0)

STMU
(1)

STMU
(2)

STMU
(3)

STMU
(4)

STMU
(5)

STMU
(6)

STMU
(7)

STMU
(8)

STMU
(9)

Observation
Vector (ot)

PLTMU STMU

D times

M times

－

+

min

+

iia ,
~

c~

to µ

 a 1i,i+
~

i,iá 1+i,iá

σ~

STMU
(0)

STMU
(1)

STMU
(2)

STMU
(3)

STMU
(4)

STMU
(5)

STMU
(6)

STMU
(7)

STMU
(8)

STMU
(9)

Observation
Vector (ot)

PLTMU STMU

D times

M times

－

+

min

+

iia ,
~

c~

to µ

 a 1i,i+
~

i,iá 1+i,iá

σ~

D times

M times

－

+

minmin

+

iia ,
~

c~

to µ

 a 1i,i+
~

i,iá 1+i,iá

σ~

(a) (b)

Figure 4 (a) The architecture of PLTMU including 10 STMU

computation elements (b) The data flow of STMU

As shown in Fig. 4, if we use fully parallel architectures to design PLTMU with S state in each

HMM to reduce the clock cycles of transition metrics computation, the number of states in PLTMU

is 10*S. Hence, the totally number of computation elements of IP need 10*S*2 multipliers, 10*S*5

adders and 10*S comparators.

Consider an example with the number of states in each HMM is 4 and design the architecture

with fully parallel techniques, there will be 40 states in one IP and the computation elements

include 80 multipliers, 200 adders and 40 comparators. This shows that the fully parallel

architecture design is not efficient in IP area saving.

In order to achieve an efficient IP design with lower area utilization, we utilize one state

computation element set to compute one HMM with S states computations. Hence, there are 10

computation elements called STMU in PLTMU architecture shown in Fig. 4(a).

 9

Besides, for improving the computation performance of STMU, we utilize the pipelining

technique to break the summing and minimizing operation loops. The architecture of STMU can

partition into PE1 and PE2 modules shown in Fig. 5.

i,iá

STMU

++

1
~

+i,ia

PE2

PE1
i,ia ~

1+i,iá

i,iá

STMU

++

1
~

+i,ia

PE2

PE1
i,ia ~

1+i,iá

(M+1)*(D+3)

2*(M+1)*(D+3)

i,iá

STMU

++

1
~

+i,ia

PE2

PE1
i,ia ~

1+i,iá

S*(M+1)*(D+3)
i,iá

STMU

++

1
~

+i,ia

PE2

PE1
i,ia ~

1+i,iá

i,iá

STMU

++

1
~

+i,ia

PE2

PE1
i,ia ~

1+i,iá

(M+1)*(D+3)

2*(M+1)*(D+3)

i,iá

STMU

++

1
~

+i,ia

PE2

PE1
i,ia ~

1+i,iá

S*(M+1)*(D+3)

Figure 5 STMU pipeline scheduling

The PE1 and PE2 of STMU pipeline scheduling is drawn in Fig.6.

PE1
1to 1ijµ

11
~σ－

2to 2ijµ

22
~σ－

tDo ijDµ

22
~σ－

1

2

3

4

D

D+1

D+2

D+3

2*(D+3)

3*(D+3)

M*(D+3)

(M+1)*(D+3)

PE2

min

PE1
1

~
ic

1
~

ic PE1

min

PE1
1

~
ic

PE1
1to 1ijµ

11
~σ－

2to 2ijµ

22
~σ－

tDo ijDµ

22
~σ－

1

2

3

4

D

D+1

D+2

1

2

3

4

D

D+1

D+2

D+3

2*(D+3)

3*(D+3)

M*(D+3)

(M+1)*(D+3)

D+3

2*(D+3)

3*(D+3)

M*(D+3)

(M+1)*(D+3)

PE2

min

PE1
1

~
ic

1
~

ic 1
~

ic PE1

min

PE1
1

~
ic

(a) (b)

Figure 6 (a) PE1 pipeline scheduling (b) PE2 pipeline scheduling

In PE1, the original D summation loop takes D*3 clock cycles can be reduced to D+3 clock

 10

cycles after using pipeline techniques. The same improvement occurs in PE2, the original M loops

take 2*(M+1)*(D*3) clock cycles and can be reduced to (M+2)*(D+3) clock cycles. It really more

effect than the design without using pipeline techniques.

3.2 HDBMU architecture design

The function of HDBMU is to compute branch metrics in each state of the trellis diagram of

convolutional decoder. The architecture of HDBMU includes one register, two inverters and four

adders shown in Fig. 7 can be used in any code-rate-1/2, hard-decision convolutional decoder.

Input
Sequence

bm00

bm01

bm10

bm11

A

+

+

+

+

B

HDBMU

Input
Sequence

bm00

bm01

bm10

bm11

A

+

+

+

+

B

HDBMU

Figure 7 The architecture of HDBMU

The branch metric equations bm00, bm01, bm10 and bm11 is illustrated as














+=

+=

+=

+=

B~A~

BA~

B~A

BA

bm11

bm10

bm01

bm00

3.3 PACSU architecture design

The PACSU accumulates path metrics by adding the transition metric from PLTMU or the

branch metrics from HDBMU with previous time step path metrics for all possible paths in trellis

diagram and find the matching path with minimum error, which is also called survivor path, of each

state. The data flow of each state is shown in Fig. 8.

 11

+

+

Transition Metric
or Branc Metric

Previous
Path Metric

Transition Metric
or Branc Metric

Previous
Path Metric

min

From state Si

From state Sj

Current
Path Metric
in state Sk

+

+

Transition Metric
or Branc Metric

Previous
Path Metric

Transition Metric
or Branc Metric

Previous
Path Metric

Transition Metric
or Branc Metric

Previous
Path Metric

Transition Metric
or Branc Metric

Previous
Path Metric

min

From state Si

From state Sj

Current
Path Metric
in state Sk

Figure 8 The data flow in each state.

Because the computing speed requirement is more important in convolutional decoder designs,

we design the PACSU with parallel techniques to reduce the performance diminishing of feedback

loop latency as shown in Fig. 9.

Path Metric

ACS
(S0)

ACS
(S1)

ACS
(S2)

ACS
(S3)

ACS
(S36)

ACS
(S37)

ACS
(S38)

ACS
(S39)

Transition Metric
from TMU

or
Branch Metric

from BMU

T
M
A
C
S
|
I
F

A
C
S
M
|
I
F

Extension control signal
& data switching

PACSU

M
I
N

M
U
X

M
I
N

M
I
N Survivor Path

and
Candidate Word

to SMU

Path Metric

ACS
(S0)

ACS
(S1)

ACS
(S2)

ACS
(S3)

ACS
(S36)

ACS
(S37)

ACS
(S38)

ACS
(S39)

Transition Metric
from TMU

or
Branch Metric

from BMU

T
M
A
C
S
|
I
F

A
C
S
M
|
I
F

Extension control signal
& data switching

PACSU

M
I
N

M
U
X

M
I
N

M
I
N Survivor Path

and
Candidate Word

to SMU

Figure 9 Parallel design of PACSU architecture.

In Fig. 9, the transition metrics generated by PLTMU or branch metrics generated by HDBMU

and previous path metric from ACSM-IF will send to TMACS-IF module and distribute to related

ACSs according to its own trellis diagram. The architecture of ACS shown in Fig. 10 includes two

adders, one comparator and one multiplexer. Two pairs of branch inputs in one state are compared

 12

to find the minimum path metric and survivor path information.

TM(i) or BM(i)
PM(i)

Minimum
Path Metric

Outside
Path Metric

+

+

M
U
X

Survivor
Path

C
O
M
P

TM(j) or BM(j)
PM(j)

ACS

0

1

TM(i) or BM(i)
PM(i)

Minimum
Path Metric

Outside
Path Metric

+

+

M
U
X

Survivor
Path

C
O
M
P

TM(j) or BM(j)
PM(j)

ACS

0

1

Figure 10 The architecture of ACS module.

After finished the survivor path information computed by parallel ACSs architecture, the 40

survivor bits output from 40 ACSs will be combined into one survivor word before sending to

SMU in ACSM-IF module. Simultaneously, current path metric in each state will update and send

back to TMACS-IF module. Besides, in speech recognition function mode, the candidate word

information in each time step will be sent to SMU with the survivor path information, too.

3.4 SMU architecture design

The survivor path can be regarded as a circular N block of memory as shown in Fig. 11. We

can break the memory into four blocks, M1, M2, M3, M4 and these blocks corresponds to different

processes of traceback called Survivor Data Write (SDW), TraceBack Read (TBR), and DeCode

Read (DCR) describe as follows.

1. Survivor Data Write (SDW)

Decision bits of all states from the PACSU combined into one word are written in one of the

memory blocks M1, M2, M3 or M4 that are used cyclically.

2. TraceBack Read (TBR)

The TBR processing is performed in one of the memory blocks. An arbitrary state Sn at time n

is chosen and recalls the trellis connections in the reverse order that they were stored to trace the

 13

corresponding survivor path. The decision bit nS
nD for Sn is obtained from survivor memory using

Sn as the selection signal. The previous state of Sn in the survivor path can be computed by

)1(|1 >>=− n
S
nn SDS n . This process will be repeated for 2*D iterations to reach the convergence

state of survivor paths. Hence, we obtain 2*D bits of the surviving path corresponding to starting

state Sn. These bits are not used for the output, but the oldest bit is the starting state for a DCR

process in the next period.

3. DeCode Read (DCR)

The DCR is performed in one of the memory block. The output bit of DCR process is the

correct input sequences can be decoded. In fact, the DCR and TBR processing involve the same

memory read operation. The difference is the 2*D bit traceback outputs from TBR are the selected

path, but the traceback outputs from DCR are the reverse order of decoder actually read out results.

SDWTBR

Write RegionRead Region

Write
Block

(D)

Decode
Block
(D)

Survivor Path
Merge Block

(L=2*D)

DCR

Decision
Bits

M1 M2 M3 M4

SDWTBR

Write RegionRead Region

Write
Block

(D)

Decode
Block
(D)

Survivor Path
Merge Block

(L=2*D)

DCR

Decision
Bits

M1 M2 M3 M4

Figure 11 Survivor memory organization.

The dynamic scheduling among four RAM blocks for 10 periods of the traceback procedure is

shown in Fig. 12. The horizontal axis of Fig.12 represents the time in terms of the clock cycles, and

the vertical axis represents the column address of the memory. During SDW procedure, one

decision path (40 bits) is written to survivor memory and a WR point is used to keep track of its

position. Simultaneously, the RE pointer is used to keep track of the position of TBR and DCR

 14

operations. The WR pointer accesses the memory in the increasing order but the RE pointer

accesses in the opposite direction. Note that in the traceback processes, all bits in the same column

of the memory are accessed during write operation, but only one bit needs to be accessed during

read operation; the memory access time for both pointers is the same, but the RE pointer moves

three times faster than the WR pointer.

Survivor Data Write

TraceBack Read

DeCoded Read

0 T 2T 3T 4T 5T 6T 7T 8T 9T 10T

4D

3D

2D

D

0

Time (Clock-Cycle)

Memory
block

Survivor Data Write

TraceBack Read

DeCoded Read

Survivor Data Write

TraceBack Read

DeCoded Read

0 T 2T 3T 4T 5T 6T 7T 8T 9T 10T

4D

3D

2D

D

0

Time (Clock-Cycle)

Memory
block

Figure 12 Survivor memory scheduling.

We design the SMU with survivor memory as shown in Fig. 13.

SMU

SuPath

canWord

W
r_

ad
d

R
e_

ad
d

Candidate
Word

Memory

Write/Read
Address

Generator

Decoding

Module

Decoded
Word

W
r_

ad
d

R
e_

ad
d

Survivor
Path

Memory
Survivor Path

Candidate Word

Data ready
TraceBack

Module

Wr_add

Re_add

TB_word

Extension
Control signal

Wr_add

Re_add

SMU

SuPath

canWord

W
r_

ad
d

R
e_

ad
d

Candidate
Word

Memory

Write/Read
Address

Generator

Decoding

Module

Decoded
Word

W
r_

ad
d

R
e_

ad
d

Survivor
Path

Memory
Survivor Path

Candidate Word

Data ready
TraceBack

Module

Wr_add

Re_add

TB_wordTB_word

Extension
Control signal

Wr_add

Re_add

Figure 13 The architecture of SMU

 15

4. Hardware and Software Co-Design

The rapid hardware prototyping system is built based on hardware/software co-design methods.

The complete co-verification environment includes, software program run in a PC, hardware

module (IP) implemented in FPGA target board and communicate between hardware and software

with ISA bus architecture. Since software programs can access input/output data of hardware

module through the memory map read/write scheme of ISA, one can send test patterns generated by

software program to hardware module and observe the simulation result to verify the functionality

of IP.

We draw the configuration of the prototyping board in Fig. 14.

xc4010

xc4010

xc4062

26 bit

26 bit
7 bit

8 bit

8 bit

8 bit

xcv1000

Osc1 Osc2

32k SRAM #1
cs we oe

addr [14:0]
data [7:0]

32k SRAM #2
cs we oe

addr [14:0]
data [7:0]

32k SRAM #3
cs we oe

addr [14:0]
data [7:0]

32k SRAM #4
cs we oe

addr [14:0]
data [7:0]

State indicator (8 leds)

Down load over
indicator

Down load over indicators

gndvcc

Pull high or low

Address buffer Bi-direction data buffer

High address
decoder

cs

cs

cs

cs

bufferbuffer
mwrmre

dd[15:0]

ISA bus

xc4010

xc4010

xc4062

26 bit

26 bit
7 bit

8 bit

8 bit

8 bit

xcv1000

Osc1 Osc2

32k SRAM #1
cs we oe

addr [14:0]
data [7:0]

32k SRAM #1
cs we oe

addr [14:0]
data [7:0]

32k SRAM #2
cs we oe

addr [14:0]
data [7:0]

32k SRAM #2
cs we oe

addr [14:0]
data [7:0]

32k SRAM #3
cs we oe

addr [14:0]
data [7:0]

32k SRAM #3
cs we oe

addr [14:0]
data [7:0]

32k SRAM #4
cs we oe

addr [14:0]
data [7:0]

32k SRAM #4
cs we oe

addr [14:0]
data [7:0]

State indicator (8 leds)

Down load over
indicator

Down load over indicators

gndvcc gndvcc

Pull high or low

Address buffer Bi-direction data buffer

High address
decoder

cs

cs

cs

cs

bufferbuffer
mwrmre

dd[15:0]

ISA bus

Figure 14 Configuration of prototyping system.

 16

4.1. Continuous Speech Recognition System

The block diagram of the speech recognition system is shown in Fig. 15. It is separated into

two parts, software and hardware parts. The software part is implemented with C code running on a

PC including speech data collecting, front-end processing and parameters modeling for HMM

training tasks. The hardware part (IP) is implemented in the FPGAs prototyping board including

observation probability estimation and Viterbi processing computations.

IP Implemented
in hardware

Implemented
in software

Speech
models

Recognition
result

Untrained speech
MFCC parameters

building

Unrecognized speech
MFCC parameters

Model
parameters
computation

Observation
probability
estimation

Viterbi
Processor Training

Module

Observation
probability
estimation

Viterbi
Processor

Recognition
Module

reading

Input
speech signal

Speech data
collecting
(Sound card)

Speech signal
processing

Extract
characteristic
parameters

Feature
Extraction
Module

IP Implemented
in hardware

Implemented
in software

Speech
models

Recognition
result

Untrained speech
MFCC parameters

building

Unrecognized speech
MFCC parameters

Model
parameters
computation

Observation
probability
estimation

Viterbi
Processor Training

Module

Observation
probability
estimation

Viterbi
Processor

Recognition
Module

reading

Input
speech signal

Speech data
collecting
(Sound card)

Speech signal
processing

Extract
characteristic
parameters

Feature
Extraction
Module

Figure 15 The block diagram of Speech recognition system.

4.2. Convolutional Coding System

The block diagram of the Convolutional coding system is shown in Fig. 16. The software

running on a PC includes convolution encoding and AWGN channel simulating. The encoded

sequence is then sent to the IP on the FPGAs target board to begin the Convolutional decoding

 17

procedure.

Convolutional
Encoder

Sender

Receiver

Encoded sequence

channel

AWGN
noise

channel

Encoded sequence with noise

Decoded
Sequence

Convolutional
Decoder

Viterbi
Processor

IP Implemented
in hardware

Implemented
in software

Information
Sequence

Convolutional
Encoder

Sender

Receiver

Encoded sequence

channel

AWGN
noise

channel

Encoded sequence with noise

Decoded
Sequence

Convolutional
Decoder

Viterbi
Processor

IP Implemented
in hardware

Implemented
in software

Information
Sequence

Figure 16 The block diagram of Convolutional coding system .

5. Experiment Result

5.1 Synthesis Result

Fig. 17 and Table 1 show the layout diagram and utilization rate of resource for our IP in

Xilinx xcv1000 FPGA chip respectively.

Figure 17 FPGA Layout diagram (Target: Xilinx xcv1000 BG580).

 18

Table 1 Resource utilization of speech recognition IP.

Resource USED MAX available % USED

Number of Slices 8,446 12,288 68%

Total Number Slice Flip Flops 4,722 24,576 19%

Total Number 4 Input LUTs 14,469 24,576 58%

Number of bounded IOBs 41 404 10%

Number of Block RAMs 26 32 81%

Number of GCLKs 1 4 25%

Number of GCLKIOBs 1 4 25%

Total equivalent gate count 600,756

Additional JTAG gate count for IOBs 2,016

Minimum period 69.412ns (Maximum frequency: 14.407MHz)

Maximum net delay 16.119ns

The resource utilization listed in Table 1 shows that the maximum operating clock rate is

above 14 MHz and available to process about 14 million trellis steps per second.

5.2 Speech Recognition Rate Analysis

In order to analyze recognition rate in our speech recognition system, we gather 200 random

generated sentences include 1370 digits to be recognized by 10 users. The random generated

sentences are listed in Table 2 and the analyzed results are shown in Table 3. The experimental

results show that the average speech recognition rate is above 90%.

 Table 2 Random generated test sentences.

8182 6603 8012 50947 83512

01640 618984 143988 087783 8371073

4965109 9683484 99255333 74380880 68198973

282890781 586124258 626539246 1821197629 5200391819

 19

Table 3 Recognition rate for 10 users

Insertion Deletion Substitution

User1 15 67 53 90.15

User2 17 60 65 89.64

User3 18 55 61 90.22

User4 16 59 58 90.29

User5 17 61 60 89.93

User6 16 57 66 89.85

User7 18 65 55 89.93

User8 15 56 60 90.44

User9 16 64 57 90.00

User10 17 57 59 90.29

Recognition Errors Word Error Rate
(%)

Samples

5.3 Bit Error Rate Analysis

We draw the bit error rate simulation results for a (2, 1, 5) convolutional coding on an AWGN

channel with hard-decision FPGA simulation decoding, soft-decision software simulation decoding,

and uncoded result of our convolutional coding system.

Figure 18 Simulation results for a (2, 1, 5) convolutional coding on an AWGN

3 4 5 6 7 8
1 0-7

1 0-6

1 0-5

1 0
-4

1 0
-3

1 0-2

1 0-1

P
b(E

)

E
b
/N

o

K=6
 Uncoded
 Hard-decision software simulation
 Soft-decision software simulation
 Hard-decision FPGA simulation

 20

channel.

 21

6. Conclusion

This speech recognition IP integrates diversity function includes continuous speech

recognition, convolutional decoder of error control coding and IP function scalable extension.

General architecture of module design methods make two different application domains, speech

recognition function and convolutional coding function can work together without any conflict.

Besides, the concept of modular scalable IP implementation overcomes the limitation of IP

function extension. This modular scalable IP design method simultaneously releases the IP user

from the utilization overhead in many applications. We can call it an originative design in speech

recognition filed.

The hardware/software co-verification prototyping system ensures the reliability of IP design.

Of course improves the completeness of IP design with system integration. Therefore, we built the

continuous speech recognition system and the convolutional coding system to emphasize the

advantage of easy to integrate with our designed IP.

Reference

[1] S.-H. Choi, J.-J. Kong, “State parallel Viterbi decoder soft IP and its applications,” in Proc. of

IEEE Region 10 Int. Conf. Electrical and Electronic Technology, TENCON, Vol. 1, pp.

355-358, 2001.

[2] R.V.K. Pillai, P. D'Arcy, “On high speed add-compare-select for Viterbi decoders,” in Proc. of

Canadian Conf. Electrical and Computer Engineering, Vol. 2, pp. 1193-1198, 2001.

[3] F.L.Vargas, R.D.R. Fagundes, D.B. Junior, “A FPGA-based Viterbi algorithm implementation

for speech recognition systems,” in Proc. IEEE Int. Conf. Acoustics, Speech, and Signal

Processing, Vol. 2, pp.1217-1220, 2001.

[4] M.P.C. Fossorier, Shu Lin, “Differential trellis decoding of Convolutional codes,” in IEEE

Trans. Information Theory, Vol. 46, Issue 3, pp.1046–1053, May 2000.

[5] C.-W. Wang, Y.-N. Chang, “Design of Viterbi decoders with in-place state metric update and

hybrid traceback processing,” in IEEE Workshop on Signal Processing Systems, pp. 5–15,

2001.

