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Abstfact

Various issues in multidatabase systems were studied, includ-
ing resolulion of interoperability problems, database integra-
tion, gquery processing, and transaction management. How-
ever, deriving global constraints from the individual local con-
straints is rarely comsidered. Global constrainis in multi-
database sysiems may be used to (a) avoid local constraint
checking, (b) accomplish semantic query optimization, (c) re-
solve interoperability problems, and (d) specify semantic rela-
tionships among daetabases. In this paper, we analyze the types
of local constraints and the ways of global schema consiruction
to come up with a set of rules for global consiraint derivation.
The enforcement of the global constraints considering various
types of update operations is also presented.

1 Introduction

A closed multidatabase system [14] provides the facility by
which users can make requests to a global schema. To sup-
port the global schema, schema integration from a set of local
autonomous databases is necessary [8, 13, 16]. Because local
databases are developed independently with different require-
ments, a multidatabase system is likely to have many similar
objects with different structures or representations. As a result,
various conflicts among the local databases exist, which causes
the interoperability problems [2, 3, 14]. A query against the
global schema is decomposed into a set of subqueries — one
for each local DBMS that will be involved in query execution.
The optimization of global query processing and the integra-
tion of local schemas have been broadly studied [4, 5, 20, 21].
However, global constraint management is rarely considered in
multidatabase systems.

There are some works on global constraint enforcement in
distributed database systems. The work of Tanaka and Kam-
bayashi [19] discussed the constraint (i.e., functional, join, and
embedded join dependencies) preservation problem in a global
view constructed by a join operator. Qian {17] proposed a top-
down constraint reformulation approach for the constraints,
which can only be applied in distributed database systems.
Gupta and Widom [10] presented a method to verify constraints
by accessing remote data in distributed databases. Both works
[10, 17) attempted to optimize the constraint checking cost in
distributed database systems. The work of Reddy, et al. [18]
considered deriving new constraints that offer the potential for
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reducing query processing cost in multidatabase systems. How-
ever, the enforcement of constraints was not considered. In this
paper, we propose an approach to derive global constraints in
multidatabase systems, and discuss their enforcement strate-
gies. In the following, we list some advantages of supporting
global constraints in multidatabase systems.

e The global constraints may avoid local constraint check-
ing. That is, the global constraints can reject an update
before it is sent to local sites for processing. In this case,
the users know which global constraints are violated by
the update. Also, the constraint enforcernent is efficient.

e The global constraints can be used for semantic query
optimization [12, 18, 22].

e The global constraints may provide useful information
for the resolution of semantic heterogeneities in multi-
database systems [9].

s New constraints may be derived, which do not exist in the
individual local databases [18].

The rest of the paper is organized as follows. Section 2
describes our approach, and introduces the categories of the
constraints and the relationships between the predicates on a
view and in a constraint. Section 3 describes the derivation of
the constraints for different views constructed using relational
operations. Section 4 discusses the enforcement of the global
constraints. We conclude the paper in Section 5. The exam-
ples used in this paper are based on the following company
schema:

EM P(name,dept, age, salary)
DEPT (dept, budget, chairman)
PROJ(proj,dept, manager)
ASSIGN (name, proj)

Figure 1: A company schema.

where the attributes maneger, chairman, and name have the
same domain. Also, the attributes with the same name in dif-
ferent schemes are implicitly associated with the same domain.

2 The Approach

A relation scheme in a global schema can be considered as
a view. The views can be defined by the relational operations
[7, 11, 15]. We take selection, projection, difference, inter-
section, join, union, Cartesian product, and outer-join
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as the operations to define a view [7, 11, 15]. It is undecidable
to determine whether an arbitrary view, which can be con-
structed by the base relations and/or other views, is updatable
or not 7, 11, 15].  In this paper, we consider the updatable
views which are constructed from only the base relation(s) via
the relational operations. Also, when we say "a tuple in a
view” in the following, we mean ”a tuple in the view when it
is materialized.” .

There are two possible derivations of the global constraints
from local constraints. For example, a view V which is con-
structed by the relational operation intersection on two local
relations R; and R; is denoted by V = R; N Ry, where relations
R; and R; have the same attribute set.. Let Cy, {Vz € Ry :
70 > z.4 > 30}, and Cy, {Vz € Ry : 65 > x.A > 25}, be two
constraints on R; and Ry, respectively. Consider the derivation
of the global constraints on V from C; and Cz. One way to
specify the constraint on 4 in Vis {Vz € V : 65 > z.A > 30}.
- Another way can be {Vz € V : 70 > z.4 > 25}. The global
constraint derived by the first way is called a strong global con-
straint while that by the second way a weak global constraint.
In this paper, we consider only the derivations of the strong
global constraints.

A global constraint is strong if it requires that the tuples
which satisfy the global constraint satisfy the corresponding in-
dividual local constraint(s). That is, if a tuple satisfies a strong
global constraint, then the corresponding tuples in the base re-
lation(s) will not violate any local constraint. However, there
exist local constraints from which a strong global constraints
cannot be derived. . )

The enforcement of the global constraints is also considered
in this paper. To enforce a global constraint,local data accesses
may be needed depending on the types of the constraints. We
categorize the constraints and provide the constraint enforce-
ment strategies when local data accesses are needed.

The work we consider in this paper can be summarized as
follows:

Given a view V constructed from the base relations
with constraints C’s, derive a strong global con-
straint VC from C’s on V and provide constraint
enforcement strategies for VC.

2.1 Relationships Between Predicates

A simple predicate is denoted xfy, where z is an attribute of
a relation (same or different), y can be an attribute of a relation
or a constant, and § is a comparator, 6 € {=,#,<,>,<,>}. A
composite predicate consists of a conjunction of more than one
simple predicate. It can be represented as py Ap2 A+ - :Apm (m >
1), where p1,p2, ..., Pm are simple predicates. In this paper, we
denote a simple predicate or a composite predicate as P, Q, S,
or T. A function attr(P, R) is used to obtain the attribute(s)
of the relation R, which is involved in predicate P.

For any two predicates (simple or composite) P and Q on
a relation R, we consider their relationships as follows. If
attr(P,R) # aitr(Q, R), we say P and Q are irrelevant, de-
notedas P X Q or Q X P (e.g., P = {EMP.salary > 30k} and
Q = {EMP.age < 30}). The following relationships are dis-
cussed based on the assumption that attr(P, R) = attr(Q, R).

o equivalent (=)
P and Q are equivalent if for each tuple ¢ of R, t satisfies P
if and only if ¢ satisfies Q. It is denotedasP = QorQ =P
(e.g., P = {EMP.age = 40} and Q = {EMP.age > 40 A
EMP.age < 40}).

o subset (<)
P is a subset of Q if for each tuple ¢t of R, if ¢ satisfies
P then ¢ satisfies Q. It is denoted as P < Q (e.g., P =
{EMP.age > 40} and Q = {EMP.age > 30}).

o superset (>)
P is a subset of Q if for each tuple ¢ of R, if ¢ satisfies P
then t satisfies Q. It is denoted as P > Q

e overlap (O) » . .
P and Q overlap if for each tuple t of R, ¢ satisfies either
both P and Q or only P or Q. It is denoted as POQ or
QOQOP (e.g., P ={EMP.age > 30} andQ = {EMP.age <
40}).

o disjoint (®)
P and Q are disjoint if no tuples of R satisfy P and Q. It
is denoted as P@ Q or Q@ P (e.g., P = {EM P.age > 40}
and Q = {EMP.age < 30}).

2.2 The Constraint Categorization

In this paper, we use assertion to specify a constraint [1].
Constraint and assertion are used interchangeably when it
causes no confusion. A constraint can be represented as

Q121 €R1 Q222€Rs...Qnzn€Ry:S =T,

where Q;,1 < ¢ < n, is a quantifier (V or 3), z;,1 < 7 <'n,
is a tuple variable which denotes a tuple of the relation R;,
and S = T is an implication where S, called antecedent, and
T, called consequent, are predicates. ”S =" can be omitted if
the implication is true for any antecedent, e.g., {Vz € EMP :
z.age > 20}.

According to the numbers of tuple variables and relations
of an assertion, we classify assertions which do not involve ag-
gregate functions as follows:

e 1VI1R assertions

The 1V1R assertions involve one tuple variable and one
relation. It can be represented as

QzeR:S=T.

For example, the constraint " if an employee’s age is larger
than 40, his/her salary must be larger than. 50k is a
1V1R assertion. It can be represented as {Vz € EMP :
z.age > 40 = z.salary > 50k}.

s 2V1R assertions

The 2V1R assertions involve two tuple variables and one
relation. It can be represented as

QizeRQyeR:S=> T.

For example, the functional dependency {dept —
manager} on the PROJ relation, which can be repre-
sented as
{Vvz € PROJ Vy € PROJ r.dept = y.dept =
z.manager = y.manager}, is a 2VIR assertion.

e 2V2R assertions

The 2V2R assertions involve two tuple variables and two
relations. It can be represented as

Qiz€R; Q2y€R :S = T.

For example, the referential integrity constraint for the
dept attribute from relation EM P to DEPT, which can
be represented as {Vz € EMP 3y € DEPT : z.dept =
y.dept}, is a 2V2R assertion.

¢ MVMR assertions

The MVMR assertions involve more than two tuple vari-
ables and more than two relations.

In this paper, we discuss the 1V1R, 2V1R and 2V 2R assertions.

Let § =< R,C > be a relational schema, where R and C
denote the set of relations and the set of constraints, respec-
tively. A database state s is consisient with C if and only if all
constraints in C are evaluated as true for state s. A tuple in the
consistent database state satisfies all constraints in C. There
are two ways for a tuple to satisfy a constraint ¢, (c € C).



1. trivially satisfy: the antecedent of ¢ is evaluated as false,
given the values in the tuples. For example, the tuple
(Tony, CS, 35, 42k) in EM P relation trivially satisfies the
constraint {Yz € EM P : z.age > 40 = z.salory > 50k}.

2. nontrivially satisfy: the antecedent and consequent of ¢
are both-evaluated as true, given the values in the tuples.
For example, the tuple (Alex, EE, 45, 60k) in EM P re-
lation nontrivially satisfies the constraint {Vz € EMP :
z.age > 40 = w.salary > 50k}. :

3 Global Constraint Derivation

In this section, we derive the view constraints for the various
views according to 1V1R, functional dependency, and referen-
tial integrity constraints.

3.1 Selection (o)

The view constructed by the relational operation selection
can be represented by V = op(R), where P is the selection
predicate. The following subsections present the derivation of
the view constraints on V considering various constraints on R.

3.1.1 1V1R Assertions

Example 1 Consider the view:
Vi = Tdept="R&D" (EMP)
and a 1V1R constraint C1 on EMP:

(C1) Yz €EMP: z.dept = "R&D” = z.salary > 40k
According to constraint C1, the salary attribute values of the
tuples in V; are all larger than or equal to 40k. That is, all
the tuples in Vi nontrivially satisfy constraint Cy. Hence, the

_view constraint on Vy can be derived (replace EM P by V1 and
remove the antecedent of C1) as:

(VC1) Vz€V;:z.salary > 40k
Consider another view:
V2 = OdeptzRaD” (EMP)
According to constraint C1, all the tuples in V, trivially sat-

isfy constraint Cj. Hence, no constraint from C; needs to be
derived for V,. 1

Example 2 Consider the view:

Vi = asalaryZSSk(EMP)
and the 1V1R constrajnt C; shown in Example 1. €1 can be
equivalently represented as follows: .

(C}) Vz€EMP:z.salary < 40k = z.dept # "R&D”
The tuplesin Vi, whose salary values are larger than or equal
to 35k and less than 40k (i.e., {z.salary < 40k A z.salary >
35k} = {35k < z.salary < 40k}), nontrivially satisfy con-
straint C. The other tuples trivially satisfy constraint Cj.
Hence, the constraint of V3 can be derived as:

(VC) VzeV;:35k < w.salary < 40k = z.dept # "R&D”

Consider another view:

Vi = asalary$35k(EMP) ‘

All the tuples in V4 nontrivially satisfy constraint C{. Hence,
the constraint on V4 can be derived by just specifying the con-
sequent of constraint C;. That is,

(VCL) Vz€Vs:z.dept #"R&D."H
Property 1 Let a selection view be defined as V = ogp (R).
Consider the 1V1R constraints: : ’
(C) VzeR:8=T

The view constraints can be derived by the rules shown in Ta-
ble 1.
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[ Conditions i Derivation Rules |
TP=SIAPP=T) VeeV: 1}
{P<S}A{PxT} {vzeV: T}

(P> SIA{P =T} VzeV: 5> TJ

PO SIA{PXT;
{PRSIA{P X T}
PxS}A{P=T} -
[P<SIA{P <T] ' -
(P<SIA{P » T} || {Vz€V:PA-T = =S}
{PxS}IA{POT {VzeV:S=>T}
{P<SIA{PQT} _ {VzeV:-S}
{PxS}A{P xT} -

{VzeV:PAS=> T}

Table 1: The 1V1R constraint derivation rules for se-

lection views.

The "—" shown in Table 1 means that no constraint from C
needs to be derived.

3.1.2 2V1R Assertions

Consider a 2V1R constraint, using functional dependency (FD)
as an example. The instances of the relation PROJ are shown
in Figure 2. The functional dependency {dept — manager}

[ proj | dept | manager |
NSC92 CS Tony
NSC93 CS Tony
ITRI92 EE | - -Alex
ITRI93 IE Joe

W N

Figure 2: The instances of the PROJ relation.

holds on the PROJ relation. It can be represented as
Ve € PROJ Vy € PROJ : z.dept = y.dept = x.manager =
y.manager.

Example 3 A view Vs is defined as follows:
Vs = 0depr=—cs» (PROJ)

The view contains tuples 1 and 2 in Figure 2. If a tuple to
be inserted into Vs satisfies {dept — manager} in Vs then it
will satisfy the FD in the relation PROJ. This is because the
attribute involved in the selection predicate of the is the same
as that of the left-hand side of the FD.

Consider a view whose selection predicate does not involve
the same attribute as the left-hand side of the functional de-
pendency {dept — manager}. The view is defined as:

Ve = Umqna.gerg"Joe"'(PROJ) ’

Ve contains tuples 3 and 4. To insert a tuple (NSC94, CS,
Frank) into Vg is not allowed since it will violate the func-
tional dependency {dept —+ manager} in the PROJ rela-
tion. although it satisfies the functional dependency {dept —
manager} in Vg. W -

From the above example, we have the Property 2.

Property 2 Let a selection view be defined as V = op (R)
and a functional dependency on relation R be A — B, where
A, B are attribute sets of R. The view constraint can be derived
by the rules shown in Table 2.
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| Conditions
attr(P,R)= A
attr(P,R) # A

[| Derivation Rules ]
{A — B}

can not derive

Table 2: The FD constraint derivation rules for se-
lection views.

3.1.3 2V2R Assertions

Let a referential integrity constraint, RI, on the company
schema as shown in Figure 1 be defined as:

(RI) Yz€ASSIGN 3ye PROJ : T.pToj = y.proj

The instances of the relation ASSIGN are given in Figure 3.

IJLUJTLC | proj —|

1 John | ITRI93
2 Mary | ITRI92
3 Tom | ITRI92

Figure 3: The instances of the ASSIGN relation.

Example 4 Let V7 and V3 be two selection views on
ASSIGN and PROJ relations, respectively, defined as follows:
Ve = ap',-oanITRIgQ" (ASSIGN) and
Vg = %proj<”ITRI93” (PROJ) V7 contains tuples 2 and 3 in
Figure 3 and Vs contains tuples 3 and 4 in Figure 2.

Consider the referential integrity constraint RI. To derive
the corresponding referential integrity constraint on V7 and Vs,
we consider constraint V RI as follows:

(VRI) VzeV;yeVs: T.proj = y.proj

If the tuple (ITRI93, IE, Joe) is deleted from Vg, since ITRIO3
is not in V7, constraint V RI is satisfied. However, the deletion
will violate RI since the tuple (John, ITRI93) exists in the
relation ASSIGN. We have Property 3. M

Property 3 Let a referential integrity constraint on relations
R; and R; be defined as:

Vz€R, yeRy :z.A=y.A
For the selection views on Ry and Ry, V; = ap,(R;1) and

Va2 = op, (Ra), respectively, the view constraints can be derived
by the rules shewn in Table 3.

[ Conditions I Derivation Rules ]
P, =P, Vz eV, Eierg:z.A=y.A
P; <Py VYzeV) JyeV, iz A=y.A
otherwise can not derive

Table 3: The referential integrity constraint deriva-
tion rules for selection views.

3.2 Projection (II)

The view constructed by the relational operation projec-
tion can be defined as V = II(R), where A is a set of at-
tributes of the relation R. Consider an example of 1V1R con-
straint on R:

VzeR:S=> T
If atir(S,R) U attr(T,R) C A, the corresponding view con-
straint can be derived by replacing R with V; otherwise,
the view constraint can not be derived. For example, con-
sider the constraint €y in Example 1 and the view Vg =
Urame,salary(EMP). The corresponding view constraint of
Ci1 can not be derived because Cj specifies the relationships
between the dept and salary attribute values of the tuples. Vy
contains the name and salary attributes. It does not involve
the dept and salary attributes. Hence, we have the Property 4.

Property 4 Consider the projection views:
Vi=Ha(Ri)i=1,..m,

where A; is the attribute(s) of the relation R;. Consider the
constraint

(C) Qiz1€R; Q222€R; ... QmZm ERm : S = T.

The view constraint can be derived by the rules shown in Ta-
ble 4.

l Conditions I Derivation Rules |
UiL,attr(S, R;Y Uattr(T, R;) || R; — Vi, 1 <i<m
C Uit 4,
otherwise can not derive

Table 4: The constraint derivation rules for projec-
tion views.

"R; + V;" shown in Table 4 denotes that R; is replaced by V;
in constraint C.

3.3 Difference (-)

The view constructed by the relational operationdifference
can be defined as V = R, — Ry, where the relations R; and
Ry have the same attribute set. The difference views consist
of the tuples which are in R, but not in Ry. The views are
updatable, if (a) the tuple which will be inserted into V does not
exist in Ry and (b) the deletion from V must only be translated
to the deletion of R;. Hence, we can consider the view to
consist of only the subset of tuples of R;. The view constraint
derivations is just to replace R, by V in any constraint. The
derivation rules are described in Table 5.

Property 5 Consider the difference view, defined as V =
Rz —Ry, where the relations R; and Ry have the same attribute
set. Consider the constraint C:

(C) Q1z1€R) Q222€Rs ... Quzm €Rm :S=> T

The view constraint can be derived by the rules shown in Ta-
ble 5.

3.4 Intersection ()

The view constructed by the relational operation intersec-~
tion can be defined as ¥V = R, N Ry, where the relations R; and
R have the same attribute set. The views consist of the iden-
tical tuples in the two relations. The effect of the update to-the
view will be simultaneously translated to the two base relations
Ry and Rj. That is, the tuples in V satisfy the constraints on
R; and R,.



[ Conditions | Derivation RulesJ
R; = R: R;—V,1<:<m
otherwise -

Table 5: The constraint derivation rules for differ-
ence views.,

3.4.1 1V1R Assertions

From the definition of the intersection view, the 1ViR view
constraints can be derived by the rules shown in Table 6.

Property 6 Let V = Ry N Ry. Cp and Cy, shown as follows,
are the 1V1IR constraints on the relations Ry and Rz, respec-
tively.

(Cl) Vze€R;:S:1 =T
(CQ) VzE€Ry:Sy = T

rConaitions i Derivation Rules ]
[ T {Vz€V:S: = T1JA{Yz€V: S = T} |

Table 6: The 1V1R constraint derivation rules for in-
tersection views.

Notice that the blank condition part of Table 6 means that the
derivation rules are applied in any condition. )

3.4.2 2V1R Assertions

Let the attribute set of Ry and Ry be {4,B,C, D}. Suppose
that the functional dependency {C — D} simultaneously holds
on R; and Ry.: When an inserted tuple in V which satisfies
{C — D} is translated to the insertion in Ry and Ry, the tuple
may violate the constraint. Thus, the functional dependent
constraint can not be derived.

Property 7 Let V = Ry N Ry be a view, where R; and R»

are the relations with the same attribute set. In any condition,’

we can not derive the corresponding FD from the same FD’s
on R; and Rj. i

3.4.3 2V2R Assertions

Consider two referential integrity constraints RI; and RI; as
shown below:

(RL) VzeX; JyeY; :z.B1 =y.B
(BL) Vz€ X2 yeYs :z.By =y.B2

Consider the intersection view V again. If X1 = Ry, X2 =
R,, and Y;,Y2 ¢ {R1, Rz}, we can derive the corresponding
view constraint. This is because if a tuple is inserted into 'V,
we can check its By and B attribute values to see whether they
also exist in Y1's By and Y2's By attribute values, respectively
(if a tuple is deleted from V, no corresponding constraints need
to be checked). If (a) X1 = Ry and Y1 = Ry, or (b) X1 =Re
and Y; = Ry, the referential integrity constraint does not exist,
because they are merged into the single relation V. In the other
condition (i.e., s = Rjor Y2 = Ry), the corresponding view
constraint can not be derived, because the tuples in Ry — V
may have the same attribute values of By. If a tuple is to be
deleted from V, we can not decide whether the tuple can be
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deleted when the tuple is translated to the base relations R
and Ry. The derivation rules are shown in Table 7.

Property 8 Let the intersection view be defined as V =
R; N Ry. There are two referential integrity constraints Rl
and R, as above. The corresponding view constraint can be
derived by the rules shown in Table 7.

[ Conditions I Derivation Rules ]

Xi=RiAnX2=Ry {VxGVHyElez.Bl=y.B1}A
Y1,Ys € {R1,R2} {VzeVIyeYs :2.By =y.B2}
{X1 =R AY; = RQ}V - -
{X1 =Ry AY; = Rl}
{Xz =Ri AYy = RQ}V -
{Xz=RyAYs = Ry}

otherwise

can not derive

Table 7: The 2V2R constraint derivation rules for in-
tersection views.

3.5 Join (M)

A view defined as the (natural) join operation of the rela-
tions R; and Ry can be represented by V = R W Ry. We
discuss the view constraint derivation as follows.

3.5.1 1V1R Assertions

From the definition of the join view, the 1V1R view constraints
can be derived by the miles shown in Table 8.

Property 9 Let V = Ry X Ry. C1 and C shown ‘as follows
are the 1V1R constraints on relation R; and R, respectively.
(Cl) Vz€R;:S1 =T
(C2) Vz€Rs: So = To

[ Conditions || Derivation Rules ) ]
[ T {2V .5 > Ti I A{Vz€V:S; > T2} ]

Table 8 The 1V1IR constraint derivation rules for
join views.

3.5.2 2VI1R Assertions
Consider the following example.

Example 5 Let {4,B,C} and {A, D, E} be the attribute sets
of the relations R; and Rz, respectively. Consider the instances
of the relations R; and Ry shown in Figure 4. suppose that Ry
holds on the functional dependency {B — C} and Rz holds
on the functional dependency {D — E}. The instances of V
are shown in Figure 5. We know that V satisfies the func-
tional dependency {B — C} and {D — E}. Suppose that
the tuple (a3,b2,c2,d3,€3) is to be inserted into V. According
to Figure 5, this tuple will hold on the functional dependency
{B — C} and {D — E}. However, when the tuple is trans-
lated to the insertion in Ry and Rp, it violates {B — C} in Ry
and {D — E}in Rz. In this case, the view constraints can not
be derived. @

Property 10 Let V = R; M R; be a join view. In any con-
dition, we can not derive the corresponding FD from the FD’s
on R] and R2.
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Ry Ry
A B C A D FE
al b 1 (5] ap d1 €1
(23] b] Ci ar d2 ez
a3 by ¢ ay dz en

Figure 4: The instances of the relations Ry and R,.

A B C D E
ag b e di e
az bl [o5] d2 )

Figure 5: The instances of V = Ry X R,.

3.5.3 2V2R Assertions

The derivation of the view constraints of the join views are sim-
ilar to that of the intersection views for referential integrity
constraints. The derivation rules are shown in Table 9.

Property 11 Let V= R; M R; be a join view. There are two
referential integrity constraints RI; and Rl as shown below:

(RII) VzeX; Jyey; cx.Bp = y.By
(RI2) V$6X2 3y€Y2 : x.B; = y.B2

The corresponding view constraint can be derived by the rules
shown in Table 9.

L Conditions
X1i=RiAXy = Ry
Y1,Y; ¢ {R1, Ry}
X = Xo = RiA

Y1 =Y, = RoA -
Bi=By=A
X1 = Xo = RaA
Y1 =Y, = R4A -
Bi=By=A

otherwise

I Derivation Rules ]

{VvzeVIyeY; : 2. B; = y.B1}A
{Vz€V 3yeYs : 2.B; = y.By}

can not derive

Table 9: The 2V2R constraint derivation rules for
© join views.

3.6 Union (|J)

The view constructed by the relational operation union can
be defined as V = R; U Ry, where the relations R; and Ry
have the same attribute set. The views consist of the tuples
which are in R; or Ry. To derive the view constraints, we first
consider the ambiguity of the insertion operation on the view.
When a tuple is inserted into the view, the system will not know
which base relation(s) the tuple will be translated to. Thus,
the view constraint can not be derived. We introduce an extra
attribute in the view, named locality attribute, to avoid the
ambiguity. The domain of the attribute may contains {1,2,3},
with 1 and 2 representing that the corresponding tuples exist in
R; and R;, respectively,and 3 representing that the tuples exist
in both. The view constraints can be derived by the following
rules.

Property 12 Let a union view be defined as V = R; U R,.
The constraints C; and C> onrelation Ry and R,, respectively,
can be represented as follows:

(C1) Que1€X1.Quzi€Xi.QimoZm €EXm :S1 = T,
(C2) Q21y1€Y1..Q2;3 €EY;...Q2nyn €Yn : S2 = Ty

Let X; = Ry and Y; = R, without loss of generality. The view
constraint can be derived by the rules shown in Table 10.

{_Conditions i Derivation Rules - |
{{{Quz1€X1..Q1izi €V..Q1nTm € Xom ¢
S1 = Tl} A update(R1)} .
V{{Q21y1 EY; -~-Q2jyj € V---anyn EYn:
S2 = T2} A update(R2)}}

Table 10: The constraint derivation rules for union
view. :

When there is an update (insertion/ deletion/modification) on
V, the users must specify which relations to update in the
locality attribute. If the value of the locality attribute is
1, update(R1) = true and update(R;) = false. If it is 2,
update(R1) = false and update(R;) = true. Otherwise, it is
3, and update(R;) = true and update(Ry) = true.

3.7 Cartesian Product (x)

The view constructed by the relational operation Cartesian
product can be defined as Ry X R,. Updates on V have to
follow the cross —references condition [15]. The derivation
rules are described in Table 11.

Property 13 Let the Cartesian product view be defined as
V = R; x Ry. Consider theconstraint:

(C) Qiz1€R; Q232€Ry ... Qzm €Rm :S =T

The view constraint can be derived by the rules shown in Ta-
ble 11.

[ Conditions [[ Derivation Rules |

R;. =R, R —~V,1<i<m
R; =R,y Ri—=V,1<i<m
otherwise -

Table 11: The constraint derivation rules for Carte-
sian product view.

. o

3.8  Outerjoin (X)
The view constructed by the relational operation outerjoin
(it refers to full-outer-nature-join) [6] can be defined as V =

Ry R Ry, where V has the attribute set K U C U D, U Dy
(K # 8), where KUCUD), is the attribute set of Rz, KUCUDy
is the attribute set of Ry, K and C are the commion attribute
sets of Ry and Ry, and K is a key attribute set of Ry and Ry
while C is not. To derive the view constraints, we divide the
discussions into two parts as follows according to whetherC is
an empty set.



3.8.1 C=10

When C is an empty set, the join attributes contains only key
attribute set. The two tuples of Ry and Ry with the same
key attribute value will be merged into one tuple. R: or Ry
involved in a constraint will be replaced by V. We obtain the
derivation rules as shown in Table 12.

Property 14 Consider the outerjoin view, defined as V=

R, % Ry, where the relations R; and Ry have only the same
key attribute set. Consider the constraint IC:

(IC) Qiz1€R; Qoz2€R; ... QmZm €ERm :S=>T

The view constraint can be derived by the rules shown in Ta-
ble 12.

L Conditions “ Derivation Rules ]
{Ri=R:}V{Ri=Ry} | Ri =V, 1<i<m
otherwise -

Table 12: The constraint derivation rules for outer-
join views.

3.82 C#0

For any constraint IC involving Rz or Ry, if IC does not con-
tain any-attribute in the common attribute set C, the view con-
straint can be derived as the previous discussion (Section 3.8.1).
Otherwise, the view constraint derivation rules are similar to
the rules in union view. s

4 Global Constraint Enforcement

When an update occurs, the system checks the constraints
to see whether they are violated. To check the constraints,
local data accesses may be needed depending on the types of
the constraints. An update may be a deletion, an insertion,
or a modification. A modification can be replaced as a dele-
tion followed by an insertion. In this section, the checking of
each category of assertions for insertion and deletion will be
presented.

4.1 1V1R Assertions

Let the 1V1R view constraints on the view V be represented
as

(C) VzeV:S=T.
Consider the checking of the constraint C' as shown as follows:

e insert a tuple ¢ to V

step 1 check S(t) (S(¢) is a boolean function. It returns
true if tuple ¢ satisfies the antecedent S of C; oth-
erwise it returns false.): If it is true, do step 2; oth-
erwise the tuple ¢ trivially satisfies the constraint

C.

step 2 check T(¢) (T(¢) is similar to S(t)): If it is true, the
tuple ¢ nontrivially satisfies the constraint C' and
the insertion is accepted; otherwise the tuple does
not satisfy the constraint C.

e delete a tuple from V

To delete a tuple from V need not check the 1V1R con-
straints.
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4.2 2V1R Assertions

Consider a 2V1R constraint on V:
(FD) VzeVVyeV:z A=y A=>z.B=y.B,

where A, B are the attributes of V. Consider the checking of
the FD as follows:

e insert a tuple t to V

step 1 perform a query against the corresponding base re-
lation, say R, and store the result in A as:

A —Iptoa=t.a(R))

step 2 check A: If A = 0, t trivially satisfies FD; if A =
t.B, t nontrivially satisfies F'D; otherwise, t does
not satisfy FD.

o delete a tuple from V

To delete a tuple from V need not check the functional
dependency constraint.

4.3 2V2R Assertions

Consider a 2V2R constraint as:
(RI) VYz€eV, yeVe iz A=y A

Consider the checking of RI as follows:

e insert a tuple t to V4

step 1 perform a query against the corresponding base re-
lation of V3, say R, and store the result in A as:

A=t a(R)

step 2 check {A|: If |A] # 0, ¢ nontrivially satisfies RI;
otherwise, ¢ does not satisfy RI.

e delete a tuple ¢ from V,

step 1 perform a query against the corresponding base re-
lation of V; and Vs, say S and R, respectively as:

A1 —04=r.a(R) and Az — G 4=:.4(5)

step 2 check |A1| and |A2]: If {A;] = 0, the deletion sat-
isfles RI; if [A1] # 0 and |Az| > 1 the deletion
satisfies RI; otherwise, does not satisfy RI.

o delete a tuple from V; and insert a tuple to V;

To delete a tuple from V; and insert a tuple to V; need
not check the referential integrity constraint.

5 Conclusion

A set of rules for the derivation of the global constraints in
multidatabase systems from the individual local constraints are
proposed. The constraints represented by assertions are classi-
fied into a number of categories. The global schema is a view.
According to various views constructed from different relation
operatjons, we derive the corresponding view constraints via
the derivation rules for various categories of the constraints.
We also consider the enforcement of the view constraints. To
check the global constraints for an update, the systems may
need to query the local databases. The checking of the 1V1R
constraints does not need to access databases while the others
do. In the future, we will consider more complicated constraints
and more efficient strategies to enforce the constraints.
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