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Abstract

Traditional serializability theory is not efficient
enough to meet the needs of the advanced database
applications, for example, supporting long transac-
tions. Moreover, the new generation of database ap-
plications requires modeling techniques more powerful
than the ones offered by relational database systems.
Object-oriented databases provide a promising alterna-
tive for advanced applications such as computer-aided
design and multimedia databases. In this paper, to in-
crease the degree of concurrency control and improve
the performance of advanced database applications, we
propose a donation-based concurrency control protocol
for object-oriented database systems. Basically, our
proposed protocol is based on the granularity locking
method in the ORION object-oriented database system
and altruistic locking (which is proposed for supporting
long transactions).

1 Introduction

The new generation of computer-based applica-
tions, such as computer-aided designed and manufac-
turing (CAD/CAM), multimedia databases (MMDB),
office automation, and software development envi-
ronments (SDEs), requires more powerful techniques
to generate and manipulate large amounts of data.
These applications are termed advanced to distinguish
them from traditional database applications, such as
banking systems and airline reservations systems [2].
Transactions in these advanced applications differ from
those in conventional applications in many respects,
where a transaction is a partially ordered sequence
of read and write operations that are executed atom-
ically on the objects [3]. Some of these differences
include the duration of transactions, granularity of
transaction management features [9], the cooperation
nature and the consistency constraint. These differ-
ences make the advanced applications have roughly
performance and even cannot work under traditional
database techniques.

In the database systems, maintaining the consis-
tency of the shared data needs the concurrency con-
trol algorithms to controlling accesses to these data.
There i1s a theory which has been developed for prov-
ing the correctness of database concurrency control
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algorithms. In this theory, a concurrency control al-
gorithm is regarded as correct if it ensures that any
interleaved execution of transactions is equivalent to
a serial one. Such executions are called serializable.
Serializability theory provides a framework for ensur-
ing the correctness of concurrency control protocols.
All most conventional concurrency control algorithms
are constructed by using serializability theory. But in
the advanced database applications, traditional seri-
alizability theory is not efficient enough to meet the
needs of the advanced database applications, which
need to support long transactions, user control, and
synergistic cooperation for their specific characteris-
tics [2, 4, 5]. But these new needs in the advanced
database applications usually conflict to the serializ-
ability theory which cannot support more semantic
information and more relaxing consistency constraints
to them. Thus, there is a need for a different mecha-
nism to handle long-duration transactions [9].

Moreover, the newer generation of database ap-
plications requires modeling techniques more power-
ful than the ones offered by relational database sys-
tems. Object-oriented databases (gOODB) provide a
promising alternative for advanced applications such
as computer-aided design and multimedia databases
[7, 9, 10]. An object-oriented data model not only
provides great expressive power to decide data and to
define complex relationships among data, it but also
provides mechanisms for behavioral abstraction.

In this paper, to increase the degree of concur-
rency control and improve the performance of ad-
vanced database applications, we propose a donation-
based concurrency control protocol for object-oriented
database systemis. Basically, our proposed protocol
is based on the granularity locking method in the
ORION object-oriented database system and altruis-
tic locking [8] (which is proposed for supporting long
transactions). When a transaction requests a lock on
an object, it should use the granularitylocking method
to get the right of accessing the object. If there is any
conflict in the granularity locking process, the proto-
col will check whether the conflict object has been
donated. If the object has been donated, the trans-
action still can lock the conflicting object. However,
in altruistic locking, they only keep one copy of do-
nated object no matter the number of donations. In
this way, two problems occur. First, there is no way to



mmit the right version of data. Second, when one of
€ transactions which participates in the donation of
certain data object aborts, all of those transactions
hich participate in the donation of the same data
»ject must abort. To solve the above two problems,
2 have a different approach to the implementation of
e donate operation, called improved altruistic lock-
g. In our approach, the donate operation will create
new private object space and copy the instances of
e donated object to the new created object, then
turn the new object address.

The rest of the paper is organized as follows.
sction 2 presents the object-oriented data model
mcepts and introduces the ORION object-oriented
itabase system. Section 3 describes altruistic locking
‘otocol. Section 4 presents the proposed donation-

1sed strategy for advanced database applications. Fi-

illy, Section 5 gives the conclusions.

The object-oriented data model
In this Section, we introduce object-oriented con-
pts and the granularity locking method in the
RION object-oriented database system [6]. The core
yject-oriented concepts include the following items
l: (1) Objects and object identifiers. In an object-
1ented system, all real-word entities are represented
i objects and each object has a unique identifier. An
»ject may be a simple object or it may contain other
vjects. (2) Attributes and methods. An object can
wve one or more attributes and methods, which op-
ate on the values of these attributes. (3) Encapsu-
tion and message passing. External entities cannot
rectly access the attributes of the object. To access
e values of these attributes, messages have to be
nt to the object. (4) Classes and Instance. Classes
-ovide a means to group objects that share the same
t of attributes and methods. Objects that belong
1 a class are called instances of that class. A class
sscribes the form attributesg of its instances, and
ie operations (methods) applicable to its instances
) Class hierarchy and inheritance. The classes in
1 object-oriented systems form a hierarchy (the class
erarchy) where a subclass inherits all the attributes
1d methods of its superclass(es). Inheritance pro-
des an important means for sharing behavior among
lated objects. In ORION object-oriented database
'stem, applications impose locking requirements on
wree orthogonal types of hierarchy, and one of them
the well-known granularity hierarchy for logical en-
ties, devised to minimize the number of locks to be
t [6]. In the granularity locking, ORION supports
ve lock modes: IS, IX, S, SIX and X [6]. Instance
sjects are locked only in S or X mode to indicate
hether they are to be read or updated, respectively.

owever, class objects may be locked in any of the

ve modes. An IS (Intention Shared) lock on a class
eans that instances of the class are to be explicitly
cked in S mode as necessary. An I.X (Intention Ex-
usive) lock on a class means instances of the class
ill be explicitly locked in S or X mode as necessary.
n'S (Shared) lock on a class means that the class
sfinition is locked in S mode, and all instances of
le class are implicitly locked in S mode, and thus
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Figure 1: Compatibility matrix for granularity locking

are protected from any attempt to update them. An
SIX (Shared Intention Exclusive) lock on a class im-
plies that the class definition is locked in S mode, and
all instances of the class are implicitly locked in S
mode and instances to be updated (by the transac-
tion holding the SIX lock) will be explicitly locked in
X mode. An X (Exclusive) lock on a class means that
the class definition and all instances of the class may
be read or updated. An IS, IX, S, or STX lock on
a class implicitly prevents the definition of the class
from being updated [6]. The compatibility matrix of
Figure 1 defines the semantics of the lock modes. A
compatibility matrix indicates whether a lock of mode
M, may be granted to a transaction 75, when a lock
of mode M; 1s presently held by a transaction 77.

3 Altruistic locking

Altruistic locking is a modification to two-phase
locking (2PL) in which several transactions may hold
locks on an object simultaneously, under certain con-
ditions [8]. In altruistic locking, the basic idea is to al-
low long transactions to release their locks early, once
it is determined that the data which the locks pro-
tect will no longer be accessed. Therefore, altruistic
locking provides a third concurrency control opera-
tion, called Donate, in addition to Lock and Unlock.
Like Unlock, Donate is used to inform the scheduler
that access to an object is no longer required by the
locking transaction. However, when Donate is used,
the donating transaction is free to continue to acquire
new locks; i.e., Donate and Lock operations need not
be two-phase.

Several rules govern the use of the Donate opera-
tion by well-formed transactions. Transactions may
only donate objects which they currently have locked.
They can not access any objects that they have do-
nated. Moreover, a donation is not a substitute for
unlocking. A well-formed transaction must eventually
unlock every object that it locks, regardless of whether
it donated any of those objects. Donate operations are
beneficial because they may permit other transactions
to lock the donated object before it is unlocked.

Clearly, an altruistic scheduler should not allow an
arbitrary access to an object that has been donated
but not unlocked. To avoid this problem, an altruis-
tic scheduler places restrictions on transactions that
accept donations, i.e., those transactions which access
donated objects. These restrictions are embodied in
two rules which are observed by an altruistic sched-
uler, much as a 2PL scheduler observes'a rule that



Proceedings of International Conference on Distributed
Systems, Software Engineering and Database Systems

Time Ty Ty i Ty Ts
1) Wiock(a)
(2) WLock(b)
3) WLock(c)
(4) Donate(a)
(8) Donate(b)
(s) Donate(c)
(7 WLock(a)
(8) WLock(a)
(9) WLock(b)
(10) WLock{c)
(11) Donate(a)
(12) Donate(b)
(13) WLock(a)
(14) WiLock(d)
(15) WLock(e)
(16) WLock(b)

Figure 2: An example which shows how altruistic lock-
ing rules work: transactions Ti, T, work correctly,
transaction T3 fails to lock object a, transaction T,
fails I;co lock object d, transaction T5 fails to lock ob-
ject b.

transactions should riot simultaneously hold locks on
any object. The first of these rules is as follows:

Altruistic Locking Rule 1. Two transactions
may not stmultaneously hold locks on the same object
unless one of the transactions donates the object first.

If a transaction X locks an object that has been
donated (and not yet unlocked) by another transaction
Y, we say that transaction X is in the wake of the
donating transaction Y. A transaction is completely
in the wake of another transaction if all objects it locks
are in the other’s wake.

Altruistic Locking Rule 2. If a transaction T,
15 in the wake of another transaction Ty, then T, must
be completely in the wake of Ty until Ty performs Ty’s
first Unlock operation.

For example, in Figure 2, transaction 77 locks the
objects a, b, ¢ and donates them. When transaction
T, wants to lock objects a, b, ¢ , transaction T3 can
enter the wake of transaction Ty and lock them. When
transaction T3 wants to lock object a, transaction T3
will be rejected because object a is locked by trans-
action Ty. Transaction T4 locks object a successively
after transaction 75 donates object a. However, trans-
action Ty can not lock object d, since transaction Ty
must be completely in the wake of transaction T3, just
like transaction 75 is completely in the wake of trans-
action Ty. Transaction T can not lock object b for the
same reason, since transaction 75 locks object e which
is not donated by transactions Ty and T5.

4 A donation-based concurrency con-
trol protocol for OODB

In this section, to increase the degree of concur-
rency control and improve the performance of ad-
vanced database applications, we present a donation-
based concurrency control protocol for object-oriented
databases. To simplify our design, we apply the query
model of {1] in our method. The query model has the
following syntax: (Receiver Selector Arg; Arg,
Args ...), where Receiver is the object, or a message
which can be evaluated to an object, to which the
message is sent, Selector is the name of the method,
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(Receiver Select Arg; Args Args ...)
begin
for each superclass of Receiver do -
Request(superclass of Receiver, IS, Tran, { });
Request(Receiver, S, Tran, { });
Select the wanted instance with conditions of

Arg: Args Args ..
return the value;
end;

Figure 4: The algorithm for selecting instances

“and the arguments, Arg;, Args, etc., are objects or

blocks of code which can be evaluated to objects. In
this query model, if we have a query on one or more
instances of a class, the class and all classes specified
as non-primitive domains of the attributes of the class
must be recursively traversed. For example, in Figure
3, when we select the instances of class Person, we
also need to traverse the attribute live of class Per-
son, which takes the values of instances of class City,
as well as the domains of non-primitive attributes of
these classes. In this section, we will see how this
query model works with our method.

4.1 Select and change instances of classes

When a transaction Tren wants to read some ob-
jects under some conditions, we use Select to be the
Seléctor in the query model, which is shown in Fig-
ure 4. According to the model stated in [6], when we
want to select some instances of certain class, we need
to request a lock on its all ancestors and then lock
itself before return its selected result. The function
request in the algorithm is to use the altruistic locking:
method to check whether any conflicting lock happens.
If no conflict occurs, the algorithm will go ahead and
do the operation with wanted arguments. If a conflict
occurs, the algorithm will wait in function request un-
til the condition of conflicting lock is not happened.
The details of function request will be described later.

When we change the instances of a certain class,



(Receiver Change Arg; Args Args ...Argn)

begin
for each superclass of Receiver do
Request(superclass, IX(or SIX), Tran, { });
Request(Receiver, X, Tran, { });
Change the wanted instance with conditions of Arg;

Argy Args ... Argn—1 to the value of Argn
return the value; .
end;

Figure 5: The algorithm for changing instances

(Receiver Add Arg)
(Receiver Sub Arg)
(Receiver Update Arg)
begin .
for each subclass of Receiver do
Lock(subclass of Receiver, X, Tran);

Lock(Receiver, X, Tran);
Change the definition of the wanted attribute to Arg;
return the value;

end;

Figure 6: The algorithm for changing the definition of
a class

we need to lock the class in X mode and to lock-its
ancestors in IX or SIX mode. The algorithm'is shown
in Figure 5.
4.2 Change definitions of classes

When we want to change the definition of a class,
we have to lock all its subclasses in the inheritance
relationship. The reason is that changing the defini-
tion of a class will also change the definition of its all
subclasses, which inherit from it. Therefore, in this
case, there is no way to donate this class object, i.e.,
to share an unlocked class object among transactions.
The function lock in our algorithm as shown in Figure
6 is the same as the lock function in 2PL. In this way,
it avoids the problem that changing the definition of a
class will conflict with any change in the class lattice
rooted at the class.

4.3 Donate an object

In altruistic locking, they only keep one copy of do-
nated object no matter the number of donations. In
this way, two problems occur. First, there is no way to
commit the right version of data. For example, trans-
action T} locks and writes £ = 1 and then donates the
data object z. Transaction 7% then locks and writes
£ = 2. Next, transaction 77 commits. Since there
is only one copy of data, the value of data object z
which transaction 7 commits will be 2, instead of
1. Although serializability is maintained in altruistic
locking, a transaction may commit a data which is
not what it intends. Second, when one of the transac-
tions which participates in the donation of a certain
data object aborts, all of those transactions which par-
ticipate in the donation of the same data object must
abort, too, no matter how long those transactions have
been executed. This really violates the motivation of

altruistic locking, since altruistic locking is proposed
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for supporting long transactions. Therefore, to solve
the above two problems, we have a different approach
to the implementation of the donate operation, called
improved altruistic locking. In our approach, the do-
nate operation will create a new private object space
and copy the instances of the donated object to the
new created object, then return the new object ad-
dress, which will be described in details later. If the
donated object is an instance, the copy of the new ob-
ject should include the contents of the donated object.
If the donated object is a class, the copy of the new ob-
ject should include the definition and the instances of
the donated object. Therefore, the following two rules
must be followed, where the first rule is the same as
Altruistic Locking Rule 1, and the semantics of the
second rule will be discussed in details in the Request
function later.

Improved Altruistic Locking Rule 1. Two
transactions may not simultaneously hold locks on the
same object unless one of the transactions donates the
object first.

Let the set of transactions which a transaction Tg
is in their wakes (when transaction T, starts its first
read/write operation) be called WakeSet,.

Improved Altruistic Locking Rule 2. If a
transaction T, is in the wakes of a set of transactions,
WakeSet,, then for every data object x which transac-
tion T, accesses, ¢ must be donated by a transaction
Ty, where Ty € WakeSet,. Moreover, when trans-
action Ty unlocks the data object which is accessed by
transaction Ty, we let WakeSet, = WakeSet, - {Tp}.

We also have to change the class inheritance rela-
tionship at the runtime. Since the locking conflict will
be detected at the new copy of the donated object, the
locking path should include the new copy of the do-
nated objected, instead of the donated object. Figure
3 shows the system state of class Person initially. Fig-
ure 7 shows the system state after transaction T3 locks
class Person.Shadow which is donated by transaction
Ty, where Person.shadow is the new copy of the do-
nated object Person. The dotting lines shows the class
inheritance relationship between the class and its su-
perclass. We see that the superclass of class Sales and
class R&D has been changed to class Person.Shadow.

To simplify the implementation, we do not directly
change the class-superclass relationship when a dona-
tion occurs; instead, we apply a run-time approach.
That is, when an object searches for its superclass,
it will look for its mewest superclass by tracing the
donation relationship. For example, in Figure 7, af-
ter transaction T3 updates John’s age from 21 to 25
and donates class Person.Shadow, and then transac-
tion T3 locks class Person.Shadow.Shadow, the new
superclass of class Sales and class R&D is changed
to class Person.Shadow.Shadow as shown in Figure 8.
Next, if transaction T3 wants to search the superclass
of class Sales, it will go to class Person by the orig-
inal structure relationship between class Person and
class Sales, then go to the newest superclass, class
Person.Shadow.Shadow, by following the donation re-
lationship between class Person, class Person.Shadow
and class Person.Shadow.Shadow.

In order to implement the above donate opera-
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struct Transaction_type
{ set of obj_id_type locked_obj = { };
set of transaction_id_type donator = { }; }

class Class_type
{ public:
char* lock_mode = "NULL’;
char* real_object = *True’;
char* public = *False’;
char* commit = ’False’;
obj.id_type copy = nil;
objid_type donator = nil;
set of transactionid-type locked_tran = { }; }

Figure 9: The data structure of objects and transac-
tions

Donate(d_object)
begin

d_object.public := "True’;
end;

Figure 10: Function Donate

tion, for each object, we have to add four more
attributes: public, real_object, donator and copy as
shown in Figure 9. When a transaction donates an
object z, z.public is set to true, which is done in Func-
tion Donate as shown in Figure 10. After the new
copy of object z (called z.5hadow) is created, the ad-
dress of the new copy z.Shadow is recorded in z.copy.
On the other hand, object z’s address is recorded
at z.Shadow.donator. In this way, the donation re-
lationship is maintained by attributes donator and
copy. This step is finished in Function Make_Donate.
Moreover, in order to distinguish whether the object
is the original one or the donated one, the attribute
real_object is used. In summary, the Function Donate
is to set an object’s attribute public to "True’. The ac-
tions of creating and initializing a new copy of donated
object are shown in the function Make_Donate. The
function Donate can be used at any time when a trans-
action wants to donate its locked object. The function
Make_Donate is used in function Regquest which will be
discussed later to really create a donating space for the
transaction which wants to enter other transaction’s
wake.

Make_Donate(d_object)

begin
Make a copy of all the instances and the defini-
tion of d_object and return a pointer d_ptr which
points to the new copy named as
d_object.shadow;
d_object.copy := d_ptr;
d_object.copy.donator := d.object;
d_object.copy.real_object := ’False’;
d_object.lock.mode := "NULL’;
d_object.locked tran := { };

end;

Figure 11: Function Make_Donate
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4.4 Commit

When an object is committed by a transaction, we
need to write back the results to the permanent space.
Since there is a sequence of donation relationship
among some transactions, a commitment issued by a
transaction 77 can occur only after all the transactions
which .occur before transaction 73 in the sequence of
donation relationship have committed. (Note that to
achieve this goal, a variable commit associated with
each object is needed as shown in Figure 9.) More-
over, a transaction should return the results of the
copy of donated objects which it locked to the dona-
tor of the new copy. Furthermore, before the copy
of a donated object is destroyed, the donation rela-
tionship between its donator and the next new copy
should be updated. Some variables, including public
and commit and lock_mode should also be reset. The
commat algorithm is shown in Figure 12. Moreover, to
avoid the problem that a transaction may unlock mod-
ified objects before committing, we follow the Strict
Two-Phase Locking, in which write locks cannot be
unlocked until the locking transaction has committed.
To simplify this function, we add an unlock operation
before the end of the commit procedure.

4.5 Abort

When a transaction 73 is aborted, all of the data
objects locked by transaction 77 must be released and
all of the changes to the data objects must be un-
done. Since there is a sequence of donation relation-
ship among some transactions, the abortion of a trans-
action 77 should cause the abortion of all the transac-
tions which occur after transaction 7} in the sequence
of donation relationship. Moreover, if transaction T}
is the only one transaction which locks the copy of the
data object, then either this copy of data object is de-
stroyed (when it is not the original one) or some local
variables, including public, lock_mode and copy, are re-
set (when it is the original one). The abort algorithm
is shown in Figure 13.

4.6° Request, unlock and lock

The following three operations: Request in Figure
14, Unlockin Figure 15 and Lockin Figure 16, are used
as essential operations of other operations. In the Re-
quest operation, there are two functions must be per-
formed. One is to trace the donation relationship until
the last new copy of donated object is reached. The
other is to decide whether the requesting transaction
is in the wakes of all those transactions which have
donated data objects and some of those data objects
have been locked by the requesting transaction.

First, the Request operation will check whether
attribute r_object.public is *True’. If the attribute
r_object.publicis "True’, then we have to add the trans-
action identifier which has locked this copy of data
object r_object to a set donate_set which is used to
record those transactions which the requesting trans-
action is going to be in their wakes. (Note that the ini-
tial value of donate_set is an empty set as specified in
Figure 9.) Next, we will then check whether attribute
- r_object.copy is nil. If the attribute r_object.copy is
nil, 1t means that the object which has been donated
but the new copy of the object has not been created.
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Commit(tran)
begin
for each c_object in tran.locked_obj do
if c_object.real_object = *True’ then
begin
write c_object to permanent space;
c_object.commit = *True’;
c_object.lock_.mode := "NULL’;
if c_object.copy = nil then
c_object.public := ’False’;
Unlock(c_object, tran);
end

else
if (cobject.donator.commit = ’True’) and
(c-object.donator.real_object = "True’) then
if (c_object.public = true and
c.object.copy # nil) then

begin
copy all the changed instances to the related
instances of c_object.donator;
write c_object to permanent space;
c_object.donator.copy := c.object.copy;
c.object.copy.donator := c_object.donator;
Unlock(c_object, tran);
destroy itself;

end

else

begin
copy all the changed instances to the related
instances of c_object.donator;
write c_object to permanent space;
c-object.donator.copy := nil;
if c_object.donator.real_object = *True’ then

c_object.donator.public := ’False’;

Unlock(c_object, tran);
destroy itself;

end
else . . : " .
waiting for some time period and Committing again;
end;

Figure 12: The Commuit algérithm

Abort(a-tran)
begin
for each a_object in tran.locked_obj do
begin
send an abort message to transaction a_tran;
if a_object.copy # nil then
for each t in a_object.copy.Jocked_tran
Abort(t);
if a_object.locked_tran = { } then
if a_object.real_object # *True’ them
begin .
Unlock(a.object, a.tran);
destroy itself;

end
else
begin
. a_object.public := ’False’;
a_object.lock_.mode := "NULL’;

a-object.copy := nil;
end;
Unlock(a.object, a-tran);
end;
end;

Figure 13: The Abort algorithm
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Request(r_object, requestmode, tran, donate_set)
begin
if r.object.public = *True’ then
begin
donate_set :=donate_setU r_object.locked_tran;
if r_object.copy = nil
begin
if tran.donator # { } then
begin
if tran.donator 2 donate_set then
waiting for some time period and requesting again

end
else if tran.locked_obj #{ }
and donate_set # { } then
waiting for some time period and requesting again;
Make_Donate(r_object);
end;
Request(r_object.copy, requestmode,
tran, donate_set);

end
else if r.object.lock_mode conflicts
with requestmode then
waiting for some time period and requesting again
else,
egin
r_object.lock_mode := requestmode;
tran.donator := tran.donator U donate_set;
r.object.locked_tran:=r_object.locked_tran U {tran};
tran.locked_obj := tran.locked_obj U {r_object};
r.object.commit := ’False’;
end;
end;

Figure 14: Function Request

Unlock(u-object, tran)
begin
u.object.Jocked _tran := u_object.locked_tran - {tran};
tran.locked_obj := tran.locked_obj - {u_object};
for each t in u_object.locked_tran
t.donator := t.donator - {tran};
if u_object.copy # nil
Unlock(u_object.copy, tran);
end;

Figure 15: Function Unlock

Lock(l_object, requestmode, tran)
begin
if 1_object.lock_mode conflicts
with requestmode then
waiting for some time period and requesting again

else
begin

1_object.lock_mode := requestmode;
l_object.locked_tran := r_object.locked tran U {tran};
tran.locked_obj := tran.locked_obj U {l.object};
l.object.commit := *False’;
end;

end;

Figure 16: Function Lock
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Up to this point, the donate_set has recorded all the
transactions which have locked the original request-
ing data object or new copies of the requesting data
object. If the requesting transaction is already in the
wakes of some other transactions, which can be de-
tected by testing the condition t¢ran.donator # { },
then the requesting transaction must also ensure that
those transactions in donate_set is a subset of the ones
in tran.donator (i.e., tran.donator O donate_set) such
that the requesting transaction follows Improved Al-
truistic ‘Locking Rule 2.

Note that if transaction 77 has been in the wake
of transactions 75 and 73 due to the donated data
object X, then transaction 773 must be completely in
the wakes of transactions T5 or T3 or (7% and T3).
That is, at this point, if the data object Y is already
locked and donated by transactions Ty, T3 and T,
then transaction 7; cannot lock the data object Y.
In this case, Ty.donator = {13, T3} and donate_set =
{T3, T5, T4}. If we let transaction 77 lock data object
Y in this case, then an uuserializable schedule can
occur as follows: tramsaction 7 donates data object
X again and transaction Ty also wants to lock data
object X; a cycle between transactions 77 and Ty in
the serialization graph will occur. So does the case of
Ty.donator = {T5, T3} and donate_set = {Ty, T4} (or
donate_set = {13, T4 }).

Consider the case in which T}.donator = {13, T3}
due to the donated data object X) and donate_set =

T} for locking data object Y in our approach. Trans-

action 77 can lock data object Y in this case. Next,
if T5.donator = {T3} (due to the donated data object
X) and transaction 73 wants to lock the same data
object Y, it finds donate_set = {T%, Ti}; therefore,
transaction T3 must wait. If transaction 7% commits
and transaction T3 tries to lock data object Y again, it
finds T3.donator = { } and donate_set = {T1}. Accord-
ing to our implementation, if a transaction is not in
any wake (tran.donator = { }), but has already locked
data object X (tran.locked_obj # { }) and now must
be in the wake of another transaction (donate_set #
{ }), it must wait again. Moreover, according to our
approach, transaction T; cannot commit until trans-
actions Ty and 73 have committed

Note that while in altruistic locking, a transaction
can lock a data object only if tran.donator = do-
nate_set, since there is no restriction on the order of
commitment in altruistic locking. Consider the same
case in which 7T3.donator = {T3, T3} (due to the do-
nated data object X) and donate_set = {T3} for lock-
ing data object Y in altruistic locking: If we let trans-
action 77 lock data object Y in altruistic locking, a
problem occurs as follows. Assume that transactions
Ty and T} commit. At this point, transaction T3 is not
in the wake of any transaction; therefore, transaction
T3 can lock data object Y, resulting in a directed edge
from 77 to T3 in the serialization graph. However,
in the serialization graph, there is already a directed
edge from T3 to T3 for locking data object X. That is,
an unserializable schedule occurs. Therefore, to avoid
this case, a transaction can lock a data object only if
tran.donator = donate_set in altruistic locking; while
in our approach, to avoid this case, a transaction can



lock a data object only if tran.donator O donate_set,
since transaction 77 cannot commit until transactions
T5 and transaction T3 have committed. Therefore, we
have to relax Altruistic Locking Rule 2 to Improved
Altruistic Locking Rule 2.

If the requesting transaction violates Improved Al-
truistic Locking Rule 2, then it has to wait for some
time period and requests again. If the requesting
transaction really follows Improved Aliruistic Locking
Rule 2, then function Make_Donate is called to create
the new copy. If attribute r_object.publicis "True’ and
attribute r_object. copy is not nil, it means that the ob-
ject has been donated and there is another transaction
which has locked the new copy of the object. In this
case, the function Request will be called recursively
with a new parameter r_object.copy until the last new
copy of donated object has been reached. When a
transaction wants to lock the last object which does
not have a new copy, it will then check the compati-
bility matrix of Figure 1 and decide whether a conflict
occurs. If a conflict does not occur, the transaction
can lock the object with wanted locking mode. More-
over, we have to add those transactions recorded in do-
nate_set to tran.donator, add the requesting transac-
tion tran to the set r_object.locked_tran which records
those transactions that have locked the data object
r-object, add r_object to tran.locked_obj which records
those data objects that ¢ran has locked, and reset
r_object.commat to false. If a conflict occurs, the trans-
action will wait for a moment and then requests again.

When a transaction uses an Unlock operation, as
shown in Figure 15, to release an object u_object, it

removes itself from the u_object.locked_tran set and the .

donator set of all other transactions which have a lock
on the object u_object, since other transactions do not
have to be in the wake of this unlocking transaction. If
u_object.copy is not equal to nil, the Unlock operation
will be called recursively until the last new copy of the
donated object has been reached. The Lock operation,
as shown in Figure 16, is simply a two-phase locking
operation.

The correctness of the proposed donation-based
approach to concurrency control for object-oriented
database systems is proved in [11].

5 Conclusion

The mechanisms which solve the problems of long
transactions can be divided to two approaches: one
approach 1s extending serializability-based mecha-
nisms, the other approach is relaxing serializability
mechanisms. In this paper, we have proposed a
donation-based strategy which belongs to extending
serializability-based mechanisms to solve the problems
of long transactions for object-oriented database sys-
tems. Basically, our proposed protocol is based on the
locking method in ORION object-oriented database
system and altruistic locking How to apply the re-
laxing serializability mechanisms for object-oriented
database systems is the future research direction.
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