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ABSTRACT

In this paper, we propose a Cooperative-Based Learning
Classifier System (CBLCS) which combines the genetic-based
learning classifier system with a Man-Machine Mode! (MMM)
to come up with better performance than traditional classifier
system. The proposed MMM consists of two constituents:
Conlict Resolution Mechanism and User Interface Component.
In particular, we use a Reliability Probability to decide whether
to take the user’s advice or not when conflicts occur. An
elevator-scheduling problem is then used to demonstrate the
performance of the proposed CBLCS approach. Results show
that the CBLCS can improve not only the learning speed but
also the solution quality.

1. INTRODUCTION

A system cannot survive long in a dynamic environment
unless the system keeps pace with environment. However,
the cost of development a system is usually not trivial. As
a result, how to extend the life of a system is becoming
important. If a system can adapt itself to a new
environment, then the system is supposed to live longer.
A number of machine-learning systems {1} have been
proposed during the past two decades. These systems can
more or less adapt themselves to the environment through
their embedded learning mechanism. One of these
branches is Classifier System (CS) {2, 3, 4], which is a
kind of new genetic-based machine learning mechanism
in the evolutionary computation field. Because of its
learning ability, so the word “learning” was usually
preceded to the name, to make: “Learning Classifier
System” (LCS). The initiator of research in Genetic
Algorithms (GAs) and Classifier System (CS) is John
Holland. Holland published the book “Adaptation in
Natural and Artificial Systems” [5], and from then on
many papers and dissertations began to be published by
different researchers. For example, [6] proposed a Zeroth
Level Classifier System (ZCS), which preserved much of
Holland’s original framework but simplified it for

implementation by introducing the matching set and the
action set. Later, [7] continued to present XCS, in which
each classifier maintained a prediction of expected payoff,
but the classifier’s fitness was given by a measure of the
prediction’s accuracy. Recently, [8] proposed a
cooperative learning classifier system, which elaborated
the key similarities between learning classifier systems
and artificial neural networks (ANN). He suggested that
an ANN, with genetically evolved receptive fields, is a
type of learning classifier system.

Although these studies have provided valuable
frameworks in order for a system to be adaptable, none
mentions the cooperative architecture of human and LCS.
This paper describes a Cooperative-Based Learning
Classifier System (CBLCS) [9] that combines the
advantages of both the leaming ability of XCS and the
valuable experience of the user. We testes the architecture
on an elevator-scheduling problem and find that the
performance is promising. The results of this study may
be of interest to researches who want to enhance the real
world application of the classifier systems.

The paper is organized as follows. Section 2 presents the
Leaming Classifier Systems (LCS). Section 3 describes
the architecture of CBLCS. In section 4, the MMM of
CBLCS is proposed. Experiments on the elevator-
scheduling problems are tested in section 6. Finally,
conclusions are given in section 7.

2. INTRODUCTION TO LEARNING
CLASSIFIER SYSTEMS

In thxs section, we will briefly introduce the concept of
LCS, including Holland’s original prototype of CS and
Wilson’s ZCS and XCS. The last two frameworks
improve the first one by simplifying to increase
understandability and performance. Moreover, it is easier
for us to implement.

-189-



1998 Intemational Computer Symposium
Workshop on Artificial Intelligence )
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C,

2.1 What Are Classifier Systems?

The first descriptions of classifier systems appeared in
[10). This led to Cognitive System One (CS-1) {11], the
first application of a classifier system. A simple classifier
system maintains a set of rules, called classifiers,
encoded by the combinations of ‘0’, ’1” and ‘¥ (don’t
care). Figure 1 [3] shows a simple framework of the
simple classifier system, which is composed of three
components, namely, Classifier System (performance
level), Bucket Brigade (leamning level) [12], and Genetic
Algorithm (discovery level) [5, 13]. The classifier system
is the main component that uses a set of If-condition-
Then-action classifiers to control the whole system by
receiving message from the environment, matching
messages with the classifiers, and sending messages to
the environment for an corresponding action accordingly.
Meanwhile, the Bucket Brigade mechanism awards those
matched classifiers by distributing the feedback from the
receivers, such as the environment. Moreover, the
Genetic Algorithm injects new classifiers into the system
by the genetic reproduction, crossover and mutation
operators. What is the essence of a CS? In a word, it is a
rule-based, incremental learning system with rules
evaluated through experience and evolved by a
Darwinian process.

<3> Genetic Algorithm
<2> Bucket Brigade
M,
Messages from ges to
input irglterface output mter_face
= <1> Classifier System -
Payoff

Messages from internal monitors
(goal)

Figure 1. Architecture of a Simple Classifier System

2.2 What Is ZCS?

Though Holland’s architecture is nearly perfect, its
framework is very complicated. In other words, it is too
perfect to implement. As a result, simplification is
important. [6] simplifies Holland’s CS and proposes the
Zeroth-level Classifier System (ZCS). Here, “Zeroth-
level” refers to the reduction of the CS to its minimum
number of operational components. The zeroth-level
preserves the essence of the CS without the complex
extensions existing in CS research. The architecture of
ZCS is shown in Figure 2, where [P] denotes the
population set, [M] denotes the matching set, and {A] and
[A], denote the cument and previous action set,
respectively. ZCS uses [M] to group classifiers of the

same action and calculates the sum of strength of the
same group. Action selection is conducted by Roulefte
wheel selection, the most popular selection method, and
classifiers of the winning action are put in [A]. So, even
classifier with weakest strength has the chance to be
selected because of the effect of the action-based
selection. In addition, ZCS introduced a new GA operator,
Covering, which produces a new classifier by matching
the input message with some proportions of don’t care
(‘#’) in the condition part, and selecting a random action
in the action, when there is no classifier fires, i.c., {M] is
empty. For more details of ZCS, and other difference
between CS and ZCS, please refer to [6].
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Figure 2. Architecture of ZCS

2.3 What Is XCS?

[7] further proposes the XCS to investigate the issues of
rule strength and credit-assignment. In XCS, each
classifier maintains a prediction of expected payoff, but
the classifier’s fitness is given by a measure of the
prediction’s accuracy. XCS tries to extend the original
strength-based fitness to a more exact accuracy-based
fitness credit assignment. [7] introduces three new
parameters in his XCS: prediction (p), prediction error
(&) and fitness (f). p is used in classifier’s action-
selection; f; GA’s parent-selection; £, fitness updating.
In ZCS, general, but inaccurate, classifier survives;
however, in XCS, because of the effect of the more
accurate fitness-prediction mechanism, selective pressure
against too general classifiers, but toward classifiers that
are both accurate and maximally general [14]. In other
words, it can distinguish with the difference between the
accurate classifiers and the over-general ones. Essentially,
the architecture of XCS is similar to that of ZCS;
however, the more sophisticated selection that accuracy-
based makes possible. Also, GA works in the whole
population set in ZCS; whereas, it works only in the
match set in XCS. Moreover, the learning algorithm used
in ZCS is Bucket Brigade, but XCS further combines it
with Q-learning [15]. An example adopted from [7] to
illustrate the action selection procedures of XCS is
shown in Figure 3., in which a fitness-weighted average
of the prediction of classifiers advocating action a;, P(a),
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is calculated for each a;. Then the P(a) values are placed
in a prediction array, and an action of the maximum P(a)
is selected. For more details of updating the p, € and f,
and other differences between ZCS and XCS, please refer
to [7, 16, 14].

Match Set [M]

01:(43*99+27*3)/(99+3)

classifier p e f 3
ll:(14*52+l8*92)/(52+92)

#011:01 43 .01 99
#0##:11 14 .05 52
001#:01 27 24 3
#0#1:11 18 .02 92

Prediction Array

00 01 10 11
nil 425 nil 16.6

Action Set [A]
classifier p e f *
#011:01 43 .01 99 |egmemmrmimmeee  TEXIDUM
001#:01 27 24 3 o

Figure 3. Accuracy-based Selection of XCS

3. ARCHITECTURE OF CBLCS

CBLCS is based on the cooperative architecture of XCS
(agent) and MMM (user). XCS is a suitable agent for
three primary reasons: the learning ability, the creativity
and the rule-based representation. First, the learning
ability in XCS is its reinforcement mechanism using
rewards from environment, which can lead the system
toward the maximum reward. Second, the creativity
means the implement of genetic algorithm, which can
enable the system to jump from some absorbing states.
Third, the rule-based representation can be translated as
the human knowledge, just as that of the expert systems
do. As to the MMM, we design two constituents, the
Conflict Resolution Mechanism and the User Interface
Component, to let the user join the learning process. The
user interface component has two functions, to interpret
the agent’s decision and to encode the user’s knowledge.
When the agent accepts the situation from environment,
the user interface component will show the current
situation, display all the decisions from the agent and the
prediction values about those decisions. On the other
hand, the conflict resolution mechanism resolves the
conflicts accordingly between the agent and the user.

The scenario is going as the description undemeath.
When the environment has changed and the agent is
required to make a decision, the Detectors of agent
receive the status from environment at first. Then, the
Detectors encode the status into a binary string and pass it
to the Classifier-Set. When the Classifier-Set gets the
binary string, it would compare all the condition part of
its classifiers with the binary string and collect the copy
of matched ones to a Match-Set. Next, the Genetic
Algorithm may invoke. After those processes, all the
possible decisions the agent could make are in the Match-
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Set, and these data will be passed to the User-Interface,
which can decide the way to display those data, do some
prediction calculation and wait for the user’s response. If
the User agree the prediction, then the agent will make
the decision by the original Match-Set. Otherwise, the
user’s decision will flow into the Conflict Resolution
Mechanism with the original Match-Set. If the user wins,
then the user’s decision will be encoded as a new
classifier to form a new Match-Set to substitute the old
one. If not, then the original Match-Set will not be
changed. The Conflict Resolution Mechanism will
accumulate both the reliability of the user and that of the
agent. In later section, the detail design about the Conflict
Resolution Mechanism will be discussed. For now, the
overall architecture of CBLCS is shown in Figure 4, and
the corresponding processing steps are listed after it.

l Environment J

Effectors

Figure 4. Architecture of CBLCS

1. The Detectors check whether environment sends input
message.

2. Each condition part in the Population Set [P] is
compared with the detector string. If the bit at every
position in a classifier’s condition matches the
corresponding” bit in the detector string, put the
classifier into the current Match Set [M].

3. Predict [M]’s possible action and display it to the user
interface.

4. If the user does not agree with the system’s action
input a new action via the User Interface Component.
Otherwise, go to step 6.

5. Within the Conflict Resolution Mechanism, make a
choice based on the Reliability Probability. If the user
wins the competition, replace [M] with the user’s rules.

6. Update each Pfa) in the prediction array, by
calculating the fitness-weighted average of the
prediction of classifiers advocating a,, where g, denotes
the i* action. If no rule supports a specific action i/,
then just put a “nil” in P(a,).

7. From the prediction array, select the largest P(a;).

8. The corresponding g, is sent to Effectors, and carried
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out in the environment.

9. Multiplying a,by a discount 7, we have B. Store Bina
Bucket and subtract portion of p, £ and f from the
corresponding parameters of [A].

10. If the environment produces reward, then distribute
the reward to the previous Action Set [A].;.

11. Adding the reward from environment to the Bucket,
we have P.

12.Modify p, ¢ and f'of [A] ., interms of P.

4. MAN-MACHINE MODEL

We propose the MMM to build a cooperative and
competitive mechanism by which the user can work with
the system together. The rationale of the approach is that
the whole system is able to learn to make certain
judicious choice through MMM, which is composed of
two parts as below.

4.1 Conflict Resolution Mechanism

By conflict resolution we refer to the choice made when
the decisions between the system and user are
inconsistent. To judge which one, the system or the user,
is dependable is not an easy task. When the system’s
performance is poor, we would like to count more on the
user. On the other hand, we tend to count less on the user
to preserve the original decision when the system
performs well. In order to resolve the conflicts between
the system and the user, we use a Reliability Probability
(RP) to decide whether to accept the user’s decision or
not. In other words, we use the RP to measure the
relative importance between the system and the user.
Upon receiving a reward from the environment, it is the
right time to update the RP. If the reward is a negative
value, the RP will decrease; nevertheless, the RP will
increases.

4.2 User Interface Component

The communication between the system and the user is
conducted with the help of user interface component. We
need to consider the knowledge representation problem
here in the design of the user interface, i.e,, how to
represent the user’s knowledge. For reducing the
incompatibility between the system’s classifiers and the
user’s input, we decide to use the same representation as
that of the system. This can avoid misunderstanding
induced by unnecessary knowledge transformation from
the user to the system. The user needs only to key in his
suggestions directly in a format similar to that of the
classifier, combinations of 0, 1, and #. However, other
people may use an user-friendlier interface, e.g., natural

language front end or graphic user interface, at an
expense of some forms of transformation.

5. EXPERIMENTS

The proposed CBLCS architecture was tested on a set of
elevator-scheduling problems to verify whether the
MMM can help to (1) increase the convergence speed,
and (2) decrease the number of human interruption during
the learning process.

5.1 The Elevator-scheduling Problem

The elevator scheduling is a high-dimensional, dynamic
problem. There is not a single algorithm that can
optimize the schedule because the requirement changes
dynamically. Figure 5 shows a status of the elevator
problem at a specific time step, where the black
rectangle denotes the elevator, the plus symbol denotes
an entrance requirement, and the minus symbol denotes
an exit requirement on a specific floor. The problem is to
schedule the four elevators in a building with 10 floors.
The elevators are to carry customers from one floor to
another under the following assumptions:

Shaft 1 Shaft2 Shaft3 Shaft4 Buttons
—_— 1 down
. ' ]

!

—_ — 1 up
Figure 5. The Elevator-scheduling Problem

1.  There is no inter-relationship between any two
elevators. I.e, the status of one elevator will not
affect that of the other, and vice versa.

2. Each entrance requirement contains no more than 6
customers and no less than 1 customer.

3. There are at most 6 requirements under service for a
single elevator.

According to assumptions 2 and 3, we know that the
maximum capacity of an elevator is 36. Moreover, the
elevator-related parameters used in the experiment are
assumed below:

1. Number of floor: 10 (from 0 to 9),

2. Number of elevator: 4 (from 0 to 3),

3. Average time of a requirement: 5 seconds,

4. Speed of elevator: 1 floor / second,

5. Time taken by each entrance or exit: 0.5 second /



person.

Other requirements not yet mentioned are all assumed to
be a uniform distribution.

5.2 Representation

We used 12 bits to encode an input message. Bit 0, 4 and
8 encode information about the first elevator; bit 1, 5 and
9, the second, etc. Each input message is further divided
into three groups; the detail is presented as below.

1. The first group, i.e., the first 4 bits, refers to the
distance  between each elevator and its
corresponding requirement. If the distance is less
than or equal to 2 floors, then assign the
corresponding bit to 1; otherwise, assign it to 0.

2. The second group represents the direction between
each elevator and its corresponding requirement. If
both are of the same direction, then assign the
corresponding bit to 1; otherwise, assign it to 0.

3. The last four bits refer to the customer’s longest
waiting time of each elevator. If the waiting time is
less than or equal to 15 units of time, then assign the
corresponding bit to 1; otherwise, assign it to 0.

We further used 2 bits to encode the output message: 00
denotes elevator 0; 01, elevator 1, etc. Parameters used in
CS and GA are mostly adopted from [7). For example,
parameters related to the initial accuracy are: p = 10, &=
0, and f = 10. The learning rate (1) equals to 0.71,
discount factor (B) 0.2, and value of the fraction of
classifier deletion (&) 0.1. The GA time threshold(8) is
set to 25, crossover rate( x ) 0.5, mutation rate( 1) 0.33,
and the population size 50. A detailed description of these
parameters is given in [7].

6. RESULTS AND DISCUSSIONS

The experiments were set up into two groups: the
standard mode and the contrast mode. The latter consisted
of one experiment conducted purely by the user and the
other purely by the XCS. As to the former, we conducted
nine experiments to test on a variety of man-machine
learning processes. Each of the 11 experiments lasted for
30 units of time, and, in turn, each unit of time was
composed of 10 requirements. That is, we interrupted and
collected data from the learning process per ten job
requirements (randomly generate), and repeated it for 30
times each test. When we interrupted the process, we got
another copy of the classifier set. Altogether we have 30
copies of classifier sets for each test. The reason to cut
the learning process into 30 pieces is trying to find the
'trajectory’ of the learning characteristics. Then we further
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produced 5 set of fix data as the input; you might call it a
fix scenario. Next we took away the learning mechanism
and put those copies of classifiers collected from different
phases into the fix scenario to get the performance purely
by the XCS. In our experiment, the performance at each
unit of time of the tests was measured by the customer’s
average waiting time and all the tests were conducted by
the same person in order to have a stable environment.

The following nine figures presented the performance of
CBLCS vs. XCS. Hereafter, we often refer CBLCS as
MMM for the latter does not exist alone without being
embedded in the former. From Figures 6-1, 6-2, 6-4, 6-5
and 6-7, we obtain that the overall performance of MMM
is more stable than that of the XCS. Though the
performance of MMM is rather unstable in the first half
of Figure 6-8, it is approaching stable in the second haif.
The performance of MMM of Figures 6-3, 6-6 and 6-9
remains unstable even in the latter part of the time step.
However, it is still more stable than that of the XCS. In
general it is clear that, with the help of the MMM in the
learning process, the CBLCS outperform the XCS. In
order to observe more on the learning ability, we plotted
the average and the standard deviation of the user’s
performance in Figure 7 in which we know that the user’s
common sense is far better than that of the XCS.

Then, we calculated the difference of the last 5 waiting
times of the user and the corresponding waiting time of
the XCS. Similarly, the difference between the user and
those of the nine MMMs were recorded. Next, we

"average each of the five differences and put them in the

column entitled convergence value as shown in Table 1.
We can see more clearly that all of the convergence
values of the MMM are very close to 0. In other words,
their final performance is very similar to that of the user.
Also, none of the MMM model’s convergence value is
larger than that of the XCS. So, we can say that the
MMM does improve the performagce of the XCS.

1stMMM

1.964
20dVIVM "0.76
3rdMMM 2.308
4thMMM 1.276
SthvIMM 0.264
GthMMM 1.916
7thMMM 0.924
SthMMM 0.924
9thMMM 3.564

Table 1. Value of Convergence

Finally, we further plot the RP of the CBLCS with MMM
in Figures 8-1 to 8-3. The initial value of the RP is

-193-



1998 Intemational Computer Symposium
Workshop on Aificial Intelligence

December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.O.C.

assumed to be 0.6. The system is told to increase the RP
by 0.02 if the user makes good decision; otherwise,
decreased it by 0.03. Here, we multiply the RP by 100
and plot 3 tests in a Figure. We found that the RP was
generally descending in all the nine tests. In a sense, it is
an indication that the system counts less on the user as
time advances. In other words, the system does learn
something from the user during the whole process and
becomes more and more intelligent.

7. CONCLUSIONS

The proposed CBLCS architecture uses the idea of the
cooperation between man and machine learning by
combining the MMM into XCS. User contributes his
knowledge through the user interface component, and the
system then decides whether to take the advice from the
user or not. The more the user participates in the system,
the more he is satisfied with it. Thus, the whole system
can adapt itself sooner than without the wuser’s
participation. CBLCS is then tested on the elevator-
scheduling problem. The performance is promising in
several respects.

1. CBLCS outperforms XCS as far as the stability is
concerned.

2. The solution quality of CBLCS is better than that of
XCSs.

3.CBLCS learns experience from the user and
accordingly avoid unnecessary trial-and-error during
learning,

To sum up, with the addition of the MMM, CBLCS
changes its role from the original decision-maker to a
dual one, decision-support and knowledge-acquisition.

1. Decision Support System: If the user is a newcomer
or unfamiliar with the environment, the system plays
a role in decision support. For example, in a
scheduling environment, in the absence of user’s
experience, the system leams the scheduling
knowledge by reinforcement from the environment.
The user can then use the schedule that still
guarantees the quality to some extent. Otherwise, the
novice may produce a terrible schedule due to his
inexperience. As a result, in this sense we can say the
CBLCS plays a decision support role.

2. Knowledge-Acquisition System: If the user is an
expert, the knowledge acquisition role comes to play.
For example, in a similar scheduling described above,
an experienced user is supposed to contribute useful
suggests during the scheduling process. The system
can then make use of these suggestions as well as its
embedded mechanism to learn how to schedule. As a
result, we can say that part of the scheduling
knowledge learned in the system is the accumulation

of human experience. In this sense, the CBLCS can
be regard as a knowledge acquisition tool.
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