1998 International Computer Symposium
Workshop on Software Engineering and Database Systems
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

AN INTERACTIVE LOTOS TOOLSET
FOR USERS IN INDUSTRY

Soosun Cho, Kwangyong Lee, Youngbae Oh, and Heung-Nam Kim

Software Engineering Department, ETRI — Computer & Software Technology Laboratory,
161 Kajong-dong, Yusong-gu, Taejon, 305-350, KOREA
Email:scho@etri.re kr, kylee@cub.etri.re.kr, {yboh, hnkim}@etri.re.kr

ABSTRACT

This paper reports on an interactive toolset for editing and
analyzing LOTOS specifications. It has been developed for
the industrial use in telecommunication and information
systems, particularly for the small-to-medium sized enter-
prises. In consideration of the poor environment of formal
methods in Korea, it was designed to satisfy usual re-
quirements for novice formal developers - usefulness and
convenience. For this aim, easy-to-use graphical interac-

tivity was implemented as the most remarkable feature of

the toolset.

The toolset consists of two individual tools: a syntax-
directed editor and a visual simulator for LOTOS. The
syntax-directed editor provides template-based input and
dynamic syntax checking. It serves user-friendly editing
methods. The visual simulator is a tool to analyze a speci-
fication through step-by-step graphical interactions and
eventually check whether it behaves correctly.

1. INTRODUCTION

Formal methods have long been discussed in the software
engineering community. In general, it is suggested that us-
ing formal methods will result in highly reliable system.
However up to date, formal methods have not been suffi-
ciently applied in industry. Only recently have some results
of its application been reported [10]{15][18]. In paper [4],
authors pointed out that for ideal use of formal methods,
the researchers should strive to make their notations and
tools accessible to nonexperts. Also, they emphasized that
education is vital to the success of the formal methods.

In this paper we present a toolset for editing and analyzing
LOTOS specifications. This toolset has been developed as
a part of the project “TISDM: Telecommunication and In-
formation Systems Development Methodology”, which
aims to advance techniques for developing and maintaining
telecommunication and information systems providing a
wide range of services on the information superhighway
[12]. The results of the project are expected to be follow-
ing:

® To provide a standard developing method for tele-
communication and information systems

® To transfer technology to small-to-medium sized en-
terprises

As a part of TISDM project, the LOTOS toolset also has
the objective to support small-to-medium sized enterprises
for software quality improvement and productivity en-
hancement. We took LOTOS as a target specification lan-
guage for telecommunication systems, and developed a
LOTOS toolset for syntax-directed editing and visual
simulation.

This project is the first attempt in Korea to develop a
methodology based on formal methods, and distribute it to
the industry. Thus, the toolset was designed for providing
convenience and usefulness, in consideration of the poor
environment of formal methods in Korea. Specially, among
the many available features of specification support tools,
we chose the easy-to-use graphical interactivity first of all.

The developed toolset is composed of a syntax-directed
editor and a simulator, which are called SyDL, a Syntax-
Directed editor for LOTOS and ViSL, a Visual Simulator
for LOTOS. Because editing LOTOS specifications is not
easy work for beginners, a user-friendly, syntax-directed.
editor is needed. Also, the step by step simulation is help--
ful to start applying LOTOS to the practitioners’ develop-
ment environment. Simulation is a rather informal valida-
tion method compared to model checking or theorem
proving. However, it provides rapid replies to an analyzer.
Because simulation is very useful during the initial debug-
ging, it would be the most accessible activity for the non-
experts. Furthermore, simulation works on the LOTOS
specification only, without any reference implementation
or test cases, thus, being simply applied.

As the results of TISDM project, the toolset will be con-
tributed to novice formal developers of small-to-medium
sized enterprises to use formal methods in telecommunica-
tion system development. We expect that it is also helpful
to educate in formal language courses at universities,

The layout of this paper is as follows. Section 2 and 3 are
meant to introduce LOTOS language and surveys the ex-
isting LOTOS support tools. In section 4 and 5, we discuss
the structures and functions of SyDL and ViSL. And their
implementations are discussed in section 6. Concluding
remarks are given in section 7.

2. LOTOS

LOTOS (Language Of Temporal Ordering Specification)
was designed as a very high level specification language
for the abstract specification of communication systems.

-284-

Originally it has been developed specially for [SO-0OS1
(Open Systems Interconnection), for specifications of OSI
protocols and services. But it is applicable to distributed,
concurrent information processing systems in general
[2}{11]. LOTOS meodels reality by means of atomic events
that are carefully ordered in time. A specification states the
allowed sequences of events, without necessarily stating
how these sequences are achieved.

In LOTOS, a system is seen as a set of processes that inter-
act and exchange data with each other and with their envi-
ronment [2). The inter-process communication occurs by
means of a “rendezvous” mechanism, called “interaction”
or “synchronization”. Process participates in a “rendez-
vous” if and only if they all offer an event at the same in-
teraction point, called “gate”.

One of the most important features of LOTOS is the fact
that the dynamic semantics of a specification can be
brought out by execution of it. Because LOTOS semantics
are defined operationally, it is possible to implement these
semantics in an interpreter, which for a behavior expression
can enumerate the set of possible next actions and the be-
havior expressions resulting by the execution of each one
of them [16]. In this paper, the execution of LOTOS be-
havior expressions, particularly, the user-friendly interac-
tion for the execution is one of the main topics.

LOTOS has two main components: a “data” component
that deals with the description of data structures and value
expressions based on the formal theory of Abstract Data
types ACT ONE [7}, and a “control” component that de-
scribes the externally observable behavior of the system.
This component is based on Milner’s CCS (Calculus of
Communicating Systems) [17]. If the data types are not de-
fined, so can not be used on the process synchronization, it
is called basic LOTOS. On the other hand, if the process
synchronization involves the exchange of data values, it is
called full LOTOS. Target of our toolset is full LOTOS.
Therefore, the concerned process synchronization occurs
with an action which is formed of three components: a gate,
a list of event, and a optional predicate

3. EXISTING LOTOS SUPPORT TOOLS

Many LOTOS support tools are developed in LOTOSphere
[13] to compose the design environment, LITE (Loto-
sphere Integrated Tool Environment). One of the LITE in-
dividual tools, CRIE [1] is a structured editor that incorpo-
rates the syntax and static semantics of the complete
LOTOS language. The tool gives immediate feedback
when a syntax or static semantics error is typed by the user.
But currently, this tool is not being distributed, any more.

As a simulator, SMILE [6] allows a user to evaluate the
LOTOS behavior symbolically. It contains functions for the
analysis of the abstract data type part of the specification,
execution and debugging the LOTOS specification, trans-
formation of the specification into strong bisimulation
equivalent EFSM (Extended Finite State Machine).

Another validation tool in LI_TE, LOLA [14] is a transfor-
mational and state exploration tool with application in

1998 International Computer Symposium
Workshop on Software Engineering and Database Systems
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

testing, simulation, debugging. The transformation func-
tionality allows the generation of the equivalent EFSM.
The execution functionality can be used to simulate
LOTOS specifications step by step.

Many other LOTOS tools also have been developed out-
side of the LOTOSphere project. The University of Ottawa
LOTOS Toolkit [8] is an environment to analyze LOTOS
specifications, based on the integration of several tools.
ISLA [9] is a step by step executor. It also provides the
service of checking syntax and static semantics of a
LOTOS specification.

Most of the preceding tools were developed from re-
searches at laboratories of universities, thus the user-
friendly interactions or useful services were not considered.
Because the human mind is strongly visually oriented and
acquires information at a higher rate by relying on graphi-
cal relationships rather than by reading stream of text [20],
it might be the most important feature of a tool to provide
easy-to-use graphical interaction mechanism for LOTOS
validations.

There have been some trials for visual approaches using
LOTOS. One of them is G-LOTOS [3] a graphical syntax
for the LOTOS, which is an ISO international standard also.
G-LOTOS is intended to provide a better readability and
more intuitive understanding of formal specifications than
textual LOTOS. The individual tool of LITE, Glotos sup-
ports the editing of G-LOTOS. However the aim of our re-
search is to provide the convenient editing method and
easy-to-use graphical interaction mechanism for production
of correct standard LOTOS, so no attempt was made for
the graphical representation itself.

Another work for visual approach using LOTOS is SOLVE
(Specification using an Object-based, LOTOS-defined,
Visual language) [21]. The aim of SOLVE is to support ef-
fective specification and visual animation. For this aim, the
SOLVE language and a set of tools that allow direct visual
animation of systems specified in this language have been
developed. It was designed to be used by people who are
not familiar with formal languages.

bitmap file handle fdcomms stderror
I !
stdiry to_hippof
to.disp stdin
displayer animator hippo
stdout/ to_ardrmy/
l to_anim 1 stdout
stderr/fdaram stdin/stdout/stderror
Fig. 1 Interfaces between SOLVE Animation Tools

The SOLVE tools run under the X window environment for
animating specifications written in the SOLVE language.
The interfaces of SOLVE animation tools are as Fig. 1. In
the SOLVE animation tool, an early LOTOS simulator
hippo, the predecessor of SMILE is used as simulation en-
gine. When animator is invoked with a LOTOS specifica-

-285-

1998 International Computer Symposium
Workshop on Software Engineering and Database Systems
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

tion file, it spawns displayer and hippo as child processes.
Animator communicates via Unix pipes to/from the stan-
dard input/output of displayer and hippo.

The SOLVE tools inspired and shaped our work. Our
LOTOS toolset also was developed for effective specifica-
tion and simulation. It was designed to provide user-
friendly, graphical interfaces for editing and simulating.
Unlike SOLVE, our primary concern is to deal with
LOTOS specification itself. For the effective specification,
the template-based editing is proposed, and for the en-
hanced interface of simulation, the graphical views of ex-
ecution of LOTOS behaviors are presented. Because any
well designed graphical interface confirms comprehensi-
bility and usability of a tool, we consider this aspect as the
most important feature of the toolset.

4. SyDL

4.1 Overview of SyDL

SyDL is designed for users who are not familiar with
structure and syntax of LOTOS language. In order to sup-
port production of correct specifications, SyDL allows the
syntax-directed editing which is realized by direct input of
syntax templates and dynamic syntax checking. Most of
users not familiar with LOTOS usually make mistakes very
often, because the greater part of the LOTOS-based work is
editing of specification. Template-based input might be
helpful to overcome such a problem. SyDL functions are as
follows:

® Normal editing

® Direct input of templates by syntax trees

® Dynamic syntax checking for the partial or whole
specification

® Key words coloring

4.2 Functions of SyDL

The syntax-directed editor SyDL is composed of three
parts, the edit window, the syntax tree window, and the log
message window. Fig. 2 is showing the display of SyDL.

On the edit window placed on the right-up side, a user can
type any LOTOS syntax like use a normal ASCII editor.
He/she can also input directly a LOTOS syntax template
via double-clicking a node on the syntax tree at the left-up
window. In the displayed specification, words being blue-
colored represent the reserved LOTOS symbols. The right-
bottom log message window shows the results of lexical
analysis and parsing a given specification.

Template-based editing

In editing, if a node of syntax tree is selected, then the cor-
responding syntax template is added to the cursor position
at the edit window. Because the added syntax template
usually includes non-terminal symbols enclosed with

braces, a user may select one of these non-terminal sym-
bols and the corresponding syntax tree is displayed again
as shown in Fig. 2. The syntax tree has nodes that represent
all possible extensions of the non-terminal symbol. It is
waiting for another node selection.

TYRE stgpe_iaf 13
1, spectiicacion

CIvPE

(#ata_type_sefiattive. ..}
1

PRI
4 U (1eeatifie_epmstion, ...} 16 (densvivr_expression)
o wem

TE Jigpe_tes 15
(v_rmpression)
[3]
(T2 type_sesinaition. ..}
| terscess_swsiuinioa...y
Ll °

By repeating of syntax template input, all of the non-
terminal symbols can be removed. Then, the specification
is completed with immediate typing on the slash-enclosed
terminal symbols. The syntax templates represent the
LOTOS syntax rules. It is generated from LOTOS syntax
diagram {11, annex D].

Dynamic syntax checking

As soon as the data type definition parts, the library parts
or the process parts are completed, the corresponding pars-
ers work automatically to perform the partial syntax
checking. And the results of syntax checking are revealed
at log message window. Unlike static parsing of other tools,
SyDL checks the syntax dynamically when all of the non-
terminal symbols are removed in the interesting parts. The
log message window of Fig. 3 shows the results of syntax
checking a specification. For example, when the reserved
symbol ENDTYPE is missed in the specification, error
message is occurred as shown in Fig. 3.

=@ toechoment
£ € speciic sbon

TYPE Buolran 13
SIRTS basl
™ treeFalse © -3 bee

wot. : weal -3 oot
ERS FUAALL X,y : beel
BFSORT beel
»ot{mat{x))ex;
Met(true)=ralse; sakisalse)otrve;

| 1YPE maney 13 Boslem

SURIS naney J
L) : > meney
inc, dec : mmmey > naney
L money, meary > deel
wel, ned 1 woney > beel
EONS FORALL X,y nawey
SFSONT noney
Inc(sec(x))=x; deciinc(n))en;
PSORT peel

Result of Dynamic Syntax Check

-286-

5. ViSL

5.1 Overview of ViSL

ViSL is a LOTOS simulator that allows step by step
evaluation of specifications. Because the semantics of
LOTOS specifications is defined by means of labeled tran-
sition systems, a simulator amounts to the generation of
transition system from a given specification. A state in
such a labeled transition system corresponds to a LOTOS
behavior expression, and each transition is labeled an ac-
tion that corresponds to at least one action denotation in the
LOTOS expression.

Because the simulation of LOTOS specification can be ac-
complished by using simulation tools, the interactions be-
tween tools and users are one of the most important fea-
tures. In this research, we propose graphic simulation trees
and the user interfaces using these trees. ViSL functions are
as follows:

® Moving to interesting behaviors in a specification

® Transition by selecting an action on the simulation
tree

® Undoing the last transition

® Observing the trace of actions

5.2 Simulation trees

One of the basic roles of a simulator is to calculate all pos-
sible actions at the current state. After an action is taken
from possible ones by environment including a user, a tran-
sit from the current state to the next state occurs. The
reached state is subsequently evaluated, and so the process
continues. This results in a sequence of actions, or a trace.
Usually, a simulator also allows a user to backtrack, and
select another action for execution. In this way, a complete
tree can be generated. This tree is usually referred to as a
simulation tree [5, Chap.2].

The simulation tree is composed of nodes corresponding to
states and edges corresponding to transitions. Fig. 4 repre-
sents LOTOS behavior specification and its simplified
simulation tree. The specification models a vending ma-
chine that interacts with environments through gates coin,
cofB, cokB, and retB. The data type definition part is omit-
ted.

At the beginning simulation, because the value of n is zero,
a user able to select one of two actions, “coin !I” or
“coin 127, Like Fig. 4, if the selected action is “coin /1”
then the number of capable actions are increased, “coin /17,
“coin 127, “cofB lcoffee” or “retB !I”. The simulation tree
represented at Fig. 4 is generated by selection of actions
“coin!I”” and “coin!I” again.

In this way, a user is able to analyze the dynamic semantics
of specified behavior whether it satisfies the specifier’s in-
tention. Simulation is very rapid and intuitive validation

1998 international Computer Symposium
Workshop on Software Engineering and Database Systems
December 17-19, 1998, N.C K.U., Tainan, Taiwan, R.0.C.

method for users. And it allows a user to drive which parts
of the LOTOS specification have contributed to a certain
series of actions that are generated.

behaviour
VM[com,cofB,cokB retB] (0)

where .
rocess VM(coin,cofBcokB retB}(n:Nat)noext:=

coin 11: W[coin,cofB,cokB retBl(n+1)
coin 12; YMlcom.cofB,cokB retBl(n+2)

cofB Icoffee(n ge 1):
YM[com,cofB,cokB,retB](n - 1)

cokB icokelnge 2]:
VM{com.cofB.cokB retBl(n - 2)

{1
retB n [n gt 0};
)VM[coin,coB,cokB,retBl(O)

endproc

&!\coﬂbe

O

coin !} o g} icoffee teo. etB 12

Fig. 4 A LOTOS specification and its Simulation Tree

5.3 Functions of ViSL

The Fig. 5 is showing the display of ViSL. The left-back
window includes the LOTOS specification that will be
simulated, and the right-up window includes the current
state represented LOTOS specification. The left-center
window is the simulation dialog on which one can choose
an action from the menu, undo transition, or observe the
trace that represents history of transition. The right-bottom
window displays the simulation tree in a graphical form.
On this tree, one can do same things, choose an action,
undo, and observe the trace. The results on the dialog coin-
cide with the results on the simulation tree.

Ty
v Tecm. ;o coud rem | {macin
hore
et un {Cri0. 200 Lt) TR T rmed 3

cn ¢ e

ey iyt SITPRUTORTE Y

“tum 1 s puaciOF

7 [ooon coR o re] (rurctincetn)

eom tcome (adw ava

ol cok comsv@] i - mesi

b e inIerZima)

o [com coR. Cind 701 (.3 - mcelnce B

T 1A @0l
= [com cokt o 1ot (B
.

T A S L AR I

Fig. 5 Display of ViSL Simulator

-287-

1998 International Computer Syrposium
Workshop on Software Engineering and Database Systems
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

Interactions using simulation trees

ViSL provides the visualized interactions for user interface.
The graphical form of a simulation tree allows a user to
analyze the LOTOS specification more intuitively and
comfortably. The Fig. 6 represents a selection of an action
and undoing it.. When the mouse cursor is placed on a se-
lectable node, the node’s color is changed and the corre-

sponding action name is displayed, then a user able to dou-

ble-click to choose the node. Also, when the cursor is
placed on a node which was already selected for the last
transition, a user can choose it for undoing the transition.
The second picture of Fig. 6 shows such situation. By us-
ing the simulation trees of ViSL, users are able to grasp the
simulating situation at a glance, and know the current state
very clearly.

A oin 1 succlo

PA))
-1. coin ! suec(0]
A5 \ \L

b |

3.cofb | eoffec:

’
;1. coin ! suce(B):

\
1”{‘(\1 c:(l.’l]:
= ;/mm \su 0

-~

4?1\. coin 1 suce(D):
P \'
o/d/ \o

The nodes of simulation tree have one of three colors, red,
green or blue. The red nodes are selected ones, which rep-
resent the trace linked by red lines. The action names on
the red lines make the trace more readable. The blue color
of leaf nodes means that they are selectable. When the cur-
sor located on one of them, the blue color changes to green.

6. IMPLEMENTATION

The toolset executes on Windows95 or WindowsNT. Be-
cause the main objective of this toolset is to contribute to
telecommunication system development area widely, it
takes the most popular operating systems. Most of LOTOS
toolsets introduced in section 3 are executed on UNIX en-
vironment. This fact makes it more difficult to distribute
LOTOS-based development method to industry, particu-
larly, to small-to-medium sized enterprises. We expect that
the execution environment of our toolset might benefit
such companies.

The toolset is developed on Windows95 with MS-Visual
C++ 5.0 compiler. In the implementation of SyDL, the

Abraxas PCYACC / PCLEX are used. For dynamic syntax
checking, 3 partial parsers and a whole parser are devel-
oped with PCYACC and PCLEX.

6.1 Implementation of SyDL

In the implementation of SyDL, the syntax trees are repre-
sented by a fixed format and saved as a header file,
rules.hpp. Fig. 7 shows the format and the examples. At the
example of Fig. 7, the tree name s
{data_type_definition...} and the two nodes’ names are
type... and library.... The symbol #’ and ‘@\’ mean that
there is an indentation and a new line at the edit window,
respectively. Because the syntax tree information is saved a
header file, it is possible to change the contents of syntax
trees very easily.

Format Example
"non-terminal name@\ *{data_type_definition...} @\
tree node name@\ type...@\

code #1@\ TYPE /typeid/ IS@\

code #2@\ #{p_expression}@\
ENDTYPE@\

{data type definition...}@\

*{data_type definitien...}@\
library...@\

LIBRARY@\

#{type.id lst}@\
ENDLIB@

N
_{ data_type_definition...}@\

Fig. 7 The format of a syntax tree

6.2 Implementation of ViSL

ViSL has three subsystems, engine, manager, and GUI.
GUI has the role that interfaces to a user with easy-to-use
graphical interaction mechanism, and manager intercon-
nects GUI and engine. Engine provides some basic func-
tions, which execute state transitions and yield a list of
possible actions at each state transition. Manager calls en-
gine functions with arguments, the user’s input. And it re-
turns the value from engine to GUI. With the returned val-
ues from manager, GUI generates simulation trees in a
graphical form.

visual return results
Syntax tree values of function LOLA
M er :
USER .| o anag | Library
node selection/ function
seclection optians call

Fig. 8 The structure of ViSL

In the implementation of engine, a part of LOLA source
code is reused. It is constructed to LOLA library. LOLA is
a transformation tool, which provides LOTOS to LOTOS
transformations. Also, it supports data evaluation, testing,
and step by step simulation. In this research we select the

-288-

part of step by step simulation and some substantial func-
tions for recompiling LOLA library.

7. CONCLUSIONS

In this paper we introduced the tools, SyDL and ViSL. The
aim of our research was to develop a practical LOTOS
toolset and distribute it to industry as a part of an integrated
methodology. For this aim, the basic functions of LOTOS-
based toolset have been investigated and the syntax-
directed editing and visual simulating were taken as our
supporting functions.

Formal specification editors and simulators are the most
fundamental tools that allow constructing a correct specifi-
cation and analyzing dynamic semantics. Specially, for a
beginner of formal languages, these tools must work very
conveniently. SyDL, the template-based editor allows the
user-friendly editing interfaces. And, ViSL provides the
simulation tree in a graphical form, which makes enhanced
interactions possible for the step-by-step simulation.

We developed the toolset to introduce the formal methods
in industry for the first time, in Korea. The project is ex-
pected to last until October 1998 with technology transfer
to small-to-medium sized enterprises. The participating
companies in technology transfer will use the toolset as a
part of the TISDM methodology. Also, we plan to research
on using the LOTOS toolset for the development of tele-
communication systems. It will be done as joint research.
Our research team will cooperate with the practitioners in
the participating companies.

We also expect that the toolset could be used in formal lan-
guage courses. In research [19], it was shown how visuali-
zation and interaction can be integrated into a formal lan-
guage course, using JFLAP tool as an example. The re-
search emphasized that the formal languages course be-
comes a more traditional computer science course by inte-
grating visual and interactive tools into the course, allow-
ing the student to experiment with the picture and receive
immediate feedback.

At present, the two tools are independent of each other.
SyDL produces syntactically correct LOTOS specifications.
And ViSL works with the flattened LOTOS specification
which is passed through static semantics checker linked to
LOLA. As the integration of these two tools is in progress,
the gab will be narrowed in the near future.

8. REFERENCES

[1] A. Belinfante, editor, ‘The LOTOS Integrated Editor
Crie User and Reference Manual’, LOTOSPHERE
Consortium, Feb. 1992.

[2] T. Bolognesi and E. Brinksma, “Introduction to the

- ISO Specification Language LOTOS”, Computer
Networks and ISDN Systems, Vol. 14, No. 1, pp.25-59,
1987.

[3] T. Bolognesi, E. Najm, and P.A.J. Tilanus, “G-

LOTOS: a graphical language for concurrent systems”,

1998 International Computer Symposium
Workshop on Software Engineering and Database Systens
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

Computer Networks and ISDN Systems, Vol.26, No.9,
pp.1101-1127, May 1994.

[4] E. M. Clarke and J. M. Wing et al, “Formal Methods:
State of the Art and Future Directions”, ACM
Computing Surveys, Vol. 28, No. 4, Dec. 1996.

[51 E. H. Eertink, editor, ‘Simulation Techniques for the
Validation of LOTOS Specification’, Proefschrift,
1994.

[6] E. H. Eertink, ‘SMILE user manual (release 4.0),
Tele-Informatics and Open Systems Group, 1993.

[7] H. Ehrig and B. Mahr, ‘Fundamentals of Algebraic
Specification 1: Equations and Initial Semantics’,
EATCS Monographs on Theoretical Computer
Science, Springer-Verlag, 1985.

(8] B. Ghribi and L. Logrippo, “A Validation
Environment for LOTOS”, Protocol, Specification,
Testing and Verification, XIII, Elsevier Science
publishers B. V., pp.93-108, 1993.

[9] M. Haj-Hussein, “An Interactive System for LOTOS
Applications”, Master’s Thesis, University of Ottawa,
1988.

[10}A. Hall, “Using Formal Methods to Develop an ATC
Information System”, IEEE Software, pp. 66-76,
March, 1996.

[11}ISO, ‘International Standard ISO8807°, 1st Ed., 1989.

[12]]. Jeon et al., “A Study on the Information and
Communication System Development Methodology
(I1)”, Report, SERI, Korea, Dec., 1997.

[13]). van de Lagemaat, T. Bolognesi and C. Vissers,
editors. ‘LOTOSphere: Software Development with
LOTOS’, Kluwer Academic Publishers, Dordrecht,
The Natherlands, 1995.

[14]D. Larrabeiti , S. Pavon and G. Rayvay, ‘LOLA user
manual (version 3R6)’, Department De Ingenieria
Telematica, 1995.

[15]P. G. Larsen, J. Fitzgerald, and T. Brookes, “Applying
Formal Specification in Industry”, IEEE Software, pp.
48-56, May, 1996.

[16]L. Logrippo, M. Faci and M. Haj-Hussein, “An
introduction to LOTOS: leamning by examples”,
Computer Networks and ISDN Systems, Vol. 23, No.
5, pp-325-342, 1992.

[17JR. Miller, ‘Communication and Concurrency’,
International Series in Computer Science, Prentice-
Hall, 1989.

[18]S. L. Pfleeger, “Investigating the Influence of Formal
Methods”, Computer, pp.33-43, Feb. 1997.

[19]M. Procopiuc, O. Procopiuc, and S. H. Rodger.
“Visualization and Interaction in the Computer
Science Formal Languages Course with JFLAP”, in
Proc. Frontiers in Education 96, Salt Lake City, USA,
Nov. 6-9, 1996.

[20]G. Raeder, “A survey of current graphical
programming techniques”, IEEE Computer, ppl11-25,
August 1985.

{211K. J. Tumer, and A. McClenaghan, “Visual Animation
of Formal Requirements”, technical report,
Department of Computing Science, University of
Stirling, UK, April 1996.

-289-

	
	284
	285
	286
	287
	288
	289

